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In the real world, there are a large number of supply chains that involve the short lifespan products. In this paper, we consider an
integrated production and distribution batch scheduling problem on a single machine for the orders with a short lifespan, because
it may be cheaper or faster to process and distribute orders in a batch than to process and distribute them individually. Assume
that the orders have the identical processing time and come from the same location, and the batch setup time is a constant. The
problem is to choose the number of batches and batch sizes to minimize the total delivery time without violating the order lifespan.
We first give a backward dynamic programming algorithm, but it is not an actually polynomial-time algorithm. Then we propose
a constant time partial dynamic programming algorithm by doing further research into the recursion formula in the algorithm.
Further, using the difference characteristics of the optimal value function, a specific calculating formula to solve the problem with
the setup time being integer times of the processing time is obtained.

1. Introduction

In the past two decades, research in the area of supply
chain management (SCM) has increased significantly. An
important aspect of SCM concerns integrated planning of
production and distribution processes since the increasing
globalization and strong competition force companies not
only to compete with others with regard to prices or quality,
but with regard to reliability and timeliness of the deliveries
as well. Thus, a coordinated planning of production and
transportation is vital for the success of a business; especially
if products with short lifespans are involved, the coordination
of related operations becomes a challenging issue, such as
food (Tarantilis andKiranoudis [1]; Arbib et al. [2]; Chen et al.
[3]; Farahani et al. [4]; Méndez et al. [5]; Amorim et al. [6];
Bilgen andGünther [7]; Kaplan andRabadi [8]; Shirvani et al.
[9]), yoghurt products (Kopanos et al. [10]; Bilgen and Çelebi
[11]), industrial chemicals (Geismar et al. [12]; Armstrong
et al. [13]; Viergutz and Knust [14]), ready-mix concrete
(Garćıa et al. [15]; Garcia and Lozano [16, 17]), medical
specimens (Zangeneh-Khamooshi et al. [18]), or also daily

newspapers (van Buer et al. [19]). The integrated production
and distribution scheduling problems can be classified into
two types based on whether there is a lifespan as the specific
parameter of the problem. Since the focus of this paper is on
problems with lifespan constraints, we do not review papers
that study problems without lifespan constraints, which can
be found in Chen [20].

Chen et al. [3] consider production scheduling and vehi-
cle routing with time windows for perishable food products
to maximize the expected total profit of the supplier. The
demands at retailers are assumed stochastic and perishable
goods will deteriorate once they were produced. They pro-
pose a nonlinear mathematical model, which is NP-hard,
and give a solution algorithm composed of the constrained
Nelder-Mead method and a heuristic for the vehicle routing
with time windows to solve the complex problem. Farahani
et al. [4] study a similar problem but with multiple produc-
tion lines and sequence dependent setup times and costs.The
production scheduling problem is solved through an mixed-
integer linear programming modeling approach which is
based on a block planning formulation.
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Méndez et al. [5] and Amorim et al. [6] study the inte-
grated batch scheduling and vehicle routing problem and
the integrated lot sizing and scheduling and vehicle routing
problem for perishable goods respectively. They propose
mixed-integer programming models and analyse computa-
tional results of the models, respectively.

Bilgen and Günther [7] present an integrated production
scheduling and truck routing model for a fruit juice supply
chain. They considered different transportation modes and
described the production system based on the block planning
approach which establishes cyclical production patterns with
regard to the definition of setup families.

Kaplan and Rabadi [8] focus on the scheduling of perish-
able products on parallel machines. Each job has a due date,
which is the preferred delivery date of the retailers and might
be violated subject to a penalization as lateness penalty, and
there is a strict deadline imposed by the retailer that should
not be exceeded.Theobjective is tominimize the total penalty
cost.They propose a mixed-integer programming model and
analyse computational results of the model. Shirvani et al.
[9] study a similar problem but with job dependent holding
cost. They propose also a mixed integer programming model
and a heuristic solution beside an iterated greedy algorithm
is developed to generate good and feasible solutions for the
problem.

Kopanos et al. [10] consider production scheduling and
distribution planning in the yoghurt processing industrywith
the limited shelf life of intermediate mixes in the aging stage.
The model proposed by them decides the assignment of
transportation trucks to processing sites-distribution center
in every period as well as transportation load for every
truck. They impose material balance and logistics opera-
tions constraints. Three different transportation modes and
min/max truck capacity are taken into consideration. Bilgen
and Çelebi [11] study a similar problem but with maximizing
the benefit by considering the shelf life dependent pricing
component and costs such as processing, setup, storage,
overtime, backlogging, and transportation costs. A mixed-
integer linear programming model is developed for the
considered problem. The efficiency and applicability of the
proposed model and approach are demonstrated in a case
study for a dairy manufacturing company in Turkey.

Motivated by applications of certain time-sensitive chem-
ical compounds, Geismar et al. [12], Armstrong et al. [13],
and Viergutz and Knust [14] consider problems where orders
expire within a certain time frame once they are produced
and hence must be delivered before they expire. In Geismar
et al.’s problem, orders to be delivered in the same batch are
produced as a lot together and once a lot is completed the
shipment must depart immediately and deliver the orders to
their destinations within a given time frame. They propose a
metaheuristic for this stronglyNP-hard problem and evaluate
the performance of the heuristic computationally. In the
Armstrong et al.’s problem, all the orders are processed and
delivered in a single shipment in a prespecified sequence. In
addition to a common expiration time frame, each order has
an individual time window within which the order must be
delivered. The objective is to choose a subset of the orders
to be delivered such that the total demand of the chosen

orders is maximized. The authors show that their problem
is at least ordinarily NP-hard and give a branch-and-bound
exact algorithm and a heuristic for the problem. Viergutz and
Knust’s problem is similar to Armstrong et al.’s. They refine
the Armstrong et al.’s algorithm and extend the model for
handling delays of the production start as well as for variable
production and distribution sequences and give heuristic and
evaluate their performance computationally.

Garcia and Lozano [16] consider a ready-mix concrete
production and vehicle scheduling problem with identical
parallel machines and multiple customers. They give a new
approach for constructing the min-cost network flow prob-
lem. They also consider a dual problem with the objective
of minimizing the number of vehicles used subject to the
constraint that a given number of orders are covered. They
give an exponential-time exact solution approach and a
partial branch and bound heuristic. More specifically, Garcia
and Lozano [17] study a similar problem but with an ideal due
date for each order.The revenue of a delivered order decreases
with the deviation from the ideal due date. This problem is
strongly NP-hard. They give a tabu search based heuristic.

Zangeneh-Khamooshi et al. [18] consider a medical spec-
imens collection problem with a central depot and multiple
customers which is modeled as a multishift vehicle routing
problem with windows and cycle times, which is a strongly
NP-hard problem. They give an new version of the vehicle
routing problem with time windows that minimizes the total
cycle time of the orders. When the courier’s schedule is
allowed to vary, they propose an algorithm to determine
feasible routes and schedules of the available couriers and
evaluate their performance computationally.

van Buer et al. [19] consider a newspaper printing and
delivery problem with a single machine and multiple cus-
tomers. There are sequence-dependent setup times between
orders in the production part and each order has a delivery
deadline that must be met. There is a fixed cost for using a
vehicle and a vehicle if used can be used to cover multiple
trips.The objective is to minimize the total fixed and variable
transportation cost. The authors give several heuristics and
evaluate their performance computationally.

