
Research Article
A New Globally Exponential Stability Criterion for Neural
Networks with Discrete and Distributed Delays

Hao Chen,1,2 Shouming Zhong,1 and Jinxiang Yang1

1School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu, Sichuan 611731, China
2School of Mathematical Science, Huaibei Normal University, Huaibei, Anhui 235000, China

Correspondence should be addressed to Hao Chen; chh0308@126.com

Received 10 June 2014; Revised 9 October 2014; Accepted 13 October 2014

Academic Editor: Tiedong Ma

Copyright © 2015 Hao Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper concerns the problem of the globally exponential stability of neural networks with discrete and distributed delays. A
novel criterion for the globally exponential stability of neural networks is derived by employing the Lyapunov stability theory,
homomorphic mapping theory, and matrix theory. The proposed result improves the previously reported global stability results.
Finally, two illustrative numerical examples are given to show the effectiveness of our results.

1. Introduction

The dynamics of neural networks has been widely studied in
the past few decades, due to their practical importance and
successful applications in many areas such as image process-
ing, combinatorial optimization, signal processing, pattern
recognition, and associative memories [1–4]. In order to
design an associative memory by using a neural network, we
must choose the appropriate network parameters that allow
the designed neural networks to have multiple equilibrium
points for a particular input vector depending on the initial
states of the neurons.Moreover, in order to solve some classes
of optimization problems by employing neural networks, the
equilibriumpoint of designed neural networkmust be unique
and globally stable of the initial conditions. Therefore, the
existence, uniqueness, and stability of the equilibrium point
are some of the important dynamical properties from the
application of the neural networks [1, 4–6].

It is well known that stability is one of themain properties
of neural networks and stability is a crucial feature in the
design of neural networks.However, time delays always occur
in various neural networks and cause undesirable dynamic
network behaviors such as oscillation and instability [3, 7–9].

A great deal of effort has been devoted to stability analysis
of neural networks with various types of time delays such as
constant delay, time-varying delay, and distributed delay [1–
4]. In [10], a model for neural networks with constant delay
was investigated. Neural networks with time-varying delay
have been considered in [2–4, 7–9, 11–24]. Recently, there has
been a growing interest in study of stability analysis for neural
networks with discrete and distributed delays [2, 3, 7–9, 11].

The authors got a global stability condition about neural
networks with discrete delays in [1, 4], and distributed delay
was not considered. In [2, 3], neural networks with discrete
and distributed delays were investigated by employing LMI
methods. However, it is difficult to obtain the stability con-
dition. In this paper, by using the Lyapunov stability theory,
homomorphic mapping theory, and matrix theory, a novel
delay-dependent sufficient condition for global exponential
stability of neural networks with discrete and distributed
delays is obtained. The process with which we get global
stability is simple in this paper. The novel result improves
conditions in [3, 7–9, 11], and it is easy to be verified. Finally,
some illustrative numerical examples are given to make a
comparison between the proposed result and the previously
corresponding results.
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2. Preliminaries

The delayed neural networks that we consider are assumed to
be governed by the following ordinary differential equations
model:
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In this paper, the time delays 𝜏, 𝜎 are assumed to be
nonnegative; that is, 𝜏 > 0, 𝜎 > 0.
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Lemma 1 (see [4]). The map 𝐻(𝑥) : 𝑅
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→ 𝑅
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3. Existence, Uniqueness, and Stability of
Equilibrium Point

This section dealswith the existence, uniqueness, and stability
of the equilibrium point for system (2).The theorem is stated
in the following.

Theorem 5. For the neural network (2), the neural network
has a unique equilibriumpoint, and it is globally asymptotically
stable if the following condition holds:
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Proof. The proof can be completed by two steps. Firstly, we
prove the existence and uniqueness of the equilibruim point
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of system (2); it is equivalent to prove that the following
mapping (12) is a homeomorphism on 𝑅

𝑛. In the second step,
the global asymptotical stability is proved.

Step 1. Consider the following mapping associated with
system (2):
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√

‖𝐷‖

∞
and V
4

= √𝑛/

√

‖𝐷‖

1
.

Then, (18) can be written as follows:

(𝑥 − 𝑦)

𝑇
𝜎𝐷 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (1 − 𝑞) 𝜎
√

𝑛
√











𝐷









∞









𝑥 − 𝑦









2

2
+ 𝑞𝜎

√
𝑛
√











𝐷









1









𝑥 − 𝑦









2

2
.

(19)

Combining (15), (17), and (19), the following inequality is
obtained:

(𝑥 − 𝑦)

𝑇
(𝐻 (𝑥) − 𝐻 (𝑦))

≤ −𝑐

𝑚









𝑥 − 𝑦









2

2
+ 𝑙

𝑀‖𝐴‖2









𝑥 − 𝑦









2

2
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+
√

𝑛 ((1 − 𝑝)
√











𝐵









∞
+ 𝑝

√











𝐵









1
)









𝑥 − 𝑦









2

2

+ (1 − 𝑞) 𝜎
√

𝑛
√











𝐷









∞









𝑥 − 𝑦









2

2
+ 𝑞𝜎

√
𝑛
√











𝐷









1









𝑥 − 𝑦









2

2
.

