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This paper addresses a special truck scheduling problem in the open-pit mine with different transport revenue consideration. A
mixed integer programmingmodel is formulated to define the problem clearly and a few valid inequalities are deduced to strengthen
the model. Some properties and two upper bounds of the problem are proposed. Based on these inequalities, properties, and upper
bounds, a heuristic solution approach with two improvement strategies is proposed to resolve the problem and the numerical
experiment demonstrates that the proposed solution approach is effective and efficient.

1. Introduction

In an open-pit mine, trucks are a kind of crucial equipment
which undertakes nearly all ore andwaste rock transportation
[1]. Typically, the truck is loaded a full load ofmaterial (maybe
ore, gangue, or other waste rocks that cover ores and thus
need to be moved away) under an electric shovel, transports
it to a dumping depot, dumps its loaded material, and then
returns back to the shovel to carry out the next round. Figure 1
illustrates an open-pit photo and a simplified map for the
road network in an open-pit mine. All of thematerial loading
points, each of which is equipped with an electric shovel,
and dumping depots are relatively constant while trucks can
transport material from varied loading points and unload at
different depots [2]. The efficient truck scheduling can not
only reduce the truck transportation cost but also increase the
shovel utilization ratio and the mine productivity [1].

There are plenty of researches published on the operations
research in the open-pit mine, but most of them focus on the
pit design and production planning [3], such as the strategic
ultimate pit limit design problem [4–7] and tactical block-
sequencing problem [8–11]. Among researches on the tactical
and operational equipment-allocation in the open-pit mine,
the stochastic feature of equipment has been emphasized.
Both queuing theory and simulation were used as stochastic

methodologies tomodel and analyse the open-pit production
scheduling problem, especially in the early published liter-
atures. For example, Manla and Ramani [12] simulated the
truck haulage process which initialized the truck scheduling
research. Kappas and Yegulalp [13] used the queuing theory,
combined with extensions of Markovian principles, to ana-
lyze the steady-state performance of a typical truck-shovel
system and estimate its operation parameters. Oraee and Asi
[14] simulated the production process of trucks and shovels in
Songun Copper Mine in Iran, considering fuzzy parameters
on each shovel. Najor and Hagan [15] focused on stochastic
behavior in the truck-shovel system and provided a model
and analysis based on queuing theory. Their analysis showed
that productivity can be overestimated by about 8 percent
because of overlooking queuing.

In some of the open-pit equipment routing and selection
models, optimization methodologies, that is, integer pro-
gramming and dynamic programming, were used to deter-
mine fleet size and allocation [3]. For example, White and
Olson [16] applied networkmodels, linear programming, and
dynamic programming methods to the truck scheduling
problem and proposed a feasible truck-dispatching system.
They divided the problem into three stages. The first one was
to decide the shortest paths between all locations in themine,
which is a shortest path problem actually. In the next stage, a
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(a) An open-pit mine

L1

L2

L3

L4

L5L6

D1

D2

D3

(b) A sketch map of the open-pit road network
where 𝐿1, 𝐿3, . . . , 𝐿6 represent the loading points
and𝐷1,𝐷2, and𝐷3 represent the dumping depots

Figure 1: An open-pit mine and a part of its road network.

linear program was used to determine material flows along
these paths. Finally, the dynamic program assigned trucks to
the optimized paths between shovels and dumps.Their truck-
dispatching system not only yields significant (10–20 percent,
in most cases) productivity improvements but also produced
an effect on truck scheduling theory for its three-stage process
[17]. And Yang et al. [18] adopted the three-stage process to
resolve the truck dispatch problem.

In this paper, we consider the varied transportation
revenue for different material loading point and address the
joint path planning and tuck dispatching problem.

The outline of this paper is as follows. Section 2 describes
the considered open-pit truck scheduling problem with
varied truck transporting revenue in detail and provides its
integer programming model. In Section 3, a few valid
inequalities, two properties of optimal solution, and two
upper bounds for the problem are presented. In Section 4, a
heuristic approach with two improvement strategies is pro-
posed to resolve the problem. Section 5 tests the proposed
upper bounds and solution approach. Section 6 concludes the
paper.

2. Problem Description and
Mathematical Model

2.1. Problem Description. In the open pit, there are usually
several loading points and dumping depots (to be called
dumps later), as shown in Figure 1. At each loading point,
there is always a pile of loosened ores, gangue, or waste rocks
(to be referred to as material collectively), since the load-
ing point needs a loosening blasting before the excavation
operation starting. Each loading point is assumed to be

equipped with one and only one electric shovel (without loss
of generality, it will be viewed as twodifferent loading points if
two shovels are equipped). The electric shovel excavates and
loads the loosened material onto the trucks at each loading
point and the truck unloads itself with its self-discharging
device at a dump. Similar to the loading point, we assume
that one dump can accommodate only one truck at the same
time and the unloading area of more than one truck loading
positions will be viewed as several different dumps.