In this paper, we study a supply chain involving the
product with a short lifespan which consists of a plant and
a set of customer groups, where the production facility of the
plant consists of a single machine and the set of customer
groups comes from the same location (e.g., a distribution
hub). At the single machine a single product with a limited
lifespan is produced. The product lifespan specifies that the
product expires after the end of its production. The orders of
the product from all of customers are identical. Our problem
is to schedule and deliver these identical orders in batches,
since it may be cheaper or faster to process and deliver orders
in a batch than to process and deliver them individually. A
setup time is required at the start of the schedule and on
each occasion when the machine switches from processing
orders in one batch to orders in another batch (e.g., the time
of changing a tool or to clean the machine). The delivery
time of an order coincides with the delivery time of the last
scheduled orders in its batch and all orders in this batch have
the same delivery time. For a given number of orders, wewant
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to choose batch sizes so as tominimize the sumof the delivery
times of the orders without violating the order lifespan.

Formally, there is a set of 𝑛 orders from the same location
with identical processing time 𝑝 and a limited lifespan 𝐿, 𝐽 =

{𝑗
1
, . . . , 𝑗

𝑛
} = {1, . . . , 𝑛}, to be processed on a single machine.

In a given schedule, for each job 𝑗 ∈ 𝐽, we denote 𝐶
𝑗
to be its

completion time and 𝐷
𝑗

= 𝐶
𝑗
+ 𝑇 delivery time of order 𝑗,

where 𝑇 is the transportation time from the plant to order 𝑗’s
destination. The problem is, given a setup time 𝑆, to find the
number of batches 𝑘 and batch sizes 𝑏

𝑖
satisfying ∑

𝑘

𝑖=1
𝑏
𝑖
= 𝑛,

so as to minimize ∑
𝑛

𝑗=1
𝐷
𝑗
= ∑
𝑛

𝑗=1
(𝐶
𝑗
+ 𝑇) = ∑

𝑘

𝑖=1
𝑏
𝑖
∑
𝑖

𝑗=1
(𝑆 +

𝑏
𝑗
𝑝) + 𝑛𝑇 without violating the order lifespan, where all of 𝑝,

𝐿, 𝑇, and 𝑆 are positive integers.
In a given batch schedule, to respect the lifespan con-

straint of the order, it is necessary that (𝑏
𝑖
− 1)𝑝 + 𝑇 ≤ 𝐿

for each batch sizes 𝑏
𝑖
, where (𝑏

𝑖
− 1)𝑝 + 𝑇 is the time from

the completion time point of the first scheduled order in 𝑖th
batch to its delivery time point. Let 𝐵 denote the maximal
integer less than or equal to rational number (𝐿 − 𝑇)/𝑝 + 1.
Since 𝑛𝑇 in the objective function ∑

𝑛

𝑗=1
𝐷
𝑗

= ∑
𝑛

𝑗=1
𝐶
𝑗
+ 𝑛𝑇

is a constant, our problem can be translated to the problem:
find the number of batches 𝑘 and batch sizes 𝑏

𝑖
satisfying

∑
𝑘

𝑖=1
𝑏
𝑖

= 𝑛 and 𝑏
𝑖

≤ 𝐵 for 𝑖 = 1, . . . , 𝑘, so as to minimize
∑
𝑛

𝑗=1
𝐶
𝑗
= ∑
𝑘

𝑖=1
𝑏
𝑖
∑
𝑖

𝑗=1
(𝑆 + 𝑏
𝑗
𝑝). The problem is referred to as

1|𝑝
𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
.

This paper is organized as follows. In Section 2, we
give a backward dynamic programming algorithm to solve
problem 1|𝑝

𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
, which is not an

actually polynomial-time algorithm. In Section 3, we first
show the relation between optimal solution and the first
order difference of the optimal objective function of the
number of orders and investigate the properties of the
first order difference. Then a partial dynamic programming
algorithm to solve the problem in constant time is given.
A specific calculating formula to solve the problem in case
𝑆 = V𝑝 is shown in Section 4. In Section 5, we present some
numerical examples to show the effectiveness of our proposed
algorithms. Section 6 contains a conclusion and a discussion
of some possible extensions.

2. Dynamic Programming Algorithm

For ease of presentation, we sequence the orders according
to nonincreasing indices. Any solution of problem 1|𝑝

𝑗
=

𝑝; 𝐵; 𝑆 − batch| ∑𝐶
𝑗
is of the form

𝐵𝑆 : 𝑆𝑛
𝑘
⋅ ⋅ ⋅ (𝑛
𝑘−1

+ 1) 𝑆𝑛
𝑘−1

⋅ ⋅ ⋅ (𝑛
𝑘−2

+ 1) ⋅ ⋅ ⋅ 𝑆𝑛
1
⋅ ⋅ ⋅ 1, (1)

where 𝑘 is the number of batches, 1 ≤ 𝑛
1

< 𝑛
2

< ⋅ ⋅ ⋅ < 𝑛
𝑘

=

𝑛, and batch sizes 𝑏
1

= 𝑛
𝑘
− 𝑛
𝑘−1

, . . . , 𝑏
𝑘−1

= 𝑛
2
− 𝑛
1
, 𝑏
𝑘

=

𝑛
1
satisfied with 𝑏

𝑖
≤ 𝐵 for 𝑖 = 1, . . . , 𝑘. Every solution 𝐵𝑆

corresponds to a objective function value

𝐹 (𝐵𝑆) =

𝑛

∑

𝑗=1

𝐶
𝑗
=

𝑘

∑

𝑖=1

𝑏
𝑖

𝑖

∑

𝑗=1

(𝑆 + 𝑏
𝑗
𝑝)

=

𝑘

∑

𝑖=1

𝑛
𝑖
(𝑆 + (𝑛

𝑖
− 𝑛
𝑖−1

) 𝑝) ,

(2)

where 𝑛
0
= 0.

In order to solve the batch sizing problem, we obviously
have to find a constant 𝑘 and a sequence of indices 1 ≤ 𝑛

1
<

𝑛
2
< ⋅ ⋅ ⋅ < 𝑛

𝑘
= 𝑛 such that the above objective function value

is minimized. Clearly, problem 1|𝑝
𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗

is a trivial matter when 𝑆 ≤ 𝑝 or 𝐵 < 2. We have the result as
follows.

Theorem 1. If 𝑆 ≤ 𝑝 or 𝐵 < 2, then for problem 1|𝑝
𝑗

=

𝑝; 𝐵; 𝑆−𝑏𝑎𝑡𝑐ℎ| ∑𝐶
𝑗
there exists an optimal solution in which

𝑘 = 𝑛 and 𝑛
𝑖
= 𝑖 for 𝑖 = 1, . . . , 𝑛; that is, 𝑏

1
= ⋅ ⋅ ⋅ = 𝑏

𝑘
= 1.

ByTheorem 1, we assume that 𝑆 > 𝑝 and 𝐵 ≥ 2 hereafter.
Below we give a backward dynamic programming algorithm
to solve the problem 1|𝑝

𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
.

Algorithm 2 (dynamic programming algorithm). Let 𝐹(𝑗)

denote the minimum the sum of the completion times for
𝑗-orders batching problem containing orders 1, . . . , 𝑗. The
initialization is

𝐹 (0) = 0 (3)

and the recursion for 𝑗 = 1, . . . , 𝑛 is

𝐹 (𝑗) = min {𝑗 [𝑆 + (𝑗 − 𝑖) 𝑝] + 𝐹 (𝑖) | max {0, 𝑗 − 𝐵}

≤ 𝑖 ≤ 𝑗 − 1} .

(4)

Theminimization selects a batch {𝑗, . . . , 𝑖 + 1}which dose
not violate the product lifespan to insert at the start of the
previous schedule containing orders 𝑖, . . . , 1. Batch {𝑗, . . . , 𝑖 +

1} completes at time 𝑆 + (𝑗 − 𝑖)𝑝, and the processing of the
batches containing jobs 𝑖, . . . , 1 is delayed by time 𝑆 + (𝑗 − 𝑖)𝑝

as a result of the insertion.The optimal solution value is then
equal to 𝐹(𝑛). Under the most natural implementation, the
algorithm requires 𝑂(𝑛𝐵) time.