(20)

Because (11) holds,

(𝑥 − 𝑦)

𝑇
(𝐻 (𝑥) − 𝐻 (𝑦)) ≤ −Ω









𝑥 − 𝑦









2

2
.

(21)

Then, for any 𝑥 ̸= 𝑦,

(𝑥 − 𝑦)

𝑇
(𝐻 (𝑥) − 𝐻 (𝑦)) < 0,

(22)

which implies that 𝐻(𝑥) ̸= 𝐻(𝑦) for all 𝑥 ̸= 𝑦. That is, 𝐻(𝑥)

is injective on 𝑅

𝑛.
Letting 𝑦 = 0, we obtain

𝑥

𝑇
(𝐻 (𝑥) − 𝐻 (0)) ≤ −Ω‖𝑥‖

2

2
, (23)

it follows that










𝑥

𝑇






2
‖𝐻(𝑥) − 𝐻(0)‖2

≥ Ω‖𝑥‖

2

2
, (24)

and, therefore,

‖𝐻(𝑥)‖2
+ ‖𝐻(0)‖2

≥ Ω‖𝑥‖2
. (25)

Because ‖𝐻(0)‖

2
is finite, it is obvious that ‖𝐻(𝑥)‖

2
→ +∞

as ‖𝑥‖

2
→ +∞. So 𝐻(𝑥) is proper to 𝑅

𝑛. From Lemma 2,
system (2) has a unique equilibrium point.

Step 2. We show that the condition inTheorem 5 for the exis-
tence and uniqueness of the equilibrium point also implies
the global asymptotical stability of neural network (2). From
the above proof, the system has a unique equilibrium point
𝑥

∗. Using the transformation 𝑧(𝑡) = 𝑥(𝑡) − 𝑥

∗, where 𝑥(𝑡) =

(𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇, 𝑥

∗
= (𝑥

∗

1
, 𝑥

∗

2
, . . . , 𝑥

∗

𝑛
)

𝑇. The system
(2) can be shifted to the origin and the following form is
obtained:

�̇� (𝑡) = −𝐶𝑧 (𝑡) + 𝐴𝑔 (𝑧 (𝑡)) + 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

+ 𝐷 ∫

𝑡

𝑡−𝜎

𝑔 (𝑧 (𝑠)) 𝑑𝑠,

(26)

where 𝑔(𝑧(𝑡)) = (𝑔

1
(𝑧

1
(𝑡)), 𝑔

2
(𝑧

2
(𝑡)), . . . , 𝑔

𝑛
(𝑧

𝑛
(𝑡)))

𝑇,
𝑔

𝑖
(𝑧

𝑖
(𝑡)) = 𝑓

𝑖
(𝑧

𝑖
(𝑡) + 𝑥

∗

𝑖
) − 𝑓

𝑖
(𝑥

∗

𝑖
), and the following

inequality holds:








𝑔

𝑖
(𝑧

𝑖 (
𝑡))









≤ 𝑙

𝑖









𝑧

𝑖 (
𝑡)









, 𝑖 = 1, 2, . . . , 𝑛. (27)

Construct the following positive definite Lyapunov func-
tional:

𝑉 (𝑧 (𝑡)) = 𝑉

1 (
𝑧 (𝑡)) + 𝑉

2 (
𝑧 (𝑡)) + 𝑉

3 (
𝑧 (𝑡)) , (28)

where 𝑉

1
(𝑧(𝑡)), 𝑉

2
(𝑧(𝑡)), and 𝑉

3
(𝑧(𝑡)) are defined as follows:

𝑉

1 (
𝑧 (𝑡)) =

1

2

𝑧

𝑇
(𝑡) 𝑧 (𝑡) ,

𝑉

2 (
𝑧 (𝑡)) =

1 − 𝑝

2

√
𝑛
√











𝐵









∞

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏

𝑧

2

𝑗
(𝑠) 𝑑𝑠

+

𝑝

2

√
𝑛
√











𝐵









1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏

𝑧

2

𝑗
(𝑠) 𝑑𝑠,

𝑉

3 (
𝑧 (𝑡)) =

1 − 𝑞

2

√
𝑛
√











𝐷









∞

𝑛

∑

𝑗=1

∫

0

−𝜎

∫

𝑡

𝑡+𝜃

𝑧

2

𝑗
(𝑠) 𝑑𝑠𝑑𝜃

+

𝑞

2

√
𝑛
√











𝐷









1

𝑛

∑

𝑗=1

∫

0

−𝜎

∫

𝑡

𝑡+𝜃

𝑧

2

𝑗
(𝑠) 𝑑𝑠𝑑𝜃.