It is worth noting that an electric shovel (or loading point)
can load only one truck at the same time and a dump allows
only one truck simultaneously. There is often a park for the
waiting trucks near an operating electric shovel or dump. It is
actually the key task to reduce the truck waiting times in the
traditional truck scheduling problem.

In our considered problem scenario, a truck of material
from different loading point is given different transport
revenue and our optimization objective will be equal to
the total transport revenue completed in the scheduling
horizon.The revenue per truck loading (transporting a truck
of material) of different loading point is always decided by
the management and the decision-making basis includes two
considerations: the possible transport distance and the trans-
port priority. The former is easy to be understood since the
longer distance always causes more transport times and thus
should be given more revenue. The transport priority comes
from the mining sequence, which has never been modeled as
a kind of constraints in the traditional research [1, 3] and/or
the varied market demand. The transport revenue per truck
loading can be viewed as the product of the possible transport
distance and the transport priority.

From the viewpoint of a scheduler who is in charge of
making truck scheduling decisions in a shift (8 hours), our
objective is to maximize the total transport revenues based
on the given revenue value per truck loading. The decisions
include the dump selection as well as the truck routing.
The dump selection is virtually the same as the first-stage
decisions in literature [16, 18], deciding the shortest path
between all locations in the mine.

The constraints to be considered include the following:
(1) loading capacity constraint: that is, each shovel (load-

ing point) can load only one truck at the same time,
(2) unloading capacity constraint: that is, each dump can

unload only one truck at the same time,
(3) dump selection constraint: that is, a set of candidate

dumps is given for each loading point and thematerial
from the loading point must be dumped at one of the
candidate dumps.

2.2. The Mixed Integer Programming Model. To define and
formulate the problemexplicitly, the followingnotations need
to be introduced to represent all loading points, dumps,
material to be loaded in the loading points, trucks, paths
parameters, and so on:

𝑆: set of available electric shovels (loading points), 𝑆 =
{1, 2, . . . , 𝑁},
𝑆
: 𝑆 = 𝑆 ∪ {0}, 0 denoting dummy shovels,
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𝑇: set of available trucks,
𝑎
𝑖
: revenue per truck of material from electric shovel
𝑖, 𝑖 ∈ 𝑆,
𝐷
𝑖
: set of candidate dumps corresponding to material

(waste rock or coal) loaded at electric shovel 𝑖, 𝑖 ∈ 𝑆,
𝐷 = ∪

𝑖∈𝑆
𝐷
𝑖
: including all dumps,

𝐻: the horizon considered in the problem,
𝑚
𝑖
: max number of truck loadings an electric shovel 𝑖

can complete at most during the horizon, 𝑖 ∈ 𝑆,
𝐾
𝑖
: 𝐾
𝑖
= {1, 2, . . . , 𝑚

𝑖
}, set of possible trucks of rock

(coal) that electric shovel 𝑖 loads, 𝑖 ∈ 𝑆,
(𝑘, 𝑖): a truck of material loaded by shovel 𝑖, 𝑖 ∈ 𝑆,
𝑘 ∈ 𝐾

𝑖
, hereafter referred to as truck loading (𝑘, 𝑖),

𝐾
0
:𝐾
0
= {0}, (0, 0) denoting dummy truck loading,

𝑝
0

𝑖
: loading times per truck at electric shovel 𝑖, 𝑖 ∈ 𝑆,
𝑝
1

𝑗
: unloading times per truck at depot 𝑗, 𝑗 ∈ 𝐷,

𝑃
0

𝑗𝑖
: times for an empty truck to move from depot 𝑗 to

shovel 𝑖, 𝑗 ∈ 𝐷, 𝑖 ∈ 𝑆,
𝑃
1

𝑖𝑗
: times for a full-loaded truck to move form shovel
𝑖 to depot 𝑗, 𝑗 ∈ 𝐷, 𝑖 ∈ 𝑆,
𝑞
𝑡

𝑖
: times for truck 𝑡 to move from its initial position

to shovel 𝑖, 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑇,
𝑀: very big plus number.

