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Numerical solutions of the linear differential boundary issues are obtained by using a local polynomial estimator method with
kernel smoothing. To achieve this, a combination of a local polynomial-based method and its differential form has been used. The
computed results with the use of this technique have been compared with the exact solution and other existing methods to show
the required accuracy of it. The effectiveness of this method is verified by three illustrative examples. The presented method is seen
to be a very reliable alternative method to some existing techniques for such realistic problems. Numerical results show that the
solution of this method is more accurate than that of other methods.

1. Introduction

Linear ordinary differential equation boundary value prob-
lems are very common theoretical and practical issues. Some
solutions are put forward in [1-6]. Most solutions usually
include finite difference method and shooting method. The
shooting method is the most widely used. Both single and
multishooting methods: (1) select the initial value of needing
to be solved; (2) use the differential equation initial value
algorithm to compute step by step and then get to the
end of boundary value; (3) compute the error function
between boundary value to compute and real boundary value
then readjust the initial value of needing to be solved until
the error is up to a certain level of accuracy. In general,
this computing process is more tedious. This text makes
use of local polynomial estimation to solve the boundary
value issues of homogeneous and nonhomogeneous linear
differential equations and compare it with the method in [4].

The linear differential equation below has a unique
solution:

Y () +p(x)y +q(x)y=f(x), o

y(@) =yp y(b)=yy.

Among them, y,, y, are constant, and the function
p(x), q(x), f(x)is continuous in [a, b].

The presented method is useful for obtaining numerical
approximations of differential equations, and it is also quite
straightforward to write corresponding codes in any pro-
gramming languages. Also, roundoff errors and necessity for
large computer memory are not faced in this method. The
computed results obtained by this way have been compared
with the exact solution to show the required accuracy of it and
the existing methods. Furthermore, the current method is of
a general nature and can therefore be used for solving some
partial differential equations arising in various areas.

2. Local Polynomial Estimator for
Differential Equations

In this paper, we take advantage of the numerical estimation
with the use of local polynomial regression to solve the
boundary value problem. The basic idea of this method is
first proposed in [5]. First, we introduce the mathematical
thoughts of local polynomial regression. This idea was men-
tioned in [7-10]. Since the form of regression function is
not specified, so the data points with long distance from x,
provide little information to y(x,). Therefore, we can only use
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the local data points around x,. We suppose that y(x) has p+1
derivative at x,, by the Taylor expansion, for point x, located
in the neighborhood of this point x,; we can use the p-order
multivariate polynomials to locally approximate y(x) and the
surrounding local point of x; we model y(x) as

p .
y(x) = Z ﬂj(x - xo)]’ (2)
j=0

where parameter f3; depends on x,, so-called local parameter.

Obviously, the local parameter ; = y(x,)/4! fit the local
model with local data, and it can be minimized:
2

K (X-x), O

n

Z |:Yi - iﬁj(xi - xo)j

i=1

where h controls the size of the bandwidth of local area. Using
matrix notation to represent the local polynomial regression
is more convenient. Below is the design matrix corresponding
to (4) with X and Y:

Y,

L Xy—xp - (Xl_xo)p Yl

2

e EEE R R P £

1 X, —x, - (X, -x,)° :

n~ %o ( n 'xO) Yn
(4)

The weighted least squares problem (4) can be written as

min (Y - XB)'W (Y - XB), (5)

here,

W = diag (K, (X; — x0) ..., K, (X,, — x,)) » (6)

so the solution vector is
B=(x"wx) xTwy. (7)
For the initial value problem (1) and (3), we choose the best
quadratic kernel function (Fan and Yao have proved in [10]):
3

K - Z(l—u2)+, if lul < 1;
L (u) =

0, otherwise.