However, it is not an actually polynomial-time algorithm,
since the usual definition of the input size is the sum of
the logarithms of the input parameters 𝑛, 𝑆, 𝑝, and 𝐵. In
the following sections, we will do further research into the
recursion formula: 𝐹(𝑗) = min{𝑗[𝑆 + (𝑗 − 𝑖)𝑝] + 𝐹(𝑖) |

max{0, 𝑗 − 𝐵} ≤ 𝑖 ≤ 𝑗 − 1} = 𝑗[𝑆 + (𝑗 − 𝑡)𝑝] + 𝐹(𝑡), so as
to determine completely the optimal successor 𝑡 for every 𝑗

in an polynomial-time of the input size.

3. Partial Dynamic Programming Algorithm

In this section, we first show the relation between optimal
solution and the first order difference of the optimal objective
function in terms of the number of orders and investigate the
properties of the first order difference. Then we give a partial
dynamic programming algorithm to solve the problem in
constant time. For each order 𝑗, if order 𝑡withmax{0, 𝑗−𝐵} ≤

𝑡 ≤ 𝑗 − 1 such that

𝐹 (𝑗) = 𝑗 [𝑆 + (𝑗 − 𝑡) 𝑝] + 𝐹 (𝑡) (5)

holds, we call order 𝑡 the optimal successor of order 𝑗 and
denote the optimal successor 𝑡 of 𝑗 by SUCC(𝑗). For 0 ≤ 𝑖 ≤

𝑗 − 1, set

𝐹 (𝑗, 𝑖) = 𝑗 [𝑆 + (𝑗 − 𝑖) 𝑝] + 𝐹 (𝑖) . (6)
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Thus, we have

𝐹 (𝑗) =

𝑗−1

min
𝑖=max{0,𝑗−𝐵}

𝐹 (𝑗, 𝑖) . (7)

Note that the fact that 𝑖 + 1 is better (worse) than 𝑖 as a
successor of 𝑗, that is, 𝐹(𝑗, 𝑖 +1)−𝐹(𝑗, 𝑖) = 𝑗[𝑆+ (𝑗− 𝑖−1)𝑝]+

𝐹(𝑖 + 1) − 𝑗[𝑆 + (𝑗 − 𝑖)𝑝] +𝐹(𝑖) = 𝐹(𝑖 + 1) −𝐹(𝑖) − 𝑗𝑝 < (>)0, is
equivalent to 𝐹(𝑖 + 1) −𝐹(𝑖) < (>)𝑗𝑝, which indicates that the
optimal successor of 𝑗 is related to the first order difference
sequence of the optimal objective function of the number of
orders. We denote the first order difference sequence of the
optimal objective function of the number of orders by Δ(𝑖) =

𝐹(𝑖 + 1) − 𝐹(𝑖) for 𝑖 = 0, 1, . . . , +∞. We define that Δ(−1) = 0.
Then, 𝑖+1 is better (worse) than 𝑖 as a successor of 𝑗 if and only
if Δ(𝑖) < (>)𝑗𝑝. To break ties when choosing the successor,
we assume that if Δ(𝑖) = 𝑗𝑝, that is, 𝐹(𝑗, 𝑖 + 1) = 𝐹(𝑗, 𝑖), then
𝑖 + 1 is better than 𝑖 as a successor of 𝑗. The following lemma
shows an important characteristic of the first order difference
sequence.

Lemma 3. If 𝑆 > 𝑝, then all of the following hold:

(i) 𝑝 ≤ Δ(𝑗) − Δ(𝑗 − 1) ≤ 2𝑝 for 𝑗 = 1, 2, . . .;
(ii) if 𝑆𝑈𝐶𝐶(𝑗+1) = 𝑠

𝑗+1
and 𝑆𝑈𝐶𝐶(𝑗) = 𝑠

𝑗
, then (𝑗+1)−

𝑠
𝑗+1

≥ 𝑗 − 𝑠
𝑗
.

Proof. We prove this lemma by induction. Simple calcula-
tions yield the following:

SUCC(1) = 0 and Δ(0) = 𝐹(1) − 𝐹(0) = 𝑆 + 𝑝,
𝐹(2) = min{𝐹(2, 1), 𝐹(2, 0)} = min{2(𝑆 + 𝑝) + 𝑆 +

𝑝, 2(𝑆 + 2𝑝)} = 2(𝑆 + 2𝑝), and SUCC(2) = 0,
Δ(1) = 𝐹(2) − 𝐹(1) = 𝑆 + 3𝑝 > Δ(0) = 𝑆 + 𝑝 and
Δ(1) − Δ(0) = 2𝑝 and 2 − 0 > 1 − 0.

Thus, (i) and (ii) hold for 𝑗 = 1. Now suppose that they hold
when 𝑗 ≤ ℎ for some positive integer ℎ, that is, 𝑝 ≤ Δ(𝑡) −

Δ(𝑡 − 1) ≤ 2𝑝 and (𝑡 + 1) − 𝑠
𝑡+1

≥ 𝑡 − 𝑠
𝑡
for 𝑡 = 1, 2, . . . , ℎ.

We need to show that they hold when 𝑗 = ℎ + 1. Assume that
SUCC(ℎ + 1) = 𝑡 (0 ≤ 𝑡 ≤ ℎ). By Δ(1) − Δ(0) = 2𝑝 and
𝑝 ≤ Δ(𝑗) − Δ

1
(𝑗 − 1) for 𝑗 = 2, . . . , ℎ, we have that (ℎ + 1)𝑝 ≤

Δ(ℎ). Equation (ℎ + 1)𝑝 = Δ(ℎ) does not hold. Otherwise,
inequalities Δ(0) < ⋅ ⋅ ⋅ < Δ(ℎ − 1) < (ℎ + 1)𝑝 imply that
1 is better than 0, 2 better than 1, . . . , ℎ better than ℎ − 1 in
order as a successor of ℎ + 1. The result is that SUCC(ℎ +

1) = ℎ; that is, 𝐹(ℎ + 1) = (ℎ + 1)(𝑆 + 𝑝) + 𝐹(ℎ). Then (ℎ +

1)𝑝 = Δ(ℎ) = 𝐹(ℎ + 1) − 𝐹(ℎ) = (ℎ + 1)(𝑆 + 𝑝) + 𝐹(ℎ) −

𝐹(ℎ) = (ℎ + 1)(𝑆 + 𝑝). This is a contradiction. Thus, we have
that (ℎ+1)𝑝 < Δ(ℎ). Noting the fact that {Δ(𝑗)}

ℎ

𝑗=−1
is a strictly

monotone increasing sequence, there is 0 ≤ 𝑡
0
≤ ℎ such that

Δ(𝑡
0
− 1) ≤ (ℎ + 1)𝑝 < Δ(𝑡

0
). There are two cases to consider:

(a) ℎ + 1 − 𝑡 < 𝐵; (b) ℎ + 1 − 𝑡 = 𝐵.

