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An efficient computational technique for solving linear delay differential equations with a piecewise constant delay function is
presented.Thenew approach is based on a hybrid of block-pulse functions and Legendre polynomials. A key feature of the proposed
framework is the excellent representation of smooth and especially piecewise smooth functions. The operational matrices of delay,
derivative, and product corresponding to the mentioned hybrid functions are implemented to transform the original problem into
a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the proposed
numerical scheme.

1. Introduction

Delay differential equations (DDEs) naturally arise in diverse
areas of science and engineering such as transmission lines,
communication networks, biological models, population
dynamics, and transportation systems [1, 2]. So far, a large
body of literature has been devoted to the theoretical aspects
and numerical treatments of DDEs with constant delays [3–
18]. It is known that, except for some simple cases, it is either
extremely difficult or impossible to analytically solve DDEs.
Accordingly, a numerical algorithmhas to be adopted inmost
cases. The situation becomes more complicated when the
time-delay is a piecewise constant function. Owing to the
nature of DDEs, none of the smooth basis functions is able to
properly model the inherent behavior of this class of systems.
This is due to the lack of smoothness of analytical solution
associated with DDEs. It should be pointed out that the
approximation of a piecewise smooth function by a finite
number of smooth functions often fails to converge because
of the existence of the well-known Gibbs phenomenon.
Consequently, a suitable basis is required to accurately model
the true locations of the switching points that occur in the
exact solution of a delay differential equation. It is generally
assumed that the delay function is either constant or contin-
uous. However, in some situations, time-delay is a piecewise

constant function. To the best of our knowledge, few research
works have been dedicated to the development of computa-
tional algorithms for solving DDEs involving piecewise con-
stant delay [4, 19]. Recently, Marzban and Shahsiah proposed
an efficient numerical scheme for solving DDEs containing
piecewise constant delay. Their method is based on a hybrid
of block-pulse functions and Chebyshev polynomials. It has
been demonstrated that the method implemented in [19] is
effective and produces very accurate results.

In what follows, we describe some similarities and dif-
ferences between our method and the procedures developed
in [15, 16]. First, the foundations of the proposed framework
and those used in the previous works are based on a hybrid
of block-pulse functions and Legendre polynomials. Second,
the current paper is an extension of our previous ones. More
specifically, the time-delay systems considered in [15, 16]
involve constant delay, while here we investigate linear piece-
wise constant delay systems. Obviously, the latter systems
are a general class of constant DDEs. Third, the approach
employed here is based on the derivative matrix correspond-
ing to the mentioned hybrid functions while the method
implemented in our earlier works is based on the operational
matrix of integration. Fourth, the operational matrix of
delay associated with the piecewise constant delay systems is
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constructed. To derive this matrix, we use the same approach
as that of [19].Thepurpose of this paper is to introduce an effi-
cient numerical technique for solving DDEs with a piecewise
constant delay. It should be emphasized that the analytical
solutions of DDEs cannot be obtained solely either by block-
pulse functions or by Legendre polynomials. Combining
block-pulse functions and Legendre polynomials allows one
to simultaneously make use of the best properties of the two
mentioned bases. It is worth noting that the value of 𝑁, the
order of block-pulse functions, plays an essential role inmod-
elling of the problem under consideration. Indeed, by select-
ing the suitable value of𝑁, we are able to correctly determine
the exact locations of the switching points that occur in the
solution associated with a piecewise constant delay system.
The excellent properties of hybrid functions together with the
operationalmatrices of delay, derivative, and product are then
utilized to transform the delay differential equation under
investigation into a system of algebraic equations whose
solution is much easier than the original one.

The rest of the paper is organized as follows. In Sec-
tion 2, the basic properties of hybrid of block-pulse functions
and Legendre polynomials are presented. In Section 3, the
operational matrices of derivative, product, and delay are
presented. Section 4 is devoted to the problem statement and
its approximation. In Section 5, three examples are tested to
show the efficiency and accuracy of the proposed numerical
scheme.

2. Hybrid Functions

Hybrid functions 𝜙
𝑛𝑚

(𝑡), 𝑛 = 1, 2, . . . , 𝑁,𝑚 = 0, 1, . . . ,𝑀, are
defined on the interval [0, 𝑡

𝑓
) as [15]

𝜙
𝑛𝑚

(𝑡)

=

{{

{{

{

𝑃
𝑚
(
2𝑁

𝑡
𝑓

𝑡 − 2𝑛 + 1) , 𝑡 ∈ [(
𝑛 − 1

𝑁
) 𝑡
𝑓
,
𝑛

𝑁
𝑡
𝑓
) ,

0, otherwise,

(1)

where 𝑛 and 𝑚 are the orders of block-pulse functions and
Legendre polynomials, respectively. Here, 𝑃

𝑚
(𝑡) are the well-

known Legendre polynomials of order𝑚 which are orthogo-
nal on the interval [−1, 1] and satisfy the following recursive
formula [20]:

𝑃
0
(𝑡) = 1,

𝑃
1
(𝑡) = 𝑡,

𝑃
𝑚+1

(𝑡) = (
2𝑚 + 1

𝑚 + 1
) 𝑡𝑃
𝑚
(𝑡) − (

𝑚

𝑚 + 1
)𝑃
𝑚−1

(𝑡) ,

𝑚 = 1, 2, 3, . . . .

(2)

Since 𝜙
𝑛𝑚

(𝑡) consists of block-pulse functions and Legendre
polynomials, which are both complete and orthogonal, the
set of the hybrid of block-pulse functions and Legendre
polynomials is a complete orthogonal set in the Hilbert space
L2[0, 𝑡

𝑓
).