(29)

Taking the derivative of 𝑉(𝑧(𝑡)) along the trajectories of
system (26) as follows:

̇

𝑉

1 (
𝑧 (𝑡)) = −𝑧

𝑇
(𝑡) 𝐶𝑧 (𝑡) + 𝑧

𝑇
(𝑡) 𝐴𝑔 (𝑧 (𝑡))

+ 𝑧

𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏)) + 𝑧

𝑇
(𝑡) 𝐷 ∫

𝑡

𝑡−𝜎

𝑔 (𝑧 (𝑠)) 𝑑𝑠,

(30)

we can get the following inequalities:

−𝑧

𝑇
(𝑡) 𝐶𝑧 (𝑡) ≤ −𝑐

𝑚‖
𝑧(𝑡)‖

2

2
,

𝑧

𝑇
(𝑡) 𝐴𝑔 (𝑧 (𝑡)) ≤ 𝑙

𝑀‖𝐴‖2‖
𝑧(𝑡)‖

2

2
,

(31)

𝑧

𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑧

𝑖 (
𝑡) 𝑔

𝑗
(𝑧

𝑗 (
𝑡 − 𝜏))

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1











𝑏

𝑖𝑗
𝑙

𝑗



















𝑧

𝑖 (
𝑡)



















𝑧

𝑗 (
𝑡 − 𝜏)











= (1 − 𝑝)

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1











𝑏

𝑖𝑗
𝑙

𝑗



















𝑧

𝑖 (
𝑡)



















𝑧

𝑗 (
𝑡 − 𝜏)











+ 𝑝

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1











𝑏

𝑗𝑖
𝑙

𝑖





















𝑧

𝑗 (
𝑡)



















𝑧

𝑖 (
𝑡 − 𝜏)









≤

1 − 𝑝

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(V
5











𝑏

𝑖𝑗
𝑙

𝑗











2

𝑧

2

𝑖
(𝑡) +

1

V
5

𝑧

2

𝑗
(𝑡 − 𝜏))

+

𝑝

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(

1

V
6

𝑧

2

𝑖
(𝑡) + V

6











𝑏

𝑗𝑖
𝑙

𝑖











2

𝑧

2

𝑖
(𝑡 − 𝜏))

≤

1 − 𝑝

2

(V
5











𝐵









∞
‖𝑧 (𝑡)‖

2

2
+

𝑛

V
5

‖𝑧 (𝑡 − 𝜏)‖

2

2
)

+

𝑝

2

(

𝑛

V
6

‖𝑧 (𝑡)‖

2

2
+ V
6











𝐵









1
‖𝑧 (𝑡 − 𝜏)‖

2

2
) .

(32)

Let V
5

= √𝑛/

√

‖𝐵‖

∞
and V
6

= √𝑛/

√

‖𝐵‖

1
; (32) can be written

as follows:

𝑧

𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

≤

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧(𝑡)‖

2

2
+

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧(𝑡 − 𝜏)‖

2

2

+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧 (𝑡)‖

2

2
+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧 (𝑡 − 𝜏)‖

2

2
;

(33)
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𝑧

𝑇
(𝑡) 𝐷 ∫

𝑡

𝑡−𝜎

𝑔 (𝑧 (𝑠)) 𝑑𝑠

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

𝑑

𝑖𝑗
𝑧

𝑖 (
𝑡) 𝑔

𝑗
(𝑧

𝑗 (
𝑠)) 𝑑𝑠

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎











𝑑

𝑖𝑗
𝑙

𝑗



















𝑧

𝑖 (
𝑡)



















𝑧

𝑗 (
𝑠)











𝑑𝑠

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

(1 − 𝑞)











𝑑

𝑖𝑗
𝑙

𝑗



















𝑧

𝑖 (
𝑡)



















𝑧

𝑗 (
𝑠)











𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

𝑞











𝑑

𝑗𝑖
𝑙

𝑖





















𝑧

𝑗 (
𝑡)



















𝑧

𝑖 (
𝑠)









𝑑𝑠

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

1 − 𝑞

2

(V
7











𝑑

𝑖𝑗
𝑙

𝑗











2








𝑧

𝑖 (
𝑡)









2
+

1

V
7











𝑧

𝑗 (
𝑠)











2

) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

𝑞

2

(

1

V
8











𝑧

𝑗 (
𝑡)











2

+ V
8











𝑑

𝑗𝑖
𝑙

𝑖











2








𝑧

𝑖 (
𝑠)









2
) 𝑑𝑠

=

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(V
7











𝑑

𝑖𝑗
𝑙

𝑗











2








𝑧

𝑖 (
𝑡)