Case (a) (ℎ+1−𝑡 < 𝐵). Since the inequalitiesΔ(−1) < Δ(0) <

⋅ ⋅ ⋅ < Δ(𝑡
0
− 1) ≤ (ℎ + 1)𝑝 imply that 𝑡

0
is better than 𝑡

0
− 1,

𝑡
0
− 1 better than 𝑡

0
− 2, . . . , 1 better than 0 in order and the

inequalities (ℎ + 1)𝑝 < Δ(𝑡
0
) < ⋅ ⋅ ⋅ < Δ(ℎ) imply that 𝑡

0
is

better than 𝑡
0
+1, 𝑡
0
+1 better than 𝑡

0
+2, . . . , ℎ−1 better than

ℎ in order as a successor of (ℎ+1), along with ℎ+1−𝑡 < 𝐵, we
have that 𝑡 = 𝑡

0
= SUCC(ℎ + 1). This implies that SUCC(ℎ +

1) = 𝑡 and ℎ+1−𝑡 < 𝐵 if and only ifΔ(𝑡−1) ≤ (ℎ+1)𝑝 < Δ(𝑡).
If 𝑡
0
= 0, then SUCC(ℎ) = 0. If 𝑡

0
= 1, either SUCC(ℎ) = 0

or SUCC(ℎ) = 1 follows from the fact that ℎ𝑝 < (ℎ + 1)𝑝 <

Δ(𝑡
0
) < ⋅ ⋅ ⋅ < Δ(ℎ). If 𝑡

0
> 1, due to 𝑝 ≤ Δ(𝑡

0
− 1) − Δ(𝑡

0
−

2), either SUCC(ℎ) = 𝑡
0
or SUCC(ℎ) = 𝑡

0
− 1 follows from

the fact that Δ(𝑡
0
− 2) ≤ ℎ𝑝 < (ℎ + 1)𝑝 < Δ(𝑡

0
). In sum, if

SUCC(ℎ + 1) = 𝑡, then either SUCC(ℎ) = 𝑡 or SUCC(ℎ) =

𝑡 − 1. Similarly, we have that if SUCC(ℎ + 1) = 𝑡, then either
SUCC(ℎ + 2) = 𝑡 or SUCC(ℎ) = 𝑡 + 1. This implies that (ii)
holds. To end the proof of (i), there are four cases to consider:
(a1) SUCC(ℎ) = SUCC(ℎ + 1) = SUCC(ℎ + 2) = 𝑡, (a2)
SUCC(ℎ) = 𝑡 − 1, SUCC(ℎ + 1) = SUCC(ℎ + 2) = 𝑡, (a3)
SUCC(ℎ) = SUCC(ℎ + 1) = 𝑡, SUCC(ℎ + 2) = 𝑡 + 1, and (a4)
SUCC(ℎ) = 𝑡 − 1, SUCC(ℎ + 1) = 𝑡, SUCC(ℎ + 2) = 𝑡 + 1.

Case (a1) (SUCC(ℎ) = SUCC(ℎ + 1) = SUCC(ℎ + 2) = 𝑡). In
this case,

𝐹 (ℎ) = ℎ [𝑆 + (ℎ − 𝑡) 𝑝] + 𝐹 (𝑡) ,

𝐹 (ℎ + 1) = (ℎ + 1) [𝑆 + (ℎ + 1 − 𝑡) 𝑝] + 𝐹 (𝑡) ,

𝐹 (ℎ + 2) = (ℎ + 2) [𝑆 + (ℎ + 2 − 𝑡) 𝑝] + 𝐹 (𝑡) .

(8)

Thus, we have that Δ(ℎ) = 𝐹(ℎ + 1) −𝐹(ℎ) = 𝑆+ (2ℎ+ 1− 𝑡)𝑝,
Δ(ℎ + 1) = 𝐹(ℎ + 2) − 𝐹(ℎ + 1) = 𝑆 + (2ℎ + 3 − 𝑡)𝑝, and

Δ (ℎ + 1) − Δ (ℎ) = 2𝑝. (9)

Case (a2) (SUCC(ℎ) = 𝑡−1, SUCC(ℎ+1) = SUCC(ℎ+2) = 𝑡).
In this case,

𝐹 (ℎ) = ℎ [𝑆 + (ℎ − 𝑡 + 1) 𝑝] + 𝐹 (𝑡 − 1) ,

𝐹 (ℎ + 1) = (ℎ + 1) [𝑆 + (ℎ + 1 − 𝑡) 𝑝] + 𝐹 (𝑡) ,

𝐹 (ℎ + 2) = (ℎ + 2) [𝑆 + (ℎ + 2 − 𝑡) 𝑝] + 𝐹 (𝑡) .

(10)

Thus, we have that Δ(ℎ) = 𝐹(ℎ + 1) − 𝐹(ℎ) = 𝑆 + (ℎ + 1 −

𝑡)𝑝 + 𝐹(𝑡) − 𝐹(𝑡 − 1) = 𝑆 + (ℎ + 1 − 𝑡)𝑝 + Δ(𝑡 − 1), Δ(ℎ + 1) =

𝐹(ℎ + 2) − 𝐹(ℎ + 1) = 𝑆 + (2ℎ + 3 − 𝑡)𝑝, and

Δ (ℎ + 1) − Δ (ℎ) = (ℎ + 2) 𝑝 − Δ (𝑡 − 1) . (11)

Since SUCC(ℎ+1) = SUCC(ℎ+2) = 𝑡, the inequalitiesΔ(𝑡) >

(ℎ + 2)𝑝 > (ℎ + 1)𝑝 ≥ Δ(𝑡 − 1) hold. This implies Δ(ℎ + 1) −

Δ(ℎ) = (ℎ+2)𝑝−Δ(𝑡−1) ≥ 𝑝. By 𝑡−1 ≥ 0, 1 ≤ 𝑡 ≤ ℎ hold. Due
to the induction assumption, along with Δ(𝑡) > (ℎ + 2)𝑝, we
have thatΔ(ℎ+1)−Δ(ℎ) = (ℎ+2)𝑝−Δ(𝑡−1) ≤ Δ(𝑡)−Δ(𝑡−1) ≤

2𝑝.

Case (a3) (SUCC(ℎ) = SUCC(ℎ+1) = 𝑡, SUCC(ℎ+2) = 𝑡+1).
In this case,

𝐹 (ℎ) = ℎ [𝑆 + (ℎ − 𝑡) 𝑝] + 𝐹 (𝑡) ,

𝐹 (ℎ + 1) = (ℎ + 1) [𝑆 + (ℎ + 1 − 𝑡) 𝑝] + 𝐹 (𝑡) ,

𝐹 (ℎ + 2) = (ℎ + 2) [𝑆 + (ℎ + 2 − 𝑡 − 1) 𝑝] + 𝐹 (𝑡 + 1) .

(12)
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Thus, we have that Δ(ℎ) = 𝐹(ℎ + 1) −𝐹(ℎ) = 𝑆+ (2ℎ+ 1− 𝑡)𝑝,
Δ(ℎ+1) = 𝐹(ℎ+2)−𝐹(ℎ+1) = 𝑆+(ℎ+1−𝑡)𝑝+𝐹(𝑡+1)−𝐹(𝑡) =

𝑆 + (ℎ + 1 − 𝑡)𝑝 + Δ(𝑡), and

Δ (ℎ + 1) − Δ (ℎ) = Δ (𝑡) − ℎ𝑝. (13)

Since SUCC(ℎ) = SUCC(ℎ + 1) = 𝑡, the inequalities Δ(𝑡) >

(ℎ+1)𝑝 > ℎ𝑝hold.This impliesΔ(ℎ+1)−Δ(ℎ) = Δ(𝑡)−ℎ𝑝 ≥ 𝑝.
Also, we have thatΔ(ℎ+1)−Δ(ℎ) = Δ(𝑡)−ℎ𝑝 ≤ 2𝑝. Otherwise,
Δ(𝑡) − ℎ𝑝 > 2𝑝 implies Δ(𝑡) > (ℎ + 2)𝑝. This contradicts with
the fact that Δ(𝑡) ≤ (ℎ + 2)𝑝 < Δ(𝑡 + 1).