3. Operational Matrices

In this section, we first present the operational matrix of
derivative based on the weak representation of the derivative
operator. We then state the operational matrices of delay and
product corresponding to the proposed hybrid functions.

A function 𝑢 ∈ L2[0, 𝑡
𝑓
) can be approximated by the

hybrid functions as follows:

𝑢 (𝑡) ≃

𝑁

∑

𝑛=1

𝑀

∑

𝑚=0

𝑢̂
𝑛𝑚

𝜙
𝑛𝑚

(𝑡) = Φ
𝑇

(𝑡) 𝑈, (3)

where

𝑈 = [𝑢̂
10
, . . . , 𝑢̂

1𝑀
, 𝑢̂
20
, . . . , 𝑢̂

2𝑀
, . . . , 𝑢̂

𝑁0
, . . . , 𝑢̂

𝑁𝑀
]
𝑇 (4)

is the vector of coefficients and

Φ (𝑡) = [𝜙
10
(𝑡) , . . . , 𝜙

1𝑀
(𝑡) , 𝜙
20
(𝑡) , . . . , 𝜙

2𝑀
(𝑡) , . . . ,

𝜙
𝑁0

(𝑡) , . . . , 𝜙
𝑁𝑀

(𝑡)]
𝑇

.

(5)

The coefficients 𝑢̂
𝑛𝑚
, 𝑛 = 1, 2, . . . , 𝑁, 𝑚 = 0, 1, . . . ,𝑀, are

obtained by the following formula:

𝑢̂
𝑛𝑚

=
𝑁 (2𝑚 + 1)

𝑡
𝑓

∫

(𝑛/𝑁)𝑡𝑓

((𝑛−1)/𝑁)𝑡𝑓

𝑢 (𝑡) 𝜙
𝑛𝑚

(𝑡) 𝑑𝑡. (6)

3.1. The Operational Matrix of Derivative. We approximate
the derivative of 𝑢 by the derivative of (3); that is,

𝑑

𝑑𝑡
𝑢 (𝑡) ≃

𝑑

𝑑𝑡
(

𝑁

∑

𝑛=1

𝑀

∑

𝑚=0

𝑢̂
𝑛𝑚

𝜙
𝑛𝑚

(𝑡)) . (7)

The right hand side of the preceding equation can be
represented in terms of hybrid functions as

𝑑

𝑑𝑡
(

𝑁

∑

𝑛=1

𝑀

∑

𝑚=0

𝑢̂
𝑛𝑚

𝜙
𝑛𝑚

(𝑡)) =

𝑁

∑

𝑛=1

𝑀

∑

𝑚=0

𝑠̂
𝑛𝑚

𝜙
𝑛𝑚

(𝑡)

= Φ
𝑇

(𝑡) 𝑆,

(8)

where

𝑆 = [𝑠̂
10
, . . . , 𝑠̂

1𝑀
, 𝑠̂
20
, . . . , 𝑠̂

2𝑀
, . . . , 𝑠̂

𝑁0
, . . . , 𝑠̂

𝑁𝑀
]
𝑇

. (9)

The relationship between the two vectors 𝑈 and 𝑆 is
expressed by

𝑆 = D𝑈, (10)

where𝑁(𝑀+1)×𝑁(𝑀+1)matrixD is the operationalmatrix
of derivative.

The structure of the operational matrix of derivative D is
given by [21].

In the case𝑁 = 1,

D = 𝐴, (11)
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in the case𝑁 = 2,

D = (

𝐴
1

𝐵
1

𝐶
𝑁

𝐴
𝑁

) , (12)

and, in the case𝑁 ≥ 3,

D =
(
(

(

𝐴
1

𝐵
1

𝐶
2

𝐴
2

𝐵
2

d d d

𝐶
𝑁−1

𝐴
𝑁−1

𝐵
𝑁−1

𝐶
𝑁

𝐴
𝑁

)
)

)

, (13)

where, for𝑚, 𝑗 = 0, 1, . . . ,𝑀, we set

[𝐴]
𝑚𝑗

=
𝑁 (2𝑚 + 1)

𝑡
𝑓

(1 − (−1)
𝑚+𝑗

− 𝑞
𝑚𝑗
) ,

[𝐴
1
]
𝑚𝑗

=
𝑁 (2𝑚 + 1)

𝑡
𝑓

(
1

2
− (−1)

𝑚+𝑗

− 𝑞
𝑚𝑗
) ,

[𝐴
𝑛
]
𝑚𝑗

=
𝑁 (2𝑚 + 1)

𝑡
𝑓

(
1

2
−
(−1)
𝑚+𝑗

2
− 𝑞
𝑚𝑗
) ,

𝑛 = 2, 3, . . . , 𝑁 − 1,

[𝐴
𝑁
]
𝑚𝑗

=
𝑁 (2𝑚 + 1)

𝑡
𝑓

(1 −
(−1)
𝑚+𝑗

2
− 𝑞
𝑚𝑗
) ,

[𝐵
𝑛
]
𝑚𝑗

=
𝑁 (2𝑚 + 1)

𝑡
𝑓

(
(−1)
𝑗

2
) ,

𝑛 = 1, 2, . . . , 𝑁 − 1,

[𝐶
𝑛
]
𝑚𝑗

=
𝑁 (2𝑚 + 1)

𝑡
𝑓

(−
(−1)
𝑚

2
) , 𝑛 = 2, 3, . . . , 𝑁,

(14)