2
+

1

V
7











𝑧

𝑗 (
𝑠)











2

) 𝑑𝑠

+

𝑞

2

∫

𝑡

𝑡−𝜎

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(

1

V
8











𝑧

𝑗 (
𝑡)











2

+ V
8











𝑑

𝑗𝑖
𝑙

𝑖











2








𝑧

𝑖 (
𝑠)









2
) 𝑑𝑠

≤

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

(V
7
√











𝐷









∞
‖𝑧 (𝑡)‖

2

2
+

𝑛

V
7

‖𝑧 (𝑠)‖

2

2
) 𝑑𝑠

+

𝑞

2

∫

𝑡

𝑡−𝜎

(

𝑛

V
8

‖𝑧 (𝑡)‖

2

2
+ V
8
√











𝐷









1
‖𝑧 (𝑠)‖

2

2
) 𝑑𝑠.

(34)

Let V
7

= √𝑛/

√

‖𝐷‖

∞
, V
8

= √𝑛/

√

‖𝐷‖

1
; (34) can be written as

follows:

𝑧

𝑇
(𝑡) 𝐷 ∫

𝑡

𝑡−𝜎

𝑔 (𝑧 (𝑠)) 𝑑𝑠

≤

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

(
√

𝑛
√











𝐷









∞
‖𝑧 (𝑡)‖

2

2
+

√
𝑛
√











𝐷









∞
‖𝑧 (𝑠)‖

2

2
) 𝑑𝑠

+

𝑞

2

∫

𝑡

𝑡−𝜎

(
√

𝑛
√











𝐷









1
‖𝑧 (𝑡)‖

2

2
+

√
𝑛
√











𝐷









1
‖𝑧 (𝑠)‖

2

2
) 𝑑𝑠

=

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
‖𝑧 (𝑡)‖

2

2

+

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









∞
‖𝑧(𝑠)‖

2

2
𝑑𝑠

+

𝑞

2

𝜎
√

𝑛
√











𝐷









1
‖𝑧(𝑡)‖

2

2
+

𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









1
‖𝑧(𝑠)‖

2

2
𝑑𝑠.

(35)

Combining (31), (33), and (35), the following inequality is
obtained:

̇

𝑉

1 (
𝑧 (𝑡)) ≤ −𝑐

𝑚‖
𝑧(𝑡)‖

2

2
+ 𝑙

𝑀‖𝐴‖2‖
𝑧(𝑡)‖

2

2

+

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧(𝑡)‖

2

2

+

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧(𝑡 − 𝜏)‖

2

2

+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧(𝑡)‖

2

2
+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧(𝑡 − 𝜏)‖

2

2

+

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
‖𝑧(𝑡)‖

2

2

+

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









∞
‖𝑧(𝑠)‖

2

2
𝑑𝑠

+

𝑞

2

𝜎
√

𝑛
√











𝐷









1
‖𝑧 (𝑡)‖

2

2

+

𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









1
‖𝑧(𝑠)‖

2

2
𝑑𝑠,

̇

𝑉

2 (
𝑧 (𝑡)) =

1 − 𝑝

2

√
𝑛
√











𝐵









∞

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑡) −

1 − 𝑝

2

√
𝑛
√











𝐵









∞

×

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑡 − 𝜏) +

𝑝

2

√
𝑛
√











𝐵









1

×

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑡) −

𝑝

2

√
𝑛
√











𝐵









1

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑡 − 𝜏)

=

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧 (𝑡)‖

2

2

−

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧 (𝑡 − 𝜏)‖

2

2

+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧(𝑡)‖

2

2
−

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧(𝑡 − 𝜏)‖

2

2
,

̇

𝑉

3 (
𝑧 (𝑡)) =

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑡) −

1 − 𝑞

2

√
𝑛
√











𝐷









∞

×

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

𝑧

2

𝑗
(𝑠) 𝑑𝑠

+

𝑞

2

𝜎
√

𝑛
√











𝐷









1

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑡) −

𝑞

2

√
𝑛
√











𝐷









1

×

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

𝑧

2

𝑗
(𝑠) 𝑑𝑠

=

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑡) −

1 − 𝑞

2

√
𝑛
√











𝐷









∞

× ∫

𝑡

𝑡−𝜎

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑠) 𝑑𝑠
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+

𝑞

2

𝜎
√

𝑛
√











𝐷









1

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑡) −

𝑞

2

√
𝑛
√











𝐷









1

× ∫

𝑡

𝑡−𝜎

𝑛

∑

𝑗=1

𝑧

2

𝑗
(𝑠) 𝑑𝑠

=

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
‖𝑧(𝑡)‖

2

2

−

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









∞
‖𝑧 (𝑠)‖

2

2
𝑑𝑠

+

𝑞

2

𝜎
√

𝑛
√











𝐷









1
‖𝑧 (𝑡)‖

2

2

−

𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









1
‖𝑧(𝑠)‖

2

2
𝑑𝑠.