Case (a4) (SUCC(ℎ) = 𝑡−1, SUCC(ℎ+1) = 𝑡, SUCC(ℎ+2) =

𝑡 + 1). In this case,

𝐹 (ℎ) = ℎ [𝑆 + (ℎ + 1 − 𝑡) 𝑝] + 𝐹 (𝑡 − 1) ,

𝐹 (ℎ + 1) = (ℎ + 1) [𝑆 + (ℎ + 1 − 𝑡) 𝑝] + 𝐹 (𝑡) ,

𝐹 (ℎ + 2) = (ℎ + 2) [𝑆 + (ℎ + 1 − 𝑡) 𝑝] + 𝐹 (𝑡 + 1) .

(14)

Thus, we have that

Δ (ℎ + 1) − Δ (ℎ) = Δ (𝑡) − Δ (𝑡 − 1) . (15)

Since 1 ≤ 𝑡 ≤ ℎ, along with the induction assumption, the
inequalities 𝑝 ≤ Δ(ℎ + 1) − Δ(ℎ) ≤ 2𝑝 hold. This ends the
proof for Case (a).

Case (b) (ℎ+1−𝑡 = 𝐵).The inequalitiesΔ(𝑡
0
−1) ≤ (ℎ+1)𝑝 <

Δ(𝑡
0
) still hold, where 0 ≤ 𝑡

0
≤ ℎ. Clearly, 𝑡 ≥ 𝑡

0
. Otherwise,

𝑡 < 𝑡
0
. Since ℎ + 1 − 𝑡

0
< 𝐵 which means that the product

lifespan is not violated and Δ(𝑡
0
− 1) ≤ (ℎ + 1)𝑝 < Δ(𝑡

0
),

SUCC(ℎ + 1) = 𝑡
0
. This contradicts with SUCC(ℎ + 1) = 𝑡.

Assume that SUCC(ℎ) = 𝑡
󸀠. There are two cases to consider:

(b1) ℎ − 𝑡
󸀠
= 𝐵 and (b2) ℎ − 𝑡

󸀠
< 𝐵.

Case (b1) (ℎ− 𝑡
󸀠
= 𝐵). By Δ(𝑡

󸀠
+1)−Δ(𝑡

󸀠
) ≥ 𝑝 and ℎ𝑝 < Δ(𝑡

󸀠
),

we have that (ℎ+1)𝑝 < Δ(𝑡
󸀠
+1).This, alongwith ((ℎ+1)−𝑡

󸀠
) >

𝐵, implies that SUCC(ℎ+1) = 𝑡
󸀠
+1; that is 𝑡󸀠 = 𝑡−1. similarly,

SUCC(ℎ+2) = 𝑡+1. Similar to the proof of Case (a4), (i) and
(ii) hold for the case.

Case (b2) (ℎ − 𝑡
󸀠

< 𝐵). Clearly, 𝑡󸀠 ≤ 𝑡
0
. By (ℎ + 1) − 𝑡

0
≤

(ℎ+1)−𝑡
󸀠
≤ 𝐵, alongwithΔ(𝑡

0
−1) ≤ (ℎ+1)𝑝 < Δ(𝑡

0
), we have

that 𝑡 = 𝑡
0
. Meanwhile we claim 𝑡

󸀠
= 𝑡
0
. Otherwise 𝑡

󸀠
< 𝑡
0
.

Then (ℎ + 1) − 𝑡 = (ℎ + 1) − 𝑡
0
≤ ℎ − 𝑡

󸀠
< 𝐵. This contradicts

with ℎ + 1 − 𝑡 = 𝐵. Similarly, by ℎ + 1 − 𝑡 = 𝐵, SUCC(ℎ + 2) =

𝑡 + 1 = 𝑡
0
+ 1. Similar to the proof of Case (a3), (i) and (ii)

hold for the case. This ends the proof of the lemma.

The lemma, as well as four formulas yielded in the proof
of the lemma, is very important for our batch sizing problem.
Δ(0) = 𝑆 + 𝑝 implies that 0 is the optimal successor of
1, 2, . . . , ⌊(𝑆 + 𝑝)/𝑝), where ⌊(𝑆 + 𝑝)/𝑝) denotes the maximal
integer less than rational number (𝑆+𝑝)/𝑝 and ⌊(𝑆+𝑝)/𝑝) ≤

𝐵. 𝑝 ≤ Δ(𝑗) − Δ(𝑗 − 1) ≤ 2𝑝 implies that each positive integer
must be the optimal successor of one or two positive integers.
If SUCC(ℎ) = 𝑡 and ℎ − 𝑡 = 𝐵, then SUCC(𝑗) = 𝑗 − 𝐵 for
𝑗 = ℎ + 1, ℎ + 2, . . .. By (ii) in Lemma 3, we may assume
that ℎ∗ is the minimal integer such that SUCC(ℎ

∗
) = 𝑡
∗ and

ℎ
∗
−𝑡
∗

= 𝐵.Then 𝑗 < ℎ
∗ and SUCC(𝑗) = 𝑡 imply that 𝑗−𝑡 < 𝐵

and then that 𝑗 < ℎ
∗ and SUCC(𝑗) = 𝑡 hold if and only if

Δ(𝑡 − 1) ≤ ℎ𝑝 < Δ(𝑡). By (ii) in Lemma 3, if ℎ∗ may be found
by recursion (4) in a constant time, then the our problem is
solvable in a constant time, since SUCC(𝑗) = 𝑗−𝐵 for 𝑗 > ℎ

∗.
Now we define that 𝑁

𝑘
= {𝑗 | the optimal num-

ber of batches of 𝑗-orders batching problem is equal to
𝑘} for 𝑘 = 1, 2, . . ., called 𝑘-batches case set of orders
and sequence integers in 𝑁

𝑘
in increasing natural order.

Then (𝑁
1
, . . . , 𝑁

𝑘
, . . .) is a partition of the set of position

integers. Let 𝐶
1,𝑖

= 𝑖 for 𝑖 = 1, . . . , |𝑁
1
|. Then 𝑁

1
=

(𝐶
1,1

, . . . , 𝐶
1,|𝑁
1
|
). We define that 𝐶

𝑘,𝑖
= {𝑗 | SUCC(𝑗) ∈

𝐶
𝑘−1,𝑖

} for 𝑘 = 2, 3, . . . and 𝑖 = 1, . . . , |𝑁
1
|, called the

𝑖th periodic set of 𝑁
𝑘
, and sequence integers in 𝐶

𝑘,𝑖
in

increasing natural order. Then 𝑁
𝑘

= (𝐶
𝑘,1

, . . . , 𝐶
𝑘,|𝑁
1
|
) and

(𝐶
1,1

, . . . , 𝐶
1,|𝑁
1
|
, . . . , 𝐶

𝑘,1
, . . . , 𝐶

𝑘,|𝑁
1
|
, . . .) is a partition of the

set of position integers. If we can find a upper bound of |𝐶
𝑘,𝑖

|,
the upper bound of 𝑗 − 𝑡 will be estimated, where 𝑗 ∈ 𝐶

𝑘,𝑖
,

𝑡 ∈ 𝐶
𝑘−1,𝑖

and SUCC(𝑗) = 𝑡. The following lemma shows how
to do this.

Lemma 4. Let 𝑆 = V𝑝+ 𝑟 and 𝑞
𝑘−1

= ∑
𝑘−1

𝑡=1
|𝑁
𝑡
|, where 𝑞

0
= 0,

0 ≤ 𝑟 < 𝑝, and V are integers. Then for all of 𝑘 satisfying with
𝑗 − 𝑡 < 𝐵 where 𝑗 ∈ 𝑁

𝑘
and 𝑆𝑈𝐶𝐶(𝑗) = 𝑡, all of the following

hold:

(i) |𝐶
𝑘𝑖
| = 𝑘 for 𝑖 = 1, . . . , V,

(ii) Δ(𝑞
𝑘−1

+ (𝑖 − 1)𝑘 + 𝑘) − Δ(𝑞
𝑘−1

+ (𝑖 − 1)𝑘) = (𝑘 + 1)𝑝

for 𝑖 = 1, . . . , V.