To represent the dump selection and truck dispatch
decisions, we introduce the following decision variables:

𝑥
𝑡𝑘

𝑖

𝑘𝑖
=

{{{{

{{{{

{

1, if truck 𝑡 transports (𝑘, 𝑖)

immediatly after (𝑘, 𝑖) ;

0, otherwise,

for 𝑡 ∈ 𝑇, 𝑖, 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾
𝑖
, 𝑘

∈ 𝐾
𝑖
 ;

𝑧
𝑘𝑖
=

{{{{

{{{{

{

1, if truck loading (𝑘, 𝑖) is loaded

and transported in the horizon;

0, otherwise,

for 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾
𝑖
;

𝑢
𝑗𝑘

𝑖

𝑘𝑖

=

{{{{

{{{{

{

1, if material (𝑘, 𝑖) is dumped immediatly

after (𝑘, 𝑖) at despot 𝑗;

0, otherwise,

for ∈ 𝐷
𝑖
∩ 𝐷
𝑖
 𝑖, 𝑖

∈ 𝑆, 𝑘 ∈ 𝐾

𝑖
, 𝑘

∈ 𝐾
𝑖
 ;

𝑦
𝑘𝑖𝑗
=
{

{

{

1, if material (𝑘, 𝑖) is dumped at despot 𝑗;

0, otherwise,

for𝑗 ∈ 𝐷
𝑖
𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑖
;

(1)

𝑐
0

𝑘𝑖
is complete time of loadingmaterial (𝑘, 𝑖), for 𝑖 ∈ 𝑆,

𝑘 ∈ 𝐾


𝑖
;

𝑐
1

𝑘𝑖
is complete time of unloading material (𝑘, 𝑖), for

𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾
𝑖
.

Based on the above notations, the problem can be formu-
lated as the following integer programmingmodel (similar to
model in Tang et al. [19] which involved a truck scheduling
problem in container terminals):

Max ∑

𝑖∈𝑆

∑

𝑘∈𝐾
𝑖

𝑎
𝑖
𝑧
𝑘𝑖 (2)

s.t. 𝑐
0

𝑘+1,𝑖
− 𝑐
0

𝑘𝑖
≥ 𝑝
0

𝑖
, 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑖
(3)

𝑐
1

𝑘𝑖
− 𝑐
1

𝑘

𝑖
 ≥ 𝑝
1

𝑗
−𝑀(1 − 𝑢

𝑗𝑘

𝑖

𝑘𝑖
) ,

𝑖, 𝑖

∈ 𝑆, 𝑘 ∈ 𝐾

𝑖
,

𝑘

∈ 𝐾
𝑖
 , 𝑗 ∈ 𝐷

𝑖
∩ 𝐷
𝑖


(4)

𝑐
1

𝑘𝑖
− 𝑐
0

𝑘𝑖
≥ ∑

𝑗∈𝐷

𝑦
𝑘𝑖𝑗
(𝑃
𝑖𝑗
+ 𝑝
1

𝑗
) , 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑖 (5)

𝑐
0

𝑘𝑖
− 𝑐
1

𝑘

𝑖
 ≥ ∑

𝑗∈𝐷

𝑦
𝑘

𝑖

𝑗
𝑃
𝑗𝑖
+ 𝑝
0

𝑖

−𝑀(1 − ∑

𝑡∈𝑇

𝑥
𝑡𝑘

𝑖

𝑘𝑖
) ,

𝑖, 𝑖

∈ 𝑆, 𝑘 ∈ 𝐾

𝑖
, 𝑘

∈ 𝐾
𝑖


(6)

𝑐
0

𝑘𝑖
≥ ∑

𝑡∈𝑇

𝑥
𝑡,0,0,𝑘,𝑖

𝑞
𝑡

𝑖
+ 𝑝
0

𝑖
−𝑀(1 − ∑

𝑡∈𝑇

𝑥
𝑡,0,0,𝑘,𝑖

) ,

𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾
𝑖

(7)

𝑐
1

𝑘𝑖
≤ 𝐻 +𝑀(1 − 𝑧

𝑘𝑖
) , 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾



𝑖
(8)

∑

𝑖∈𝑆


∑

𝑘∈𝐾
𝑖

𝑥
𝑡𝑘

𝑖

𝑘𝑖
= 𝑧
𝑘

𝑖
 , 𝑡 ∈ 𝑇, 𝑖


∈ 𝑆, 𝑘


∈ 𝐾
𝑖
 (9)

∑

𝑖

∈𝑆


∑

𝑘

∈𝐾
𝑖


𝑥
𝑡𝑘

𝑖

𝑘𝑖
= 𝑧
𝑘𝑖
, 𝑡 ∈ 𝑇, 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑖 (10)

𝑥
𝑡𝑘𝑖𝑘𝑖
= 0, 𝑡 ∈ 𝑇, 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑖 (11)

∑

𝑖∈𝑆


∑

𝑘∈𝐾
𝑖

𝑥
𝑡,𝑘,𝑖,0,0

= ∑

𝑖∈𝑆


∑

𝑘∈𝐾
𝑖

𝑥
𝑡,0,0,𝑘,𝑖

= 1, 𝑡 ∈ 𝑇 (12)