(36)

From (36), we get the following inequality:

̇

𝑉 (𝑧 (𝑡)) =

̇

𝑉

1 (
𝑧 (𝑡)) +

̇

𝑉

2 (
𝑧 (𝑡)) +

̇

𝑉

3 (
𝑧 (𝑡))

≤ − (𝑐

𝑚
− 𝑙

𝑀‖𝐴‖2

−
√

𝑛 ((1 − 𝑝)
√











𝐵









∞
+ 𝑝

√











𝐵









1
)

− 𝜎
√

𝑛 ((1 − 𝑞)
√











𝐷









∞
+ 𝑞

√











𝐷









1
)) ‖𝑧(𝑡)‖

2

2

= −Ω‖𝑧(𝑡)‖

2

2
< 0.

(37)

From the well-known Lyapunov theory, we can conclude that
the system (2) is globally asymptotically stable.

In fact, if condition (11) holds, the system (26) or (2) is also
globally exponentially stable; that is, the following theorem is
true.

Theorem 6. For the neural networks (26) or (2), the neural
network is globally exponentially stable, if the following condi-
tion holds:

Ω = 𝑐

𝑚
− 𝑙

𝑀‖𝐴‖2
−

√
𝑛 ((1 − 𝑝)

√











𝐵









∞
+ 𝑝

√











𝐵









1
)

− 𝜎
√

𝑛 ((1 − 𝑞)
√











𝐷









∞
+ 𝑞

√











𝐷









1
) > 0,

(38)

where 𝑐

𝑚
= min{𝑐

𝑖
}, 𝑙

𝑀
= max{𝑙

𝑖
}, 0 ≤ 𝑝 ≤ 1, 0 ≤ 𝑞 ≤ 1,

𝐵 = (|𝑏

𝑖𝑗
𝑙

𝑗
|

2
)

𝑛×𝑛
, 𝐷 = (|𝑑

𝑖𝑗
𝑙

𝑗
|

2
)

𝑛×𝑛
.

Proof. Construct the following positive definite Lyapunov
functional:

𝑉 (𝑧 (𝑡)) =

1

2

𝑧

𝑇
(𝑡) 𝑧 (𝑡) . (39)

Taking the derivative of 𝑉(𝑧

𝑡
) along the trajectories of

system (26) as follows:

̇

𝑉 (𝑧 (𝑡)) = −𝑧

𝑇
(𝑡) 𝐶𝑧 (𝑡) + 𝑧

𝑇
(𝑡) 𝐴𝑔 (𝑧 (𝑡))

+ 𝑧

𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏)) + 𝑧

𝑇
(𝑡) 𝐷 ∫

𝑡

𝑡−𝜎

𝑔 (𝑧 (𝑠)) 𝑑𝑠;

(40)

one can get the following inequalities:

−𝑧

𝑇
(𝑡) 𝐶𝑧 (𝑡) ≤ −𝑐

𝑚‖
𝑧(𝑡)‖

2

2
,

𝑧

𝑇
(𝑡) 𝐴𝑔 (𝑧 (𝑡)) ≤ 𝑙

𝑀‖𝐴‖2‖
𝑧(𝑡)‖

2

2
,

(41)

𝑧

𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑧

𝑖 (
𝑡) 𝑔

𝑗
(𝑧

𝑗 (
𝑡 − 𝜏))

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1











𝑏

𝑖𝑗
𝑙

𝑗



















𝑧

𝑖 (
𝑡)



















𝑧

𝑗 (
𝑡 − 𝜏)











= (1 − 𝑝)

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1











𝑏

𝑖𝑗
𝑙

𝑗



















𝑧

𝑖 (
𝑡)



















𝑧

𝑗 (
𝑡 − 𝜏)











+ 𝑝

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1











𝑏

𝑗𝑖
𝑙

𝑖





















𝑧

𝑗 (
𝑡)



















𝑧

𝑖 (
𝑡 − 𝜏)









≤

1 − 𝑝

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(V
9











𝑏

𝑖𝑗
𝑙

𝑗











2

𝑧

2

𝑖
(𝑡) +

1

V
9

𝑧

2

𝑗
(𝑡 − 𝜏))

+

𝑝

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(

1

V
10

𝑧

2

𝑖
(𝑡) + V

10











𝑏

𝑗𝑖
𝑙

𝑖











2

𝑧

2

𝑖
(𝑡 − 𝜏))

≤

1 − 𝑝

2

(V
9











𝐵









∞
‖𝑧 (𝑡)‖

2

2
+

𝑛

V
9

‖𝑧 (𝑡 − 𝜏)‖

2

2
)

+

𝑝

2

(

𝑛

V
10

‖𝑧 (𝑡)‖

2

2
+ V
10











𝐵









1
‖𝑧 (𝑡 − 𝜏)‖

2

2
) .