(8)

3. Local Polynomial Estimator

Consider the following:

Y @ Py WA=, asxsh
y@=ys  yO =y,
Here, we suppose that X; =a < X, < ---
we obtain the following relation:

» ' "o, '
<Zﬂj(x - xo)]> + ZP (x) jﬁj(x - xo)]_1
j=0 j=1

< X,, = b, then

(10)

P .
+ Zq(x)ﬁj(x_xo)] =~ f(x), a<x<bh.
=0
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Then, the corresponding minimization function is
2
p .
[J’a - Zﬁj(x1 - xo)J]
j=0
n—-1 P s
+ Z f(X:) - Zj (j- l)ﬁj(xi - xp)’
i=2 j=2
P .
- ZP (x) jB;(X; - x0)’ (11)
j=1
2
P .
- Zq (x) ﬁj(Xi - xo)]:|
j=0

+ [)’b - iﬁj(xn - xo)jjl Ky, (X; - x).

We can write the solution vector:
f=(X'WX) 'XTW¥, (12)
where
J

F{X,)
£(X3)

=t
I

(13)

£ (X
Vv

In order to find the expression of X, we need to find the
elements of X at first.
Consider the following:

i=1, a;=(X-x), j=0,....p

, . -2
i=2,...,n-1, bijz](]_l)(Xi_XO)J >

Jj=2,..5,p
Gj = p(X;) j(X; ‘xo)j_l’
(14)
j=0,....p
ti=4q (X;) (X; - xo)j’
j=0,....p

i=n a,;=(X,-x), j=1....p.
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TaBLE 1: Comparison of LPR and OPA.
Parameter (n, p, h) Residuals e’ Pe of LPR Pe of OPA W
n=21,p=5nh=m/30 1.0435 x 107 0.032 0.342 7/2/100
n=45p=6h=m/60 4.0214x 107 0.0004 0.035 7/2/1000
n=260,p=238h=m/80 3.6503 x 1077 0.00001 0.003 7/2/10000
Consequently, we can get the X
[ aypo an e aip ]
=Gy ~ a0 by — ¢ — 1y pr —Gp gy
— =G — 30 by, — 6, — 13, T b3p —Gp—tsp
X = . . : . (15)
=10 “taeto 0 Bac1p ~ Giip —faiin bn—l,p ~Ci1p " tu1p
i an’o an)l . cee an)p L
Substituting X and Y into
—~ — -1 — ~ -2 il
B=(X"wX) X'wWy. 1  z
Now, we can obtain the value of . -0.5

4. Example Simulation

In this part, we verified this method by solving three exam-
ples, solved the solution of specific differential problems and
integration with local polynomial estimator, calculated the
residual sum of squares, and compared with the existing
algorithms. Calculations were performed by using MATLAB
7.0 programming solution.

4.1. Initial Value Problem of Homogeneous
Linear Differential Equation

Example 1. Boundary value problem of linear differential
equation with constant coefficients:

y' () +y(x)=0, 0<x< g
(17)

The eigenvalue method can be used to obtain the
real solution of initial value problem. Different parameters
n, h, and p correspond to different residual sum of square,
given in Figure 1and Table 1. LPR represents local polynomial
regression. The exact solution is y = sin(x). In Figure 1, LPR
is carried out for n = 21 and p = 5 giving h = /30, and
we get the e’ and percentage error (Figure 1: Solution of local
polynomial estimator and exact solution of Example 1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
X-axis

—— Exact solution
O LPR

FIGURE 1: LPR of Example 1 with n = 21, p = 5and h = 7/30.

In Table I, comparison of the two methods, when k' is
7/2/100, we can get the percentage error of optimization
algorithm. By comparing the two methods, we can know the
difference of percentage error. Certainly, local polynomial
regression has more advantages. Then, we can get better
results for n = 45 and p = 6 given h = /60, n = 60, p = 8,
and h = 71/80.