∑

𝑖

∈𝑆


∑

𝑘

∈𝐾


𝑖

𝑢
𝑗𝑘

𝑖

𝑘𝑖
= ∑

𝑖

∈𝑆


∑

𝑘\∈𝐾


𝑖

𝑢
𝑗𝑘𝑖𝑘

𝑖
 = 𝑧
𝑘𝑖
,

𝑡 ∈ 𝑇, 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾


𝑖

(13)

𝑢
𝑗𝑘𝑖𝑘𝑖
= 0, 𝑗 ∈ 𝐷

𝑖
, 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾



𝑖
(14)

∑

𝑖∈𝑆

∑

𝑘∈𝐾
𝑖

𝑢
𝑗,𝑘,𝑖,0,0

= ∑

𝑖∈𝑆

∑

𝑘∈𝐾
𝑖

𝑢
𝑗,0,0,𝑘,𝑖

= 1, 𝑗 ∈ 𝐷 (15)

∑

𝑗∈𝐷
𝑖

𝑦
𝑘𝑖𝑗
= 𝑧
𝑘𝑖
, 𝑖 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑖
. (16)
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The objective function (2) of the model maximizes the
total transport value, that is, sum of transport revenue of
all truck loadings unloaded in horizon 𝐻. Constraints (3)
can provide each truck with enough loading times between
it and its adjacent trucks under the same shovel. Similarly,
constraints (4) ensure enough time to unload material
between two adjacent trucks that continuously dump at the
same depot. Constraints (5) guarantee that each truck has
enough traveling time to transportmaterial from the involved
shovel to depot while constraints (6) provide a truck with
enough empty traveling time to return its next loading shovel.
Constraints (7) guarantee that each truck starts from its initial
position and reserves enough empty traveling time to reach
its first loading spot before the involved shovel starts the truck
loading operation. Constraints (8) define the variable 𝑧

𝑘𝑖
; that

is, set 𝑧
𝑘𝑖
= 1 if truck loading (𝑘, 𝑖) can be finished in horizon

𝐻. Constraints (9) and (10) guarantee that each valid truck
loading (𝑧

𝑘𝑖
= 1) is assigned to one and only one truck and

each truck can operate continuously. Constraints (11) prevent
truck loading self-loop. Constraints (12) state that one and
only one truck loading serves as the head (last) truck loading
for each available truck. Similar to constraints (9) and (10),
constraints (13) state that each valid truck loading is assigned
to one and only one dumping depot and each dumping
depot operates continuously. Constraints (14) perform same
as constraints (11), prohibiting the self-loop in unloading
sequence. Similar to constraints (12), constraints (15) state
that one and only one truck loading serves as the head (last)
truck for each dumping depot. Constraints (16) define the
relationship between variables 𝑦

𝑘𝑖𝑗
and 𝑧
𝑘𝑖
; that is, each valid

truck loading has one and only one dumping depot.

3. Valid Inequalities, Property, and
Upper Bounds for the Problem

3.1. Valid Inequalities. In this section, a few valid inequalities
are introduced. To the problem definition, the model in
Section 2.2 is already adequate and all the valid inequalities
are redundant, but they can reduce the computing time if
we attempt to directly solve the model through commercial
optimization software, such as CPLEX. In addition, the valid
inequalities are also helpful for constructing the heuristic
approach.

3.1.1. Electric Shovel Capacity Inequality. Consider

∑

𝑘∈𝐾
𝑖

𝑧
𝑘𝑖
𝑝
0

𝑖
≤ 𝐻 −min

𝑡∈𝑇

𝑞
𝑡

𝑖
−min
𝑗∈𝐷
𝑖

{𝑝
1

𝑖𝑗
+ 𝑝
1

𝑗
} , 𝑖 ∈ 𝑆. (17)

Inequality (17) gives the maximum possible number of
trucks each electric shovel can finish in the horizon. In the
inequality, 𝐻 − min

𝑡∈𝑇
𝑞
𝑡

𝑖
− min

𝑗∈𝐷
𝑖

𝑝
1

𝑖𝑗
is the practical time

limit for shovel 𝑖, where min
𝑡∈𝑇
𝑞
𝑡

𝑖
is the time for the nearest

empty truck to move from its initial position to shovel 𝑖, that
is, the least possible times before shovel 𝑖 starting the first
truck-loading, and min

𝑗∈𝐷
𝑖

{𝑝
1

𝑖𝑗
+ 𝑝
1

𝑗
} is the permitted least

retained time to transport and unload the last truck loaded
by shovel 𝑖.

L1

L2

L3

L4

D1

D2

D3

Figure 2: Illustration of the truck round trip.

3.1.2. Unloading Capacity Inequality. Consider

∑

𝑖∈𝑆

∑

𝑘∈𝐾
𝑖

𝑦
𝑘𝑖𝑗
𝑝
1

𝑗
≤ 𝐻 − min

𝑖∈{𝑖

|𝑗∈𝐷
𝑖
 }

{min
𝑡∈𝑇

𝑞
𝑡

𝑖
+ 𝑝
0

𝑖
+ 𝑝
1

𝑖𝑗
} ,

𝑗 ∈ 𝐷.