𝑞
𝑚𝑗

=
{

{

{

2, if ∃𝑘 ∈ Z; 𝑚 − 𝑗 = 2𝑘 + 1 > 0,

0, otherwise.
(15)

3.2. The Operational Matrix of Product. Let 𝑊 be an arbi-
trary vector of order 𝑁(𝑀 + 1) × 1. Then, the expression
Φ(𝑡)Φ

𝑇

(𝑡)𝑊 can be expanded in terms of hybrid functions
as follows:

Φ (𝑡)Φ
𝑇

(𝑡)𝑊 ≃ 𝑊̃Φ (𝑡) , (16)

in which 𝑊̃ is a matrix of order𝑁(𝑀 + 1) × 𝑁(𝑀 + 1). This
matrix is called the operational matrix of product and has the
following structure:

𝑊̃ =

[
[
[
[
[
[
[
[
[
[

[

𝑊̃
1

𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂

𝑂 𝑊̃
2

𝑂 ⋅ ⋅ ⋅ 𝑂

𝑂 𝑂 𝑊̃
3

⋅ ⋅ ⋅ 𝑂

.

.

.
.
.
.

.

.

. d
.
.
.

𝑂 𝑂 𝑂 ⋅ ⋅ ⋅ 𝑊̃
𝑁

]
]
]
]
]
]
]
]
]
]

]

, (17)

where 𝑊̃
𝑖
, 𝑖 = 1, 2, 3, . . . , 𝑁, are (𝑀 + 1) × (𝑀 + 1) matrices

given in [15].

3.3.The Operational Matrix of Delay. The goal of this subsec-
tion is to determine the operationalmatrix of delay associated
with the developed hybrid functions. For this purpose, let

Φ (𝑡 − 𝜏 (𝑡)) = DΦ (𝑡) , (18)

in which 𝜏(𝑡) is defined by

𝜏 (𝑡) =

{{{{{{{{

{{{{{{{{

{

𝜏
1
, 𝑇
0
≤ 𝑡 < 𝑇

1
,

𝜏
2
, 𝑇
1
≤ 𝑡 < 𝑇

2
,

.

.

.
.
.
.

𝜏
𝑟
, 𝑇
𝑟−1

≤ 𝑡 ≤ 𝑇
𝑟
,

(19)

where 0 = 𝑇
0
< 𝑇
1
< 𝑇
2
< ⋅ ⋅ ⋅ < 𝑇

𝑟−1
< 𝑇
𝑟
= 𝑡
𝑓
and 𝜏
𝑖
,

𝑖 = 1, . . . , 𝑟, are known constants. Furthermore, assume that
𝐼 = {𝑖 : 𝜏

𝑖
̸= 0} is a nonempty set, 𝜏

𝑖
, 𝑖 = 1, 2, . . . , 𝑟, are

nonnegative rational numbers, and 𝑇
𝑖
∈ Q for 𝑖 = 0, 1, . . . , 𝑟.

To obtain the operational matrix of delay corresponding
to the proposed hybrid functions, we apply an approach
analogous to the one devised in [19]. To do this, we first divide
the time interval [0, 𝑡

𝑓
] into𝑁 subintervals of the same length

where the value of𝑁 is obtained in the following manner.
Define 𝛾 as the smallest positive integer number in such

a way that

𝛾𝜏
𝑖
∈ Z, 𝑖 ∈ 𝐼,

𝛾𝑇
𝑗
∈ Z, 𝑗 = 0, 1, . . . , 𝑟.

(20)

Suppose that |𝐼| = 𝑙. Next, we choose 𝜆 as the greatest
common divisor of the integers 𝛾𝜏

𝑖
and 𝛾𝑇

𝑗
, 𝑖 ∈ 𝐼, 𝑗 = 0, 1,

. . . , 𝑟; that is,

𝜆 = g.c.d (𝛾𝜏
1
, 𝛾𝜏
2
, . . . , 𝛾𝜏

𝑙
, 𝛾𝑇
1
, . . . , 𝛾𝑇

𝑟
) . (21)

Let

𝑁 =

{{

{{

{

𝛾

𝜆
𝑡
𝑓
, if

𝛾

𝜆
𝑡
𝑓
∈ Z,

[
𝛾

𝜆
𝑡
𝑓
] + 1, otherwise,

(22)

where [(𝛾/𝜆)𝑡
𝑓
] denotes the greatest integer value less than

or equal to (𝛾/𝜆)𝑡
𝑓
. It should be noted that 𝑁 is chosen in

such a way that the number of subintervals is minimized. As
a consequence, we obtain the following subintervals:

[0, ℎ] , [ℎ, 2ℎ] , . . . , [(𝑁 − 1) ℎ,𝑁ℎ] , (23)

where ℎ = 𝜆/𝛾 = 𝑡
𝑓
/𝑁. Now, from (20) and (22) we can find

the integer numbers 𝑘
𝑖
and 𝑙
𝑗
, such that

𝜏
𝑖
= 𝑘
𝑖
ℎ, 𝑖 ∈ 𝐼,

𝑇
𝑗
= 𝑙
𝑗
ℎ, 𝑗 = 0, 1, . . . , 𝑟.

(24)
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Note that 𝑘
𝑖
= 0, for 𝑖 ∉ 𝐼, 1 ≤ 𝑖 ≤ 𝑟.Therefore, we can rewrite

𝜏(𝑡) as follows:

𝜏 (𝑡) =

{{{{{{{{

{{{{{{{{

{

𝑘
1
ℎ, 𝑙
0
ℎ ≤ 𝑡 < 𝑙

1
ℎ,

𝑘
2
ℎ, 𝑙
1
ℎ ≤ 𝑡 < 𝑙

2
ℎ,

.