Proof. By 𝑆 = V𝑝 + 𝑟 and Δ(0) = 𝑆 + 𝑝 = (V + 1)𝑝 + 𝑟,
𝑁
1

= {1, . . . , V} if 𝑟 = 0; 𝑁
1

= {1, . . . , V + 1} if 𝑟 > 0. Let
𝐶
1,V+1 = 0 if 𝑟 = 0 and 𝐶

1,V+1 = V + 1 if 𝑟 > 0. We prove
this lemma by induction. Clearly, 𝐶

1𝑖
= 𝑖 for 𝑖 = 1, . . . , V. If

𝐶
1,V+1 = V + 1, Δ(𝑖) − Δ(𝑖 − 1) = 2𝑝 for 𝑖 = 1, . . . , V follows

from (9), since SUCC(0) = SUCC(1) = ⋅ ⋅ ⋅ = SUCC(V + 1).
If 𝐶
1,V+1 = 0, Δ(𝑖) − Δ(𝑖 − 1) = 2𝑝 for 𝑖 = 1, . . . , V − 1 follows

from (9), since SUCC(0) = SUCC(1) = ⋅ ⋅ ⋅ = SUCC(V). By
SUCC(V − 1) = SUCC(V) = 0, SUCC(V + 1) = 1, and (13),
Δ(V) − Δ(V − 1) = Δ(0) + (V − 1)𝑝 = 2𝑝. Thus (i) and (ii)
hold when 𝑘 = 1. Now suppose that they hold when 𝑘 = ℎ

for some positive integer ℎ. We need to show that they hold
when 𝑘 = ℎ+1. For any 𝑖 ∈ {1, . . . , V}, by result (ii) with 𝑘 = ℎ:
Δ(𝑞
ℎ−1

+(𝑖−1)ℎ+ℎ)−Δ(𝑞
ℎ−1

+(𝑖−1)ℎ) = (ℎ+1)𝑝 and 𝑗 ∈ 𝐶
(ℎ+1)𝑖

if and only if Δ(𝑞
ℎ−1

+ (𝑖 − 1)ℎ) ≤ 𝑗𝑝 < Δ(𝑞
ℎ−1

+ (𝑖 − 1)ℎ + ℎ),
we have that |𝐶

(ℎ+1)𝑖
| = ℎ + 1. Thus the result (i) holds when

𝑘 = ℎ + 1.
Now we rewrite 𝐶

ℎ+1,𝑖
as (𝑏 + 1, . . . , 𝑏 + (ℎ + 1)), where

𝑏 = 𝑞
ℎ
+ (𝑖 − 1)(ℎ + 1). By |𝐶

ℎ,𝑖
| = ℎ and |𝐶

ℎ+1,𝑖
| = ℎ + 1,

every integer in 𝐶
ℎ,𝑖

must be the optimal successor of some
integer in 𝐶

ℎ+1,𝑖
and there is a integer, say 𝑎 + 𝑡

0
where 𝑎 =

𝑞
ℎ−1

+ (𝑖 − 1)ℎ, in 𝐶
ℎ,𝑖

such that it is the optimal successor of
two integers in 𝐶

ℎ+1,𝑖
. So, we have that

SUCC (𝑏 + 𝑡) = 𝑎 + 𝑡 for 𝑡 = 1, . . . , (𝑡
0
− 1) ,

SUCC (𝑏 + 𝑡
0
) = SUCC (𝑏 + 𝑡

0
+ 1) = 𝑎 + 𝑡

0
,

SUCC (𝑏 + 𝑡) = 𝑎 + 𝑡 − 1

for 𝑡 = (𝑡
0
+ 2) , . . . , (ℎ + 1) .

(16)
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By (15),

Δ (𝑏 + 𝑡) − Δ (𝑏 + 𝑡 − 1) = Δ (𝑎 + 𝑡) − Δ (𝑎 + 𝑡 − 1) ,

for 𝑡 = 1, . . . , (𝑡
0
− 1) .

(17)

By (11),

Δ (𝑏 + 𝑡
0
) − Δ (𝑏 + 𝑡

0
− 1)

= (𝑏 + 𝑡
0
+ 1) 𝑝 − Δ (𝑎 + 𝑡

0
− 1) .

(18)

By (13),

Δ (𝑏 + 𝑡
0
+ 1) − Δ (𝑏 + 𝑡

0
) = Δ (𝑎 + 𝑡

0
) − (𝑏 + 𝑡

0
) 𝑝. (19)

By (15),

Δ (𝑏 + 𝑡) − Δ (𝑏 + 𝑡 − 1)

= Δ (𝑎 + 𝑡 − 1) − Δ (𝑎 + 𝑡 − 2) ,

for 𝑡 = (𝑡
0
+ 2) , . . . , (ℎ + 1) .

(20)

Equations (17), (18), (19), and (20), along with the induction
assumption, imply Δ(𝑏+ℎ+1)−Δ(𝑏) = Δ(𝑎+ℎ)−Δ(𝑎)+𝑝 =

(ℎ+2)𝑝; that is, the result (ii) holds when 𝑘 = ℎ+1. This ends
the proof of the lemma.

In the following we give a partial dynamic programming
algorithm to solve the problem 1|𝑝

𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
.

Algorithm 5 (partial dynamic programming algorithm). Let
𝐹(𝑗) denote the minimum the sum of the completion times
for 𝑗-orders batching problem containing orders 1, . . . , 𝑗. The
initialization is

𝐹 (0) = 0, (21)

and for 𝑗 = 1, . . . , ℎ
∗ the recursion is

𝐹 (𝑗) = min {𝑗 [𝑆 + (𝑗 − 𝑖) 𝑝] + 𝐹 (𝑖) | 0 ≤ 𝑖 ≤ 𝑗 − 1} ; (22)

for 𝑗 > ℎ
∗ the recursion is

𝐹 (𝑗) = 𝑗 [𝑆 + 𝐵𝑝] + 𝐹 (𝑗 − 𝐵) , (23)

where ℎ
∗ is theminimal integer such that SUCC(ℎ

∗
) = 𝑡
∗ and

ℎ
∗
− 𝑡
∗

= 𝐵.

Theorem 6. Algorithm 5 finds an optimal solution of problem
1|𝑝
𝑗
= 𝑝; 𝐵; 𝑆 − 𝑏𝑎𝑡𝑐ℎ| ∑𝐶

𝑗
in constant time.

Proof. By (ii) in Lemma 3, 𝑗 − 𝑠
𝑗
is monotonic increasing,

where SUCC(𝑗) = 𝑠
𝑗
. By (i) in Lemma 4, |𝐶

𝑘𝑖
| = 𝑘 for

𝑘 ≥ 1 and 𝑖 = 1, . . . , V, where 𝑆 = V𝑝 + 𝑟. Noting the fact
that SUCC(𝑗

𝑘+1,V) = 𝑗
𝑘,V, where 𝑗

𝑘+1,V and 𝑗
𝑘,V are the last

orders in 𝐶
𝑘+1,V and 𝐶

𝑘𝑖
, respectively, we have that (𝑗

𝑘+2,V −

𝑗
𝑘+1,V) − (𝑗

𝑘+1,V − 𝑗
𝑘V) ≥ V for 𝑘 ≥ 1. This, along with V ≥ 1,

implies that the recursion: 𝐹(𝑗) = min{𝑗[𝑆 + (𝑗 − 𝑖)𝑝] + 𝐹(𝑖) |

0 ≤ 𝑖 ≤ 𝑗 − 1} for 𝑗 = 1, . . . , ℎ
∗ finishes in 𝑂(𝐵) time.