(18)

Inequality (18) gives the maximum possible number of
trucks each unloading depot can unload in the horizon. In the
inequality,𝐻−min

𝑖∈{𝑖

|𝑗∈𝐷
𝑖
 }
{min
𝑡∈𝑇
𝑞
𝑡

𝑖
+𝑝
0

𝑖
+𝑝
1

𝑖𝑗
} is the practi-

cal time limit for depot 𝑗, wheremin
𝑖∈{𝑖

|𝑗∈𝐷
𝑖
 }
{min
𝑡∈𝑇
𝑞
𝑡

𝑖
+𝑝
0

𝑖
+

𝑝
1

𝑖𝑗
} is the earliest possible starting time of unloading the first

truck in depot 𝑗.

3.1.3. Variables Relationship Inequality. Consider

𝑧
𝑘𝑖
≤ 𝑧
𝑘

𝑖
, 𝑘 ≤ 𝑘


, 𝑖 ∈ 𝑆. (19)

Inequality (19) comes from the material transportation
sequence as ensured by formula (3), where truck loading (𝑘, 𝑖)
is doomed to be transported before (𝑘, 𝑖)when 𝑘 ≤ 𝑘 stands.

3.2. Property of the Optimal Solution. For the above, define
open-pit truck scheduling problem; we observe two proper-
ties for the optimal solutions. Some new concepts need to be
introduced to describe the properties.

Definition 1. An empty truck, starting from a depot 𝑗, 𝑗 ∈ 𝐷
𝑖
,

moves to a shovel 𝑖, 𝑖 ∈ 𝑆, loads material (with shovel 𝑖),
transports it to a depot 𝑗, 𝑗 ∈ 𝐷

𝑖
, and unloads the material

(e.g., travelling from dump𝐷
1
to loading point 𝐿

1
and to𝐷

3

in Figure 2). The whole movement process is called a truck
round trip, denoted by trip (𝑗, 𝑖, 𝑗).

It is noteworthy that the end depot involved in a truck
round trip can be the same as the starting depot.

Definition 2. For any a truck round trip (𝑗, 𝑖, 𝑗), 𝑗 ∈ 𝐷, 𝑗 ∈
𝐷
𝑖
, 𝑖 ∈ 𝑆, 𝑒

𝑗𝑖𝑗
 = 𝑎
𝑖
/(𝑃
0

𝑗𝑖
+𝑃
1

𝑖𝑗
 +𝑝
0

𝑖
+𝑝
1

𝑗
) is called trip transport

value.
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Roughly speaking, the trip transport value can be viewed
as the truck transport revenue per unit time for some truck
round trip. There is an intuitionistic suggestion from the
definition that trucks should be dispatched to the trip with
higher trip transportation value.

Definition 3. The truck operation times, excluding the below
three classes of invaluable time, are called valuable times:

(1) times when truck waiting at an electronic shovel
for loading due to another truck occupies the same
shovel,

(2) timeswhen truckwaiting at a depot for unloading due
to another truck occupies the depot,

(3) times for the unfinished round trip if a truck cannot
unload its last truck loading in the horizon.

It is noteworthy that the trucks are assumed not to travel
more time than the given travelling time (𝑝1

𝑖𝑗
and𝑝0

𝑗𝑖
) through

the path.

Property 1. If the initial position of each truck is one of the
depots, the objective value of a feasible solution to the joint
problem is equal to

∑

𝑡∈𝑇

∑

(𝑗,𝑖,𝑗

)∈Ψ

𝑙
𝑡,𝑗,𝑖,𝑗
𝑒
𝑗,𝑖,𝑗
 , (20)

where 𝑙
𝑡,𝑗,𝑖,𝑗
 denotes the total valuable times that truck 𝑡 has

spent on trip (𝑗, 𝑖, 𝑗) in the solution and Ψ denotes the set of
all truck round trips.

The property provides another formulation for the prob-
lem objective function and will play an important role in
constructing the upper bound.

Property 2. In a feasible solution for the joint problem, the
total valuable time spent on truck round trip (𝑗, 𝑖, 𝑗), 𝑗 ∈ 𝐷,
𝑗

∈ 𝐷
𝑖
, 𝑖 ∈ 𝑆, is not larger than (𝑃0

𝑗𝑖
+ 𝑃
1

𝑖𝑗
 + 𝑝
0

𝑖
+ 𝑝
1

𝑗
) ⋅

min{𝑍0
𝑖
, 𝑍
1

𝑗
}, where𝑍0𝑖 and𝑍

1

𝑗
 denote themaximum loading

capacity of electronic shovel 𝑖 and maximum unloading
capacity of dump 𝑗, respectively.