.

.
.
.
.

𝑘
𝑟
ℎ, 𝑙
𝑟−1

ℎ ≤ 𝑡 ≤ 𝑙
𝑟
ℎ.

(25)

For convenience, we define 𝑘(𝑖) as

𝑘 (𝑖) =

{{{{{{{{

{{{{{{{{

{

𝑘
1
, 0 ≤ 𝑖 ≤ 𝑙

1
,

𝑘
2
, 𝑙
1
< 𝑖 ≤ 𝑙

2
,

.

.

.
.
.
.

𝑘
𝑟
, 𝑙
𝑟−1

< 𝑖 ≤ 𝑙
𝑟
.

(26)

Therefore, the problem is reduced to find the operational
matrix of delay for the following delay function:

Φ (𝑡 − 𝜏 (𝑡)) =

{{{{{{{{

{{{{{{{{

{

Φ(𝑡 − 𝑘 (1) ℎ) , 0 ≤ 𝑡 < 𝑡
1
,

Φ (𝑡 − 𝑘 (2) ℎ) , 𝑡
1
≤ 𝑡 < 𝑡

2
,

.

.

.
.
.
.

Φ (𝑡 − 𝑘 (𝑁) ℎ) , 𝑡
𝑁−1

≤ 𝑡 < 𝑡
𝑁
,

(27)

where

𝑡
𝑖
= 𝑙
𝑖
ℎ, 𝑖 = 1, 2, . . . , 𝑁. (28)

In order to find the matrix D, we first derive the matrix
𝐷
𝑖
for 𝑖 = 1, 2, . . . , 𝑁, so that the following relation holds:

Φ (𝑡 − 𝑘 (𝑖) ℎ) = 𝐷
𝑖
Φ (𝑡) , 𝑡

𝑖−1
≤ 𝑡 < 𝑡

𝑖
. (29)

With the use of (1), it is worth noting that, in the case
of 𝑡
𝑖−1

≤ 𝑡 < 𝑡
𝑖
, the only functions with nonzero values are

𝜙
(𝑖−𝑘(𝑖))𝑚

(𝑡 − 𝑘(𝑖)ℎ), for𝑚 = 0, 1, . . . ,𝑀. Since

𝜙
(𝑖−𝑘(𝑖))𝑚

(𝑡 − 𝑘 (𝑖) ℎ) = 𝜙
𝑖𝑚

(𝑡) , 𝑚 = 0, 1, . . . ,𝑀, (30)

by expanding 𝜙
(𝑖−𝑘(𝑖))𝑚

(𝑡 − 𝑘(𝑖)ℎ) in terms of 𝜙
𝑖𝑚
(𝑡), we get

the (𝑀 + 1) × (𝑀 + 1) identity matrix as the corresponding
coefficients. Therefore, we have

𝐷
𝑖
= 𝑆
𝑖
⊗ 𝐼
𝑀+1

, 𝑖 = 1, 2, . . . , 𝑁, (31)

where 𝐼
𝑀+1

is the (𝑀+1)-dimensional identity matrix and 𝑆
𝑖

is an𝑁 ×𝑁matrix in which the only nonzero entry is equal
to one and located at the (𝑖 − 𝑘(𝑖))th row and 𝑖th column.

Remark 1. If 𝑖 − 𝑘(𝑖) ≤ 0, then 𝑆
𝑖
is a zero matrix of order

𝑁 ×𝑁.

As a consequence, if we expand Φ(𝑡 − 𝜏(𝑡)) in terms of
hybrid functionsΦ(𝑡), we deduce that

D = 𝐷
1
+ 𝐷
2
+ ⋅ ⋅ ⋅ + 𝐷

𝑁
. (32)

To illustrate the derivation process of the operational
matrix of delay associated with the mentioned hybrid func-
tions, we present an example. Define

𝜏 (𝑡) =

{{

{{

{

1

6
, 0 ≤ 𝑡 <

1

3
,

1

2
,

1

3
≤ 𝑡 ≤ 1.

(33)

It is easily verified that𝑁 = 6. As a result, we get

𝑘 (𝑖) =
{

{

{

1, 1 ≤ 𝑖 ≤ 2,

3, 3 ≤ 𝑖 ≤ 6.

(34)

For 𝑖 = 1 and 𝑖 = 3, we conclude that 𝑖−𝑘(𝑖) = 0.Therefore, 𝑆
1

and 𝑆
3
are zero matrices of order 6 × 6. If 𝑖 = 2, it follows that

𝑖 − 𝑘(𝑖) = 1. Consequently, 𝑆
2
is a 6 × 6 matrix in which the

only nonzero entry is equal to one and located at the 1st row
and 2nd column. If 𝑖 = 4, then we deduce that 𝑖 − 𝑘(𝑖) = 1.
Hence, 𝑆

4
is a 6 × 6matrix in which the only nonzero entry

is equal to one and located at the 1st row and 4th column. A
similar argument can be used for 𝑖 = 5 and 𝑖 = 6 to specify
matrices 𝑆

5
, and 𝑆

6
. Using the above comments, we obtain

𝐷
1
= 𝑆
1
⊗ 𝐼
𝑀

=

[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

,

𝐷
2
= 𝑆
2
⊗ 𝐼
𝑀

=

[
[
[
[
[
[
[
[
[
[
[

[

0 𝐼
𝑀

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

,

𝐷
3
= 𝑆
3
⊗ 𝐼
𝑀

=

[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

,

𝐷
4
= 𝑆
4
⊗ 𝐼
𝑀

=

[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 𝐼
𝑀

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

,
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𝐷
5
= 𝑆
5
⊗ 𝐼
𝑀

=

[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

0 0 0 0 𝐼
𝑀

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

,

𝐷
6
= 𝑆
6
⊗ 𝐼
𝑀

=

[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 𝐼
𝑀

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

.