Thus, Algorithm 5 finds an optimal solution of the problem
in constant time.

In the following section, we will show a specific calculat-
ing formula for the solution of the problem with 𝑆 = V𝑝.

4. Specific Calculating Formula in Case 𝑆=V𝑝

Assume 𝑆 = V𝑝. By (i) in Lemma 4, we may obtain a
partition of the set of 𝑗-orders with 𝑗 ≤ ℎ

∗ as follows: 𝑁
1

=

{1, . . . , V}, 𝑁
2

= {V + 1, . . . , 3V}, . . ., and𝑁
𝑘

= {∑
𝑘−1

𝑡=1
𝑡V +

1, . . . , ∑
𝑘

𝑡=1
𝑡V}, . . .. For example, if V = 3, 𝐶

11
= {1}, 𝐶

12
= {2},

𝐶
13

= {3}, and 𝑁
1

= {1, 2, 3}, 𝐶
21

= {4, 5}, 𝐶
22

= {6, 7},
𝐶
33

= {8, 9}, and 𝑁
2
= {4, . . . , 9}; . . ..

For ease of presentation, we denote by (𝑘, 𝑖, 𝑤) the 𝑤th
order in the 𝑖th periodic set 𝐶

𝑘𝑖
of the 𝑘th batch case set 𝑁

𝑘
,

where all 𝑘, 𝑖, and 𝑤 with 𝑘 ≥ 1, 1 ≤ 𝑖 ≤ V, and 1 ≤ 𝑤 ≤ 𝑘 are
integers; that is,

(𝑘, 𝑖, 𝑤) =

𝑘−1

∑

𝑡=1

𝑡V + (𝑖 − 1) 𝑘 + 𝑤

=

(𝑘 − 1) 𝑘

2

V + (𝑖 − 1) 𝑘 + 𝑤,

(24)

where ∑
0

𝑡=1
𝑡V = 0. Equation (24) establishes a one-to-one

correspondence between {(𝑘, 𝑖, 𝑤) | 𝑘 ≥ 1, 1 ≤ 𝑖 ≤

V, 1 ≤ 𝑤 ≤ 𝑘} and the set of positive integers. For example,
if V = 3, (4, 3, 2) = ∑

4−1

𝑡=1
𝑡V + (3 − 1)4 + 2 = 28 and

101 = 33V + 2 = ((7 × 8)/2)V + (3 − 1)8 + 1 = (8, 3, 1).
We define (0, 0, 0) = 0; (𝑘, 𝑖, 𝑤) = (𝑘, 𝑖 − 1, 𝑘) if 𝑤 = 0 and
𝑖 > 1; (𝑘, 𝑖, 𝑤) = (𝑘 − 1, V, 𝑘 − 1) if 𝑤 = 0 and 𝑖 = 1. The
following lemmadescribes the special properties of first order
difference in case 𝑆 = V𝑝.

Lemma 7. Assume 𝑆 = V𝑝. Then all of the following hold.

(i) For each order (𝑘, 𝑖, 𝑤) with (𝑘, 𝑖, 𝑤) ≤ ℎ
∗, Δ(𝑘, 𝑖, 𝑤) −

Δ(𝑘, 𝑖, 𝑤 − 1) = 𝑝 if 𝑤 < 𝑘 and Δ(𝑘, 𝑖, 𝑤) − Δ(𝑘, 𝑖, 𝑤 −

1) = 2𝑝 if 𝑤 = 𝑘, where 𝑘 ≥ 1, 1 ≤ 𝑖 ≤ V, and 1 ≤ 𝑤 ≤

𝑘.
(ii) Let 𝐵 = 𝑚V+𝑟, where𝑚 and 0 ≤ 𝑟 < V are nonnegative

integers. Then ℎ
∗

= (𝑚 + 1, 𝑟, 𝑚 + 1).

Proof. We prove result (i) by induction. By SUCC(𝑖) = 0

for 𝑖 = 0, 1, . . . , V, along with (9), we have that Δ(1, 𝑖, 1) −

Δ(1, 𝑖, 0) = Δ(𝑖) − Δ(𝑖 − 1) = 2𝑝 for 𝑖 = 1, . . . , V − 1. By
SUCC(V − 1) = SUCC(V) = 0 and SUCC(V + 1) = 1,
along with (13), we have Δ(1, V, 1) − Δ(1, V, 0) = Δ(V) − Δ(V −

1) = Δ(0) − (V − 1)𝑝 = (V + 1)𝑝 − (V − 1)𝑝 = 2𝑝. Thus,
result (i) holds for 𝑘 = 1. Now suppose that it holds when
𝑘 ≤ ℎ; that is, Δ(ℎ, 𝑖, 𝑤) − Δ(ℎ, 𝑖, 𝑤 − 1) = 𝑝 if 𝑤 < ℎ and
Δ(ℎ, 𝑖, 𝑤) − Δ(ℎ, 𝑖, 𝑤 − 1) = 2𝑝 if 𝑤 = ℎ for 𝑖 = 1, . . . , V. We
need to show it for 𝑘 = ℎ + 1.

For each 𝑖 with 1 ≤ 𝑖 ≤ V, by the induction assumption,
SUCC(ℎ + 1, 𝑖, 𝑤) = (ℎ, 𝑖, 𝑤) for 𝑤 = 1, . . . , ℎ and SUCC(ℎ +

1, 𝑖, ℎ + 1) = (ℎ, 𝑖, ℎ) for 𝑤 = ℎ + 1 follow from the fact that
Δ(ℎ, 𝑖, 𝑤)−Δ(ℎ, 𝑖, 𝑤−1) = 𝑝 if𝑤 < ℎ andΔ(ℎ, 𝑖, 𝑤)−Δ(ℎ, 𝑖, 𝑤−

1) = 2𝑝 if 𝑤 = ℎ for 𝑖 = 1, . . . , V. Since (ℎ + 1, 𝑖, 0) = (ℎ +

1, 𝑖 − 1, ℎ + 1) if 𝑖 > 1 and (ℎ + 1, 𝑖, 0) = (ℎ, V, ℎ), along with
the induction assumption, we have that SUCC(ℎ + 1, 𝑖, 0) =

(ℎ, 𝑖 − 1, ℎ) if 𝑖 > 1 and SUCC(ℎ + 1, 𝑖, 0) = (ℎ − 1, V, ℎ − 1).
This implies that SUCC(ℎ+1, 𝑖, 𝑤), SUCC(ℎ+1, 𝑖, 𝑤+1), and
SUCC(ℎ + 1, 𝑖, 𝑤 + 2) are different from each other for 0 ≤

𝑤 ≤ ℎ−2. By (15) and the induction assumption, we have that
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Δ(ℎ+1, 𝑖, 𝑤)−Δ(ℎ+1, 𝑖, 𝑤−1) = Δ(ℎ, 𝑖, 𝑤)−Δ(ℎ, 𝑖, 𝑤−1) = 𝑝

for 𝑤 = 1, . . . , ℎ − 1. Since SUCC(ℎ + 1, 𝑖, ℎ − 1) = (ℎ, 𝑖, ℎ − 1)

and SUCC(ℎ + 1, 𝑖, ℎ) = SUCC(ℎ + 1, 𝑖, ℎ + 1) = (ℎ, 𝑖, ℎ),
Δ(ℎ + 1, 𝑖, ℎ) − Δ(ℎ + 1, 𝑖, ℎ − 1) = (ℎ + 1, 𝑖, ℎ + 1)𝑝 −Δ(ℎ, 𝑖, ℎ −