In Property 2, 𝑍0
𝑖
and 𝑍1

𝑗
 can be obtained through

formulae (17) and (18), respectively.

3.3. Upper Bounds. Since the number of trucks loadings each
electronic shovel can finish is limited in the horizon, there is
obviously the below upper bound for the problem.

3.3.1. Upper Bound 1. The objective value of the optimal
solution cannot be larger than ∑

𝑖∈𝑆
𝑎
𝑖
𝑍
0

𝑖
.

In view of both the truck transport capacity and shovel
loading capacity, anothermore tightened upper bound can be
obtained. Let𝑁

𝑇
denote the number of available trucks; then

𝐶
𝑇
= 𝐻 ⋅ 𝑁

𝑇
denotes the total available truck times involved

in the problem. Let 𝑟
𝑖
denote the optimal truck round trip

involving shovel 𝑖, 𝑖 ∈ 𝑆; that is to say, trip 𝑟
𝑖
requires

the shortest valuable truck times in the trips that transport
materials from shovel 𝑖 to one of the available dumps, and
𝑃
∗

𝑖
and 𝐸∗

𝑖
denote the required valuable truck times and trip

transport value corresponding to trip 𝑟
𝑖
, respectively.

It is assumed that 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑁
is the shovel sequence in

the descending order of 𝐸∗
𝑖
; that is, 𝐸∗

𝑖
1

≥ 𝐸
∗

𝑖
2

≥ ⋅ ⋅ ⋅ ≥ 𝐸
∗

𝑖
𝑁

and
{𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑁
} = 𝑆.

Upper bound 2 can be described and formulated clearly,
based on the above notations and assumption.

3.3.2. Upper Bound 2. The objective value of the optimal
solution must not be larger than the following piecewise
function value:

𝑓 (𝐶
𝑇
) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝐸
∗

𝑖
1

𝐶
𝑇
,

𝐶
𝑇
≤ 𝑍
0

𝑖
1

𝑃
∗

𝑖
1

𝑎
𝑖
1

𝑍
0

𝑖
1

+ 𝐸
∗

𝑖
2

(𝐶
𝑇
− 𝑍
0

𝑖
1

𝑃
∗

𝑖
1

) ,

𝑍
0

𝑖
1

𝑃
∗

𝑖
1

≤ 𝐶
𝑇

≤ 𝑍
0

𝑖
1

𝑃
∗

𝑖
1

+ 𝑍
0

𝑖
2

𝑃
∗

𝑖
2

.

.

.

𝑁−2

∑

𝑛=1

𝑎
𝑖
𝑛

𝑍
0

𝑖
𝑛

+ 𝐸
∗

𝑖
𝑁−1

(𝐶
𝑇
−

𝑁−2

∑

𝑛=1

𝑍
0

𝑖
𝑛

𝑃
∗

𝑖
𝑛

) ,

𝑁−2

∑

𝑛=1

𝑍
0

𝑖
𝑛

𝑃
∗

𝑖
𝑛

≤ 𝐶
𝑇
≤

𝑁−2

∑

𝑛=1

𝑍
0

𝑖
𝑛

𝑃
∗

𝑖
𝑛

+ 𝑍
0

𝑖
𝑁−1

𝑃
∗

𝑖
𝑁−1

𝑁−1

∑

𝑛=1

𝑎
𝑖
𝑛

𝑍
0

𝑖
𝑛

+ 𝐸
∗

𝑖
𝑁

(𝐶
𝑇
−

𝑁−1

∑

𝑛=1

𝑍
0

𝑖
𝑛

𝑃
∗

𝑖
𝑛

) ,

𝑁−1

∑

𝑛=1

𝑍
0

𝑖
𝑛

𝑃
∗

𝑖
𝑛

≤ 𝐶
𝑇
≤

𝑁−1

∑

𝑛=1

𝑍
0

𝑖
𝑛

𝑃
∗

𝑖
𝑛

+ 𝑍
0

𝑖
𝑁

𝑃
∗

𝑖
𝑁

.

(21)

The underlying idea of upper bound is that the truck
should be dispatched to the electronic shovel and round trip
with transport value as high as possible to maximize the total
revenues.

4. Heuristic Solution Method to the Problem

4.1. A Constructive Heuristic Method to Generate Initial
Solution. In the practical scheduling process, truck waiting
times are often inevitable and thus the conception of expected
real-time transport value is introduced here.