(35)

Consequently

D =

6

∑

𝑖=1

𝐷
𝑖
=

[
[
[
[
[
[
[
[
[
[
[

[

0 𝐼
𝑀

0 𝐼
𝑀

0 0

0 0 0 0 𝐼
𝑀

0

0 0 0 0 0 𝐼
𝑀

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

. (36)

4. Problem Statement and Its Approximation

4.1. Piecewise Constant Delay Systems. Consider the linear
time-varying piecewise constant delay system described by

𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐶 (𝑡) 𝑢 (𝑡) ,

0 ≤ 𝑡 ≤ 𝑡
𝑓
,

(37)

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ≤ 0, (38)

𝜏 (𝑡) =

{{{{{{{{

{{{{{{{{

{

𝜏
1
, 𝑇
0
≤ 𝑡 < 𝑇

1
,

𝜏
2
, 𝑇
1
≤ 𝑡 < 𝑇

2
,

.

.

.
.
.
.

𝜏
𝑟
, 𝑇
𝑟−1

≤ 𝑡 ≤ 𝑇
𝑟
,

(39)

where 𝑥(𝑡) ∈ R𝑝, 𝑢(𝑡) ∈ R𝑞, and 𝐴(𝑡), 𝐵(𝑡), and 𝐶(𝑡) are
matrices with appropriate dimensions.The problem is to find
𝑥(𝑡), 𝑡 ∈ [0, 𝑡

𝑓
], satisfying (37)–(39).

4.2. ApproximationUsingHybrid Functions. Weapproximate
the system dynamics by hybrid functions as follows. Let

𝑥 (𝑡) = [𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑝
(𝑡)]
𝑇

,

𝑢 (𝑡) = [𝑢
1
(𝑡) , 𝑢
2
(𝑡) , . . . , 𝑢

𝑞
(𝑡)]
𝑇

.

(40)

Using (3), each 𝑥
𝑖
(𝑡) and each 𝑢

𝑗
(𝑡), 𝑖 = 1, 2, . . . , 𝑝, 𝑗 =

1, 2, . . . , 𝑞, can be written in terms of hybrid functions as
follows:

𝑃
𝑁

𝑀
𝑥
𝑖
=

𝑁

∑

𝑛=1

𝑀

∑

𝑚=0

𝑥̂
𝑖𝑛𝑚

𝜙
𝑛𝑚

(𝑡) = Φ
𝑇

(𝑡) 𝑋
𝑖
,

𝑃
𝑁

𝑀
𝑢
𝑗
=

𝑁

∑

𝑛=1

𝑀

∑

𝑚=0

𝑢̂
𝑗𝑛𝑚

𝜙
𝑛𝑚

(𝑡) = Φ
𝑇

(𝑡) 𝑈
𝑗
.

(41)

From (40), it follows that

𝑃
𝑁

𝑀
𝑥 (𝑡) = (𝐼

𝑝
⊗ Φ
𝑇

(𝑡))𝑋,

𝑃
𝑁

𝑀
𝑢 (𝑡) = (𝐼

𝑞
⊗ Φ
𝑇

(𝑡))𝑈,

(42)

where 𝐼
𝑝
and 𝐼
𝑞
are the 𝑝 × 𝑝 and 𝑞 × 𝑞 identity matrices,

respectively, and ⊗ denotes the Kronecker product [22]. It
should be noted that 𝑋 and 𝑈 are vectors of orders 𝑝𝑁(𝑀 +

1) × 1 and 𝑞𝑁(𝑀 + 1) × 1, respectively, given by

𝑋 = [𝑋
𝑇

1
, 𝑋
𝑇

2
, . . . , 𝑋

𝑇

𝑝
]
𝑇

,

𝑈 = [𝑈
𝑇

1
, 𝑈
𝑇

2
, . . . , 𝑈

𝑇

𝑞
]
𝑇

.

(43)

Also

𝜑 (𝑡 − 𝜏 (𝑡)) = (𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) 𝑅, (44)

where 𝑅 is a vector of order 𝑝𝑁(𝑀 + 1) × 1 defined by

𝑅 = [𝑅
𝑇

1
, 𝑅
𝑇

2
, . . . , 𝑅

𝑇

𝑝
]
𝑇

. (45)

Similarly

𝐴 (𝑡) = 𝐴
𝑇

(𝐼
𝑝
⊗ Φ (𝑡)) ,

𝐵 (𝑡) = 𝐵
𝑇

(𝐼
𝑝
⊗ Φ (𝑡)) ,

𝐶 (𝑡) = 𝐶
𝑇

(𝐼
𝑞
⊗ Φ (𝑡)) ,

(46)

where 𝐴, 𝐵, and 𝐶 are matrices of orders 𝑝𝑁(𝑀 + 1) × 𝑝,
𝑝𝑁(𝑀 + 1) × 𝑝, and 𝑞𝑁(𝑀 + 1) × 𝑝, respectively. The delay
vector 𝑥(𝑡 − 𝜏(𝑡)) can also be expanded in terms of hybrid
functions as