1) = [∑
ℎ

𝑡=1
𝑡V + (𝑖 − 1)(ℎ + 1) + (ℎ + 1)]𝑝 − Δ(ℎ, 𝑖, ℎ − 1)

follows from (11). By Δ(0, 0, 0) = (V + 1)𝑝, (ii) in Lemma 4
and the induction assumption, we have that Δ(ℎ, 𝑖, ℎ − 1) =

[(V + 1)𝑝] + [V(2𝑝) + V(3𝑝) + ⋅ ⋅ ⋅ + V(ℎ𝑝)] + [(𝑖 − 1)(ℎ + 1)𝑝 +

(ℎ−1)𝑝] = [∑
ℎ

𝑡=1
𝑡V]𝑝+[(𝑖−1)(ℎ+1)]𝑝+ℎ𝑝.This implies that

Δ(ℎ+1, 𝑖, ℎ)−Δ(ℎ+1, 𝑖, ℎ−1) = 𝑝. Note the fact that (ℎ+1, 𝑖, ℎ+

1)+1 = (ℎ+1, 𝑖+1, 1) if 𝑖 < V and (ℎ+1, 𝑖, ℎ+1)+1 = (ℎ+2, 1, 1)

if 𝑖 = V.We have that SUCC(ℎ+1, 𝑖, ℎ) = SUCC(ℎ+1, 𝑖, ℎ+1) =

(ℎ, 𝑖, ℎ) and SUCC[(ℎ + 1, 𝑖, ℎ + 1) + 1] = (ℎ, 𝑖, ℎ) + 1. By (19),
Δ(ℎ + 1, 𝑖, ℎ + 1) − Δ(ℎ + 1, 𝑖, ℎ) = Δ(ℎ, 𝑖, ℎ) − (ℎ + 1, 𝑖, ℎ)𝑝 =

Δ(ℎ, 𝑖, ℎ)−[∑
ℎ

𝑡=1
𝑡V+(𝑖−1)(ℎ+1)+ℎ]𝑝. ByΔ(0, 0, 0) = (V+1)𝑝,

(ii) in Lemma 4 and the induction assumption, we have that
Δ(ℎ, 𝑖, ℎ) = [(V+1)𝑝]+[V(2𝑝)+V(3𝑝)+⋅ ⋅ ⋅+V(ℎ𝑝)]+[𝑖(ℎ+1)𝑝] =

[∑
ℎ

𝑡=1
𝑡V]𝑝 + [(𝑖 − 1)(ℎ + 1)]𝑝 + (ℎ + 2)𝑝. This implies that

Δ(ℎ + 1, 𝑖, ℎ + 1) − Δ(ℎ + 1, 𝑖, ℎ) = 2𝑝. This ends the proof of
result (i).

By (ii) in Lemma 3 and result (i), order ℎ∗ satisfying with
SUCC(ℎ

∗
) = 𝑡
∗ and ℎ

∗
− 𝑡
∗

= 𝐵 must be one of the set of
{(𝑘, 𝑖, 𝑘) | 𝑘 ≥ 1, 1 ≤ 𝑖 ≤ V}. Since SUCC(𝑚 + 1, 𝑟, 𝑚 + 1) =

(𝑚, 𝑟,𝑚) and (𝑚+1, 𝑟, 𝑚+1)−(𝑚, 𝑟, 𝑚) = ∑
𝑚

𝑡=1
𝑡V+(𝑟−1)(𝑚+

1) + (𝑚 + 1) − ∑
𝑚−1

𝑡=1
𝑡V + (𝑟 − 1)𝑚 + 𝑚 = 𝑚V + 𝑟 = 𝐵, ℎ∗ =

(𝑚+1, 𝑟, 𝑚+1) holds.This ends the proof of the lemma.

In the following we give a specific solution formula to
solve the problem 1|𝑝

𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
.

Algorithm 8 (specific solution formula). Let 𝐵 = 𝑚V+𝑟.Then
for 𝑛-orders batch sizing problem,

(1) ℎ
∗

= (𝑚 + 1, 𝑟, 𝑚 + 1) = ∑
𝑚

𝑡=1
𝑡V + 𝑟(𝑚 + 1) and 𝑛 =

⌈(𝑛 − ℎ
∗
)/𝐵⌉𝐵 + (𝑑, 𝑖, 𝑤) = 𝑎𝐵 + (𝑑, 𝑖, 𝑤),

(2) the number of batches 𝑘 = 𝑎 + 𝑑,
(3) batch sizes

𝑏
𝑡

=

{
{
{
{

{
{
{
{

{

𝐵, for 𝑡 = 1, . . . , 𝑎;

(𝑑 − 𝑡 + 𝑎) V + 𝑖 − 1, for 𝑡 = 𝑎 + 1, . . . , 𝑎 + 𝑑 − 𝑤;

(𝑑 − 𝑡 + 𝑎) V + 𝑖, for 𝑡 = 𝑎 + 𝑑 − 𝑤 + 1, . . . , 𝑎 + 𝑑,

(25)

where ⌈𝑥⌉ denotes the minimal nonnegative integer
greater than or equal to rational number 𝑥.

Theorem 9. Algorithm 8 give a specific calculating formula to
solve problem 1|𝑝

𝑗
= 𝑝; 𝐵; 𝑆 − 𝑏𝑎𝑡𝑐ℎ| ∑𝐶

𝑗
with 𝑆 = V𝑝.

Proof. By (ii) in Lemma 4 and SUCC(𝑗) = 𝑗 − 𝐵 if 𝑗 ≥ ℎ
∗,

along with (𝑛−ℎ
∗
)/𝐵 ≤ ⌈(𝑛−ℎ

∗
)/𝐵⌉ < (𝑛−ℎ

∗
)/𝐵+1, we have

that 𝑛−(⌈(𝑛−ℎ
∗
)/𝐵⌉−1)𝐵 > 𝑛−((𝑛−ℎ

∗
)/𝐵+1−1)𝐵 = ℎ

∗.This
implies that 𝑏

𝑡
= 𝐵 for 𝑡 = {1, . . . , ⌈(𝑛 − ℎ

∗
)/𝐵⌉} = {1, . . . , 𝑎}

and SUCC(𝑛−(⌈(𝑛−ℎ
∗
)/𝐵⌉−1)𝐵) = 𝑛−(⌈(𝑛−ℎ

∗
)/𝐵⌉−1)𝐵−

𝐵 = 𝑛 − (⌈(𝑛 − ℎ
∗
)/𝐵⌉)𝐵 = (𝑑, 𝑖, 𝑤). By 𝑛 − (⌈(𝑛 − ℎ

∗
)/𝐵⌉)𝐵 ≤

𝑛 − ((𝑛 − ℎ
∗
)/𝐵) = ℎ

∗ and (i) in Lemma 7, we have that
SUCC(𝑑, 𝑖, 𝑤) = (𝑑−1, 𝑖, 𝑤), . . ., SUCC(𝑤+1, 𝑖, 𝑤) = (𝑤, 𝑖, 𝑤),

and SUCC(𝑤, 𝑖, 𝑤) = (𝑤 − 1, 𝑖, 𝑤 − 1), . . ., SUCC(1, 𝑖, 1) = 0.
Thus, for 𝑠 = 0, . . . , 𝑑 − 𝑤 − 1, (𝑑 − 𝑠, 𝑖, 𝑤) − (𝑑 − 𝑠 − 1, 𝑖, 𝑤) =

(𝑑 − 𝑠 − 1)V + (𝑖 − 1); that is, for 𝑡 = 𝑎 + 1, . . . , 𝑎 + 𝑑 − 𝑤,
𝑏
𝑡

= (𝑑 − 𝑡 + 𝑎)V + (𝑖 − 1) and for 𝑠 = 𝑑 − 𝑤, . . . , 𝑑 − 1,
(𝑑 − 𝑠, 𝑖, 