Definition 4. In the practical truck scheduling, 𝑒∗
𝑗𝑖𝑗
 = 𝑎𝑖/(𝑃

0

𝑗𝑖
+

𝑃
1

𝑖𝑗
 + 𝑝
0

𝑖
+ 𝑝
1

𝑗
+ 𝛿), (𝑗, 𝑖, 𝑗), 𝑗 ∈ 𝐷, 𝑗 ∈ 𝐷

𝑖
, 𝑖 ∈ 𝑆, is called

expected real-time transport value (ERTV) for a possible
truck round trip selection, where 𝛿 is the expected truck
waiting time (invaluable truck times) during the whole trip.

Based on the above definition, a constructive heuristic
method can be introduced to generate the initial solution. It
includes the following steps.

Step A1. Build a truck set 𝑆idle, including all trucks that are
not assigned to a round trip or just finished a round trip in
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the scheduling, and set 𝑆idle to include all trucks in the initial
state.

Build a truck set 𝑆running and let 𝑆running = 0 in the initial
state.

Build a truck scheduling information table𝑇truck, a shovel
dispatch information table 𝑇shovel, and a dump scheduling
information table 𝑇dump. Initialize the three information
tables with 𝑇truck = 0, 𝑇shovel = 0, and 𝑇dump = 0.

Step A2. If 𝑆idle ̸= 0, for each truck in 𝑆idle, construct the
corresponding round trips, compute their expected real-time
transport values in the current state (referring to𝑇truck,𝑇shovel,
and𝑇dump), and record the trip with the highest ERTV and its
ERTV; otherwise, go to Step A4.

Step A3. Select the truck with the highest ERTV, assign it
to the recorded optimal trip once, and decide the starting
time of the loading operation as early as possible according to
both the expected truck arriving time and the involved shovel
available time. Compute the complete times of both the truck
and the shovel in the assigned round trip.

Delete the truck from 𝑆idle. If the obtained trip complete
time is in the given horizon, append the involved assignation
and temporal information of truck, shovel, and dump to
𝑇truck, 𝑇shovel, and 𝑇dump, respectively, and append the truck
to 𝑆running.

Go to Step A2.

Step A4. If 𝑆running ̸= 0, select a truck of the earliest trip
complete time from 𝑆running, delete the truck from 𝑆running,
and append it to 𝑆idle; otherwise, output the current 𝑇truck,
𝑇shovel, and 𝑇dump and stop.

The above heuristic virtually simulates the equipment
running process, especially the truck operation, and thus can
be called a simulation-based solution construction approach.
It is also appropriate to the online scheduling scene through
displacing the above simulation process with the real produc-
tion process.

4.2. Two Improvement Strategies. Throughobservation on the
properties and upper bounds as well as analyzing the above
heuristic method, two improvement strategies are proposed
to improve the initial solution.

Strategy 1 (the shovel capacity rebalancing strategy). Strategy
1 will refer to the defined shovel sequence 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑁
in the

descending order of 𝐸∗
𝑖
(see Section 3.3). Because the initial

truck position can be far away from the shovel with higher
𝐸
∗

𝑖
, the strategy should reassign more trucks to these shovels

for the objective pursuit.
Steps of Strategy 1 are listed as follows.

Step B1. Let 𝑛 = 1 and current shovel 𝑖∗ = 𝑖
𝑛
.

Step B2. Check the shovel dispatch information table𝑇shovel in
the current solution and compute the total idle times of shovel
𝑖
∗ after finishing its first truck loading. Let 𝑡idle denote the
computed idle times and let 𝑆remained denote the set of trucks
assigned to shovel 𝑖

𝑛+1
, 𝑖
𝑛+2
, . . . , 𝑖

𝑁
.

Table 1: Parameters of the problem instances.

Path Problem Trucks Shovels Dumps

1

1 73 6 3
2 71 6 3
3 74 6 3
4 69 6 3

2

5 84 6 4
6 82 6 4
7 85 6 4
8 85 6 4

Step B3. If 𝑡idle/𝑝0𝑖 ≥ 𝜇𝐻/𝑃
∗

𝑖
∗ , in the beginning, reassign

⌊𝑡idle𝑃
∗

𝑖
∗/𝜇𝑝
0

𝑖
𝐻⌋ trucks to shovel 𝑖∗ from 𝑆remained, reschedule

the scheduled total truck routine through repeating Steps
(A2–A4) in the initial solution approach, and delete these
reassigned trucks from truck set 𝑆remained. Note that trucks
with lower ERTV should be given priority to be reassigned.

Step B4. If 𝑆remained ̸= 0, set 𝑛 = 𝑛 + 1, 𝑖
∗
= 𝑖
𝑛
, and go to Step

B2; otherwise, terminate.

Strategy 2 (neighborhood swapping strategy). Strategy 2 is
a simple neighborhood swapping strategy. It includes the
following steps.

Step C1. Set truck set 𝑆remained = 𝑇. Let 𝑡 denote any truck in
𝑆remained and delete 𝑡 from 𝑆remained.