(42)

Let V
9

= √𝑛/

√

‖𝐵‖

∞
and V

10
= √𝑛/

√

‖𝐵‖

1
; (42) can be

written as follows:

𝑧

𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

≤

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧(𝑡)‖

2

2
+

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧(𝑡 − 𝜏)‖

2

2

+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧(𝑡)‖

2

2
+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧(𝑡 − 𝜏)‖

2

2
,

(43)

𝑧

𝑇
(𝑡) 𝐷 ∫

𝑡

𝑡−𝜎

𝑔 (𝑧 (𝑠)) 𝑑𝑠

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

𝑑

𝑖𝑗
𝑧

𝑖 (
𝑡) 𝑔

𝑗
(𝑧

𝑗 (
𝑠)) 𝑑𝑠

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎











𝑑

𝑖𝑗
𝑙

𝑗



















𝑧

𝑖 (
𝑡)



















𝑧

𝑗 (
𝑠)











𝑑𝑠

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

(1 − 𝑞)











𝑑

𝑖𝑗
𝑙

𝑗



















𝑧

𝑖 (
𝑡)



















𝑧

𝑗 (
𝑠)











𝑑𝑠
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+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

𝑞











𝑑

𝑗𝑖
𝑙

𝑖





















𝑧

𝑗 (
𝑡)



















𝑧

𝑖 (
𝑠)









𝑑𝑠

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

1 − 𝑞

2

(V
11











𝑑

𝑖𝑗
𝑙

𝑗











2








𝑧

𝑖 (
𝑡)









2
+

1

V
11











𝑧

𝑗 (
𝑠)











2

) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜎

𝑞

2

(

1

V
12











𝑧

𝑗 (
𝑡)











2

+ V
12











𝑑

𝑗𝑖
𝑙

𝑖











2








𝑧

𝑖 (
𝑠)









2
) 𝑑𝑠

=

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(V
11











𝑑

𝑖𝑗
𝑙

𝑗











2








𝑧

𝑖 (
𝑡)









2
+

1

V
11











𝑧

𝑗 (
𝑠)











2

) 𝑑𝑠

+

𝑞

2

∫

𝑡

𝑡−𝜎

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(

1

V
12











𝑧

𝑗 (
𝑡)











2

+ V
12











𝑑

𝑗𝑖
𝑙

𝑖











2








𝑧

𝑖 (
𝑠)









2
) 𝑑𝑠

≤

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

(V
11











𝐷









∞
‖𝑧 (𝑡)‖

2

2
+

𝑛

V
11

‖𝑧 (𝑠)‖

2

2
) 𝑑𝑠

+

𝑞

2

∫

𝑡

𝑡−𝜎

(

𝑛

V
12

‖𝑧 (𝑡)‖

2

2
+ V
12











𝐷









1
‖𝑧 (𝑠)‖

2

2
) 𝑑𝑠.

(44)

Let V
11

= √𝑛/

√

‖𝐷‖

∞
and V

12
= √𝑛/

√

‖𝐷‖

1
; (44) can be

written as follows:

𝑧

𝑇
(𝑡) 𝐷 ∫

𝑡

𝑡−𝜎

𝑔 (𝑧 (𝑠)) 𝑑𝑠

≤

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

(
√

𝑛
√











𝐷









∞
‖𝑧 (𝑡)‖

2

2
+

√
𝑛
√











𝐷









∞
‖𝑧 (𝑠)‖

2

2
) 𝑑𝑠

+

𝑞

2

∫

𝑡

𝑡−𝜎

(
√

𝑛
√











𝐷









1
‖𝑧 (𝑡)‖

2

2
+

√
𝑛
√











𝐷









1
‖𝑧 (𝑠)‖

2

2
) 𝑑𝑠

=

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
‖𝑧 (𝑡)‖

2

2

+

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









∞
‖𝑧(𝑠)‖

2

2
𝑑𝑠

+

𝑞

2

𝜎
√

𝑛
√











𝐷









1
‖𝑧(𝑡)‖

2

2
+

𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









1
‖𝑧(𝑠)‖

2

2
𝑑𝑠.