𝑃
𝑁

𝑀
𝑥 (𝑡 − 𝜏 (𝑡)) = (𝐼

𝑝
⊗ Φ
𝑇

(𝑡)) 𝑅

+ (𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) (𝐼
𝑝
⊗D
𝑇

)𝑋,

0 ≤ 𝑡 ≤ 𝑡
𝑓
,

(47)

whereD is the operational matrix of delay described by (18).
Now, using (16), we have

𝐴 (𝑡) 𝑥 (𝑡) = 𝐴
𝑇

(𝐼
𝑝
⊗ Φ (𝑡)) (𝐼

𝑝
⊗ Φ
𝑇

(𝑡))𝑋

= (𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) 𝐴̃
𝑇

𝑋,

𝐶 (𝑡) 𝑢 (𝑡) = 𝐶
𝑇

(𝐼
𝑞
⊗ Φ (𝑡)) (𝐼

𝑞
⊗ Φ
𝑇

(𝑡))𝑈

= (𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) 𝐶̃
𝑇

𝑈,

(48)
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where 𝐴̃ and 𝐶̃ can be calculated in a way similar to the
construction method of matrix 𝑈̃ given by (17). Moreover,

𝐵 (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

= 𝐵
𝑇

(𝐼
𝑝
⊗ Φ (𝑡)) (𝐼

𝑝
⊗ Φ
𝑇

(𝑡)) [𝑅 + (𝐼
𝑝
⊗D
𝑇

)𝑋] .

(49)

Consequently

𝐵 (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

= (𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) 𝐵̃
𝑇

[𝑅 + (𝐼
𝑝
⊗D
𝑇

)𝑋] .

(50)

Now, using the operational matrix of derivative and substi-
tuting (44)–(50) in (37), we get

(𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) (𝐼
𝑝
⊗D)𝑋

= (𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) 𝐴̃
𝑇

𝑋 + (𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) 𝐶̃
𝑇

𝑈

+ (𝐼
𝑝
⊗ Φ
𝑇

(𝑡)) 𝐵̃
𝑇

[𝑅 + (𝐼
𝑝
⊗D
𝑇

)𝑋] .

(51)

Because the elements of Φ(𝑡) are linearly independent func-
tions over the interval [0, 𝑡

𝑓
], it follows that

(𝐼
𝑝
⊗D)𝑋 = 𝐴̃

𝑇

𝑋 + 𝐶̃
𝑇

𝑈 + 𝐵̃
𝑇

[𝑅 + (𝐼
𝑝
⊗D
𝑇

)𝑋] . (52)

Therefore, the original problem is transformed into a
system of linear algebraic equations.The aforementioned sys-
tem with the associated initial condition can be easily solved
by the well-known Tau method [20, 23] for the unknown
vector𝑋.

5. Illustrative Examples

In this section, three examples are investigated to evaluate the
performance of the method.

Example 1. Consider the time-varying piecewise constant
delay system

𝑥̇ (𝑡) = 𝑡
2

𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑢 (𝑡) , 0 ≤ 𝑡 ≤ 1, (53)

𝑥 (0) = 1, (54)

𝑢 (𝑡) = 2𝑡 + 1, 𝑡 ≥ 0, (55)

𝜏 (𝑡) =
{

{

{

0.2, 0 ≤ 𝑡 < 0.3,

0.7, 0.3 ≤ 𝑡 < 1.

(56)

The exact solution to this problem is given by [19]

𝑥 (𝑡) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

1 + 𝑡 + 𝑡
2

, 0 ≤ 𝑡 < 0.2,

62341

62500
+ 𝑡 + 𝑡

2

+
7

25
𝑡
3

+
3

20
𝑡
4

+
1

5
𝑡
5

, 0.2 ≤ 𝑡 < 0.3,

1006717

1000000
+ 𝑡 + 𝑡

2

, 0.3 ≤ 𝑡 < 0.7,

2720369

3000000
+ 𝑡 + 𝑡

2

+
79

300
𝑡
3

−
1

10
𝑡
4

+
1

5
𝑡
5

, 0.7 ≤ 𝑡 < 0.9,

76256550101

84000000000
+ 𝑡 + 𝑡

2

+
693817

3000000
𝑡
3

+
459

40000
𝑡
4

+
167

5000
𝑡
5

+
7

50
𝑡
6

−
11

140
𝑡
7

+
1

40
𝑡
8

, 0.9 ≤ 𝑡 ≤ 1.

(57)

To solve this problem by themethod developed in the present
paper, we first determine the value of𝑁, the required number
of subintervals, with the use of (22). For this problem, we
choose𝑁 = 10. Also, we select𝑀 = 8. Let

𝑥 (𝑡) = 𝑋
𝑇

Φ (𝑡) . (58)

By expanding 𝑢(𝑡) and 𝑡
2 in terms of hybrid functions, we get

𝑢 (𝑡) = [
11

10
,
1

10
, 0, 0, 0, 0, 0, 0, 0,

13

10
,
1

10
, 0, 0, 0, 0, 0, 0, 0,

3

2
,
1

10
, 0, 0, 0, 0, 0, 0, 0,

17

10
,
1

10
, 0, 0, 0, 0, 0, 0, 0,

19

10
,
1

10
,

0, 0, 0, 0, 0, 0, 0,
21

10
,
1

10
, 0, 0, 0, 0, 0, 0, 0,

23

10
,
1

10
, 0, 0, 0, 0,

0, 0, 0,
5

2
,
1

10
, 0, 0, 0, 0, 0, 0, 0,

27

10
,
1

10
, 0, 0, 0, 0, 0, 0, 0, 0,

29

10
,
1

10
, 0, 0, 0, 0, 0, 0, 0]Φ (𝑡) = 𝑈

𝑇

Φ (𝑡) ,

(59)