Step C2. Let {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑚
} denote the set of truck round trips

executed by truck 𝑡.
Set 𝑘 = 1.

Step C3. Attempt to reassign truck round trip 𝑟
𝑘
to other

shovels and revise the involved truck schedule. If there is
a reassignment that can bring an improvement, accept the
alteration.

Step C4. If 𝑘 < 𝑚, set 𝑘 = 𝑘 + 1 and go to Step C3.

Step C5. If 𝑆remained ̸= 0, take a new truck 𝑡 from 𝑆remained and
return to Step C2; otherwise, terminate.

5. Computational Experiments

To test the performance of the formulatedmathematic model
and the proposed heuristic approach with improvement
strategies, we complemented all the involved programs under
the development environment of VC++ 2010 and solved the
integer programmingmodel in Section 2 with CPLEX, a kind
of optimization software. The experiments are all performed
on a computer withWin 7 operating system and 2.8GHz Intel
2 Core CPU and 4GBRAM.

The data in the numerical experiments comes from
a practical open-pit mine. The data includes 8 problem
instances but involves only 2 different mine path configu-
rations due to the relative constancy of the open-pit road
network. Table 1 shows the details of the problem instances,
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Table 2: Experiment result for the small sized problems.

Path Size Objective value CPU time (seconds)
Model Heu Model Model InEq Heu Imp

1 3 5.4 5.4 4.37 4.46 <1
2 3 5.8 5.8 9.61 7.84 <1
1 6 11.1 11.1 37.14 24.83 <1
2 6 11.8 11.8 41.90 34.09 <1
1 9 16.9 16.9 173.48 113.87 <1
2 9 17.7 17.7 143.34 86.17 <1
1 12 22.6 22.0 479.55 454.84 <1
2 12 23.4 23.4 513.63 494.56 <1

Table 3: Experiment result and comparison for the practical problem size.

Problem Objective value Relative imp. UB GAP
Heuristic Improvement

1 543 551 1.58% 585 5.70%
2 536 543 1.26% 559 2.96%
3 569 578 1.61% 601 3.80%
4 509 534 4.68% 558 4.36%
5 637 659 3.34% 697 5.46%
6 588 619 5.05% 650 4.79%
7 652 667 2.34% 705 5.40%
8 661 691 4.34% 714 3.19%
Average — — 3.02% — 4.46%

including path configuration (Path), problem instance ID
(Problem), number of trucks (Trucks), number of shovels
(Shovels), and number of dumps (Dumps). The scheduling
horizon is a shift, 8 hours, for all instances.

The transport revenue per truck of material is product of
the expected shortest distance and the priority factor of the
loading point. The priority factor ranges in [0.9, 1.1] in the
production scheduling. In the truck-shovel system, the truck
capacity is usually scarce for the loading capacity of shovels.
All these features are also reflected in the collected problem
instances.

The small sized problems are first solved using the for-
mulatedmathematicmodels (with CPLEX) and the proposed
heuristic approach.The small sized problem instances are cut
out from instances of path configurations 1 and 2 in Table 1
and the scheduling horizon is decreased to 2 hours. Each of
the small sized problem instances involves 2 shovels, 2 dumps,
and different number of available trucks. Table 2 shows the
experiment results with the different problem sizes (number
of available trucks). In the table, columns Path and Size
show the path configuration and number of available trucks,
respectively. Models Model Ineq and Heu Imp represent the
mathematical model, model with inequalities (17)–(19), and
the heuristic with improvement strategy, respectively.

The experiment results of the practical problem instances
are listed in Table 3 with problem ID (Problem), objective
values of the initial solution (Heuristic), and improved solu-
tion (Improvement), which are improved by the developed
two improvement strategies, relative improvement (Relative

imp.), best upper bound (UB), which adopts the maximum
of two upper bounds in Section 3.3, and the relative deviation
of the obtained optimized solution and the upper bound.The
computation times for all instances are not longer than 5CPU
seconds and thus neglected in the table.

From Table 2, we can see that the mathematical model is
valid but not up to the practical problem size. From Table 3,
we can observe that the average relative deviation is 4.46%
and the two improvement strategies perform 3.02% increase
on average. The experiments show that the proposed upper
bound is good and the developed heuristic solution approach
with improvement strategies is effective and efficient. And
the solution performance is relatively stable against different
problem configurations.

6. Conclusion

In this paper, a special open-pit truck scheduling problem
was studied. A mixed integer programming model was
first formulated, considering transport revenue varied with
different loading points. And a few valid inequalities, two
properties, and two upper bounds of the problem were
deduced. Based on them, a heuristic solution approach with
two improvement strategies was proposed to resolve the
problem. At last, the numerical experiments were carried out
which demonstrated that the proposed solution approachwas
effective and efficient.
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