(45)

Utilizing (41), (43), and (45), the following inequality is
obtained:

̇

𝑉 (𝑧 (𝑡)) ≤ −𝑐

𝑚‖
𝑧(𝑡)‖

2

2
+ 𝑙

𝑀‖𝐴‖2‖
𝑧(𝑡)‖

2

2

+

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧 (𝑡)‖

2

2

+

1 − 𝑝

2

√
𝑛
√











𝐵









∞
‖𝑧(𝑡 − 𝜏)‖

2

2

+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧(𝑡)‖

2

2
+

𝑝

2

√
𝑛
√











𝐵









1
‖𝑧(𝑡 − 𝜏)‖

2

2

+

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
‖𝑧(𝑡)‖

2

2

+

1 − 𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









∞
‖𝑧(𝑠)‖

2

2
𝑑𝑠

+

𝑞

2

𝜎
√

𝑛
√











𝐷









1
‖𝑧 (𝑡)‖

2

2

+

𝑞

2

∫

𝑡

𝑡−𝜎

√
𝑛
√











𝐷









1
‖𝑧(𝑠)‖

2

2
𝑑𝑠

≤ − (𝑐

𝑚
− 𝑙

𝑀‖𝐴‖2
−

1 − 𝑝

2

√
𝑛
√











𝐵









∞
−

𝑝

2

√
𝑛
√











𝐵









1

−

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
−

𝑞

2

𝜎
√

𝑛
√











𝐷









1
) ‖𝑧(𝑡)‖

2

2

+ (

1 − 𝑝

2

√
𝑛
√











𝐵









∞
+

𝑝

2

√
𝑛
√











𝐵









1
)

× sup
𝑠∈[𝑡−𝜏,𝑡]

‖𝑧(𝑠)‖

2

2

+ (

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
+

𝑞

2

𝜎
√

𝑛
√











𝐷









1
)

× sup
𝑠∈[𝑡−𝜎,𝑡]

‖𝑧(𝑠)‖

2

2

≤ − (𝑐

𝑚
− 𝑙

𝑀‖𝐴‖2
−

1 − 𝑝

2

√
𝑛
√











𝐵









∞
−

𝑝

2

√
𝑛
√











𝐵









1

−

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
−

𝑞

2

𝜎
√

𝑛
√











𝐷









1
) ‖𝑧(𝑡)‖

2

2

+ (

1 − 𝑝

2

√
𝑛
√











𝐵









∞
+

𝑝

2

√
𝑛
√











𝐵









1

+

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
+

𝑞

2

𝜎
√

𝑛
√











𝐷









1
)

× sup
[𝑡−𝜏,𝑡]∪[𝑡−𝜎,𝑡]

‖𝑧(𝑠)‖

2

2
.

(46)

Let

𝑘

1
= 𝑐

𝑚
− 𝑙

𝑀‖𝐴‖2
−

1 − 𝑝

2

√
𝑛
√











𝐵









∞
−

𝑝

2

√
𝑛
√











𝐵









1

−

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞
−

𝑞

2

𝜎
√

𝑛
√











𝐷









1
,

𝑘

2
=

1 − 𝑝

2

√
𝑛
√











𝐵









∞
+

𝑝

2

√
𝑛
√











𝐵









1
+

1 − 𝑞

2

𝜎
√

𝑛
√











𝐷









∞

+

𝑞

2

𝜎
√

𝑛
√











𝐷









1
.

(47)

Then, combining (46), the following inequality holds:

̇

𝑉 (𝑧 (𝑡)) ≤ −𝑘

1‖
𝑧 (𝑡)‖

2

2
+ 𝑘

2
sup

[𝑡−𝜏,𝑡]∪[𝑡−𝜎,𝑡]

‖𝑧 (𝑠)‖

2

2
. (48)

Equation (48) can be written as follows:

̇

𝑉 (𝑧 (𝑡)) ≤ −2𝑘

1
𝑉 (𝑧 (𝑡)) + 2𝑘

2
𝑉 (𝑧 (𝑡)) , (49)
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where 𝑉(𝑧(𝑡)) = (1/2)‖𝑧(𝑡)‖

2

2
, 𝑉(𝑧(𝑡)) = (1/

2)sup
[𝑡−𝜏,𝑡]∪[𝑡−𝜎,𝑡]

‖𝑧(𝑠)‖

2

2
.

Because (38) holds, it is obvious that 𝑘

1
> 𝑘

2
> 0. Accord-

ing to Lemma 3, the following inequality holds:

𝑉 (𝑧 (𝑡)) ≤ 𝑉 (𝑧 (𝑡

0
)) 𝑒

−𝜆(𝑡−𝑡0)
.

(50)

So the following inequality is obtained:









𝑧(𝑡, 𝑡

0
, 𝑧

0
)









2

2
≤









𝑧 (𝑡

0
, 𝑧

0
)









2

2
𝑒

−𝜆(𝑡−𝑡0)
.

(51)

That is,









𝑥(𝑡) − 𝑥

∗




2
≤ sup
[−𝜏,0]∪[−𝜎,0]









𝑥 (𝑠) − 𝑥

∗




2
𝑒

−(1/2)𝜆𝑡
. (52)

Therefore, we can conclude that the system (26) or (2) is
globally exponentially stable.

Remark 7. The process in this paper to get global exponential
stability is simple, and the novel stability is less conservative.
Also, the new global stability condition can be verified easily.
The following examples show the validity.