In Table 1, LPR represents local polynomial regression,
OPA stands for optimization algorithm, Pe stands for Per-
centage error and  represents step size in [3]. Residuals ¢’ =

Z?:l[)/(xi) - ?(X,)]z

Example 2. Boundary value problem of homogeneous linear
differential equations:

y" = (2sinx) y' - (cosx —sin xz) y=0,

y(0) =0, y(1) =e <
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FIGURE 2: LPR of Example 2 with n = 50, p = 7 and h = 1/20.
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FIGURE 3: Absolute errors figure of Example 3 with n = 21,p =
5 and h = 7/30.

TABLE 2: Local polynomial regression.

Parameter (n, p, h) Residual sum of square ¢’

n=24,p=5h=1/12 6.2523 x 10°°
n=>50,p=7h=1/20 1.5162 x 1077
n=70,p=9,h=1/32 4.4037 x10°®

Different parameters n, h, and p correspond to different
residual sum of square, given in Figure 2 and Table 2. LPR
represents local polynomial regression. The exact solution is
y = xe” “***.InFigure 2,local polynomial estimator is carried
out for n = 50 and p = 7 given h = 1/20, and we can get the
el. Here, e2 = Y [y(X;) — 7(X;)]>. We conclude that local
polynomial regression is more effective. Certainly, we can get
better results for n = 60 and p = 9 given h = 1/135 (Figure 2:
Solution of local polynomial estimator and exact solution of
Example 2).

Example 3. Boundary value problem of nonhomogeneous
linear differential equations boundary value problem:

xy”+2(l—x)y'+(x—2)y=2€x,

<l> = lel/2 "
2 277

y(1) =e
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TABLE 3: Local polynomial regression.

Parameter (n, p, h) Residual sum of square eﬁ

n=20,p=5h=1/11 5.4816 x 10°°
n=40,p=5h=1/19 3.6711 x 1077
n=70,p=>5h=2/67 8.5220 x 107

Y -axis

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

X-axis

FIGURE 4: Absolute errors figure of Example 3 with n = 20, p =
4 and h=1/11.

The exact solution is y = xe*. Different parameters
n, h, and p correspond to different residual sum of square,
given in Figure 3 and Table 3. LPR represents local polyno-
mial regression. In Figure 3, local polynomial estimator is
carried out for n = 20 and p = 4 giving h = 1/11,
and we can get the residual sum of square e’ which is very
small. Here, efl = Z?:1[)’(Xi) - )7(Xi)]2. In Table 3, local
polynomial regression, it can be concluded that the effect of
local polynomial regression is good and the residual sum of
square e’ is very small. It is sure that we can get better results
forn = 70 and p = 10 giving h = 0.0045 (Figure 3: Solution of
local polynomial estimator and exact solution of Example 3).

Figures 4, 5, and 6 present the absolute errors of this
example under three groups of parameters. We can see that
the absolute errors obtain x10™* magnitude given different
parameters n,h with the same p = 5. Moreover, with
the increase in n, the absolute errors decrease gradually.
From Examples 1-3, we can conclude that the residual sum
of square and absolute error are smaller by using local
polynomial method which shows good accuracy.

5. Conclusions

In this paper, a local polynomial-based fitting method has
been proposed for numerical solutions of differential equa-
tions with boundary values. Comparisons of the computed
results with exact solutions and existing methods showed
that the method has the capability of solving the differential
equations with boundary values. It is also capable of obtaining
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FIGURE 5: Absolute errors figure of Example 3 with n = 40, p =
6 and h =1/19.
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FIGURE 6: Absolute errors figure of Example 3 with n = 70, p =
10 and h = 2/67.

highly accurate results with minimal computational effort for
both time and space. It was seen that the local polynomial-
based technique approximates the exact solution very well.
Numerical results demonstrated that the proposed method
is more effective, and local polynomial estimator is more
accurate compared with other algorithms, for instance, opti-
mization algorithm. Furthermore, by using these methods,
we can also study the numerical solutions of boundary value
problems for differential equations on whole line or fractional
differential equations which have been studied by the authors
in [11-13]. In order to illustrate our method further, we
will focus on these kinds of fractional differential, integral
differential equations.
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