𝑡
2

= [
1

300
,

1

200
,

1

600
, 0, 0, 0, 0, 0, 0,

7

300
,

3

200
,

1

600
, 0, 0,

0, 0, 0, 0,
19

300
,
1

40
,

1

600
, 0, 0, 0, 0, 0, 0,

37

300
,

7

200
,

1

600
,

0, 0, 0, 0, 0, 0,
61

300
,

9

200
,

1

600
, 0, 0, 0, 0, 0, 0,

91

300
,
11

200
,

1

600
, 0, 0, 0, 0, 0, 0,

127

300
,
13

200
,

1

600
, 0, 0, 0, 0, 0, 0,

169

300
,

3

40
,

1

600
, 0, 0, 0, 0, 0, 0,

217

300
,
17

200
,

1

600
, 0, 0, 0, 0, 0, 0,

271

300
,
19

200
,

1

600
, 0, 0, 0, 0, 0, 0]Φ (𝑡) = 𝑒

𝑇

Φ (𝑡) .

(60)
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Substituting (58)–(60) in (53) yields

D𝑋 = 𝑒̃
𝑇

D
𝑇

𝑋 + 𝑈, (61)

with the following initial condition:

1 =

𝑀

∑

𝑚=0

(−1)
𝑚

𝑋
𝑚
, (62)

whereD is the delay operational matrix described by (18). By
solving the resulting algebraic system, we can find the vector
𝑋 as

𝑋 = [
79

75
,
11

200
,

1

600
, 0, 0, 0, 0, 0, 0, 0,

88

75
,
13

200
,

1

600
, 0, 0,

0, 0, 0, 0, 0,
658097

500000
,
109663

1400000
,

6059

2800000
,

1

36000
,

1

1750000
,

1

126000000
, 0, 0, 0, 0,

4440151

3000000
,
17

200
,

1

600
,

0, 0, 0, 0, 0, 0, 0,
4980151

3000000
,
19

200
,

1

600
, 0, 0, 0, 0, 0, 0, 0,

5580151

3000000
,
21

200
,

1

600
, 0, 0, 0, 0, 0, 0, 0,

6240151

3000000
,
23

200
,

1

600
, 0, 0, 0, 0, 0, 0, 0,

4695907

2000000
,
433113

2800000
,

14701

4200000
,

49

900000
,

13

14000000
,

1

126000000
, 0, 0, 0, 0,

3215527

1200000
,

2484429

14000000
,

691

168000
,

77

1125000
,

3

2800000
,

1

126000000
, 0, 0, 0, 0,

1542687364553

504000000000
,

57254691267

280000000000
,

27335101823

5544000000000
,

360730541

3960000000000
,

12971011

8008000000000
,

10861

504000000000
,

7481

27720000000000
,

1

308000000000
,

1

51480000000000
, 0]

𝑇

.

(63)

With the use of (58), we would obtain the same value as the
exact value of 𝑥(𝑡).

Example 2. Consider the following piecewise constant delay
system [13]:

𝑥̇ (𝑡) = −5𝑥 (𝑡) − 5𝑥 (𝑡 − 𝜏 (𝑡)) + 2𝑢 (𝑡) , 0 ≤ 𝑡 ≤ 2,

𝑥 (0) = 1,

𝑢 (𝑡) = 1, 𝑡 ≥ 0,

𝜏 (𝑡) =

{{{{{{{

{{{{{{{

{

0, 0 ≤ 𝑡 < 0.8,

0.3, 0.8 ≤ 𝑡 < 1.4,

0.6, 1.4 ≤ 𝑡 < 1.7,

0.9, 1.7 ≤ 𝑡 ≤ 2.

(64)

The analytical solution to this problem is presented by [13]

𝑥 (𝑡) =

{{{{{{{{{{

{{{{{{{{{{

{

0.2 + 0.8𝑒
−10𝑡

, 0 ≤ 𝑡 < 0.8,

0.2 + 0.8𝑒
3−10𝑡

+ 0.8𝑒
−4

(1 − 𝑒
3

) 𝑒
−5𝑡

, 0.8 ≤ 𝑡 < 1.1,

0.2 + 0.8𝑒
5−10𝑡

− 4𝑒
−2.5

(1 − 𝑒
3

) 𝑡𝑒
−5𝑡

+ 0.8 (1 − 𝑒
3

) (6.5𝑒
−2.5

+ 𝑒
−4

) 𝑒
−5𝑡

, 1.1 ≤ 𝑡 < 1.4,

0.2 + 0.8𝑒
9−10𝑡

− 4𝑒
−1

(1 − 𝑒
3

) 𝑡𝑒
−5𝑡

+ 0.8 (1 − 𝑒
3

) (8𝑒
−1

− 0.5𝑒
−2.5

+ 𝑒
−4

) 𝑒
−5𝑡

, 1.4 ≤ 𝑡 ≤ 1.7,

0.2 + 0.8𝑒
12−10𝑡

− 4𝑒
0.5

(1 − 𝑒
3

) 𝑡𝑒
−5𝑡

+ 0.8 (1 − 𝑒
3

) (9.5𝑒
0.5

− 0.5𝑒
−1

− 0.5𝑒
−2.5

+ 𝑒
−4

) 𝑒
−5𝑡

, 1.7 ≤ 𝑡 ≤ 2.