Remark 8. In order to judge the stability of system (1),
‖(|𝑏

𝑖𝑗
𝑙

𝑀
|

2
)

𝑛×𝑛
‖

2
and ‖(|𝑑

𝑖𝑗
𝑙

𝑀
|

2
)

𝑛×𝑛
‖

2
have been calculated

in [1, 5, 6], where 𝑙

𝑀
= max

1≤𝑖≤𝑛
{𝑙

𝑖
}. In this paper,

‖(|𝑏

𝑖𝑗
𝑙

𝑗
|

2
)

𝑛×𝑛
‖

2
and ‖(|𝑑

𝑖𝑗
𝑙

𝑗
|

2
)

𝑛×𝑛
‖

2
are calculated. It should be

noted that ‖(|𝑏

𝑖𝑗
𝑙

𝑗
|

2
)

𝑛×𝑛
‖

2
is smaller than ‖(|𝑏

𝑖𝑗
𝑙

𝑀
|

2
)

𝑛×𝑛
‖

2
, and

‖(|𝑑

𝑖𝑗
𝑙

𝑗
|

2
)

𝑛×𝑛
‖

2
is smaller than ‖(|𝑑

𝑖𝑗
𝑙

𝑀
|

2
)

𝑛×𝑛
‖

2
in [1, 5, 6].

Hence, it may lead to less conservatism.

Remark 9. Condition (11) guarantees the existence and
uniqueness of the equilibrium of system (2), as well as the
global exponential stability.

Remark 10. In condition (11), the given scalars 0 ≤ 𝑝 ≤ 1

and 0 ≤ 𝑞 ≤ 1 satisfied the optimizing procedure min{((1 −

𝑝)

√

‖𝐵‖

∞
+𝑝

√

‖𝐵‖

1
)} andmin{√𝑛((1−𝑞)

√

‖𝐷‖

∞
+𝑞

√

‖𝐷‖

1
)},

respectively.

4. Examples

In this section, two numerical examples will be presented to
show the validity of the main results derived in this paper.

Example 1. Consider the system (2) with the following
parameters [2]:

𝐶 = (

6 0 0

0 5 0

0 0 7

) , 𝐴 = (

1.2 0.8 0.6

0.5 −1.5 0.7

−0.8 −1.2 −1.4

) ,

𝐵 = (

−1.4 0.9 0.5

−0.6 1.2 0.8

0.5 −0.7 1.1

) , 𝐷 = (

1.8 0.7 −0.8

0.6 1.4 1

−0.4 −0.6 1.2

) .

(53)

Table 1: Allowable upper bounds of 𝜎 of Example 2.

Method Maximum of allowable 𝜎

[7] 1.833

[8] 3.579

[9] 5.068

[11] 6.938

[3] 9.441

[2] 11.588

Theorem 5 17.4925

Consider 𝐿 = diag{0.5, 0.5, 0.5}, 𝜎 = 0.2. Then, we can get
‖𝐴‖

2
= 2.2416, √‖𝐵‖

∞
= 1.5050, √‖𝐵‖

1
= 1.4334, √‖𝐷‖

∞
=

1.0452, and √

‖𝐷‖

1
= 0.9695. Let 𝑝 = 1 and 𝑞 = 1:

Ω = 5 − 0.5 × 2.2416 −

√

3 × 1.4334 − 0.2 ×

√

3

× 0.9695 > 0.

(54)

According to Theorem 6, the system (1) is globally exponen-
tially stable.

Example 2. Consider the system (1) with the following
parameters [2]:

𝐶 = (

2.3 0 0

0 3.4 0

0 0 2.5

) , 𝐴 = (

0.9 −1.5 0.1

−1.2 0.1 0.2

0.2 0.3 0.8

) ,

𝐵 = (

0.8 0.6 0.2

0.5 0.7 0.1

0.2 0.1 0.5

) , 𝐷 = (

0.3 0.2 0.1

0.1 0.2 0.1

0.1 0.1 0.2

) .

(55)

Consider 𝐿 = diag{0.2, 0.2, 0.2}. Then we can get ‖𝐴‖

2
=

1.9318,√‖𝐵‖

∞
= 0.2040,√‖𝐵‖

1
= 0.1929,√‖𝐷‖

∞
= 0.0748,

and √

‖𝐷‖

1
= 0.0663. Let 𝑝 = 1 and 𝑞 = 1; the upper bounds

of 𝜎 derived by Theorem 5 in our paper and the results in
[2, 3, 7–9, 11] are listed in Table 1; this example shows that the
stability condition in this paper gives much less conservative
result than in the previous literatures.

5. Conclusions

In this paper, a novel globally exponential stability con-
dition for neural networks with discrete and distributed
delays has been proposed. By choosing appropriate Lyapunov
functionals, a novel stability condition is derived. Finally,
two numerical examples have been given to illustrate the
effectiveness of the proposed method.
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