(65)

To solve this problem by the proposed approach, we first
determine the value of 𝑁. With the use of (22), we take 𝑁 =

20. In addition, let𝑀 be an arbitrary positive integer number.
Define

𝐸 = max {󵄨󵄨󵄨󵄨𝑥𝑒 (𝑡) − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨 : 0 ≤ 𝑡 ≤ 2} , (66)

where 𝑥(𝑡) and 𝑥
𝑒
(𝑡) denote the approximate solution

obtained by the present method and the exact solution,
respectively. In Table 1, the maximum absolute error of 𝑥(𝑡)
corresponding to 𝑁 = 20 and different values of 𝑀 are
summarized.This table shows that there is an excellent agree-
ment between the analytical and approximate solutions. After

choosing 𝑁, small values for 𝑀 are needed to achieve a
satisfactory approximation.

Example 3. As a more complicated problem, consider the
following nonlinear piecewise constant delay system:

𝑥̇ (𝑡) = 𝑡𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑡𝑥
2

(𝑡 − 𝜏 (𝑡)) + 𝑥
3

(𝑡 − 𝜏 (𝑡))

+ 𝑢 (𝑡) , 0 ≤ 𝑡 ≤ 1,

(67)

𝑥 (0) = 1, (68)

𝑥 (𝑡) = −1, 𝑡 < 0, (69)
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Table 1: Results of maximum error for Example 2.

Present method 𝐸

𝑀 = 2 2.05𝑒 − 02

𝑀 = 4 2.64𝑒 − 05

𝑀 = 6 2.87𝑒 − 08

𝑀 = 8 2.12𝑒 − 11

𝑀 = 10 1.09𝑒 − 14

𝑀 = 12 4.11𝑒 − 18

𝑀 = 14 1.17𝑒 − 21

𝑢 (𝑡) =
{

{

{

1, 0 ≤ 𝑡 < 0.8,

−1, 0.8 ≤ 𝑡 ≤ 1,

(70)

𝜏 (𝑡) =
{

{

{

0.4, 0 ≤ 𝑡 < 0.8,

0.8, 0.8 ≤ 𝑡 < 1.

(71)

The exact solution to this problem is described by

𝑥 (𝑡) =

{{{{{{

{{{{{{

{

1, 0 ≤ 𝑡 < 0.4,

1

25
+ 2𝑡 + 𝑡

2

, 0.4 ≤ 𝑡 < 0.8,

41

25
+ 𝑡
2

, 0.8 ≤ 𝑡 ≤ 1.

(72)

Although the above problem is a nonlinear delay differential
equation, themethod developed in the current paper is appli-
cable. To employ the procedure described in Section 4, we
first select𝑁 = 5. Moreover, we choose𝑀 = 2. Let

𝑥 (𝑡) = 𝑋
𝑇

Φ (𝑡) . (73)

By expressing 𝑢(𝑡), 𝑡, and 𝜑(𝑡 − 𝜏(𝑡)) in terms of hybrid
functions, we obtain

𝑢 (𝑡) = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, −1, 0, 0]Φ (𝑡)

= 𝑈
𝑇

Φ (𝑡) ,

(74)

𝑡 = [
1

10
,
1

10
, 0,

3

10
,
1

10
, 0,

1

2
,
1

10
, 0,

7

10
,
1

10
, 0,

9

10
,
1

10
, 0]

⋅ Φ (𝑡) = 𝐴
𝑇

Φ (𝑡) ,

(75)

𝜑 (𝑡 − 𝜏 (𝑡)) = [−1, 0, 0, −1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

⋅ Φ (𝑡) = 𝑅
𝑇

Φ (𝑡) .

(76)

Substituting (73)–(75) in (67) implies

D𝑋 = 𝐴̃
𝑇

𝐾 + 𝐴̃
𝑇

𝐾̃
𝑇

𝐾 + (𝐾̃
2

)

𝑇

𝐾 + 𝑈, (77)

with the following initial condition:

1 =

𝑀

∑

𝑚=0

(−1)
𝑚

𝑋
𝑚
, (78)

in which

𝐾 = 𝑅 +D
𝑇

𝑋 (79)

and D is the operational matrix of delay given by (18).
Moreover, 𝐴̃ and 𝐾̃ can be determined in a way similar to the
construction method of the matrix 𝑈̃ presented by (17). By
solving (77)-(78), it follows that

𝑋 = [1, 0, 0, 1, 0, 0,
97

75
,
3

10
,

1

150
,
29

15
,
17

50
,

1

150
,
184

75
,
9

50
,

1

150
]

𝑇

.

(80)

Using (73), we would obtain the same value as the exact value
of 𝑥(𝑡).

6. Conclusion

An efficient procedure has been successfully developed for
solving delay differential equations with a piecewise constant
delay function. The method is based upon a hybrid of block-
pulse functions and Legendre polynomials. The nice proper-
ties of the hybrid functions together with the associated oper-
ational matrices were used to convert the original problem
into a systemof algebraic equations.Theproposed framework
allows one to simultaneously make use of the best advantages
of the two mentioned bases. After determining the appropri-
ate value of 𝑁, small values for 𝑀 are required to obtain an
admissible approximation. It is worth noting that the correct
choice of𝑁 has a fundamental effect on the solution accuracy.
It should be emphasized that the analytical solutions of Exam-
ples 1 and 3 cannot be derived solely either by block-pulse
functions or by Legendre polynomials.The simulation results
demonstrate the reliability and effectiveness of the proposed
approximation scheme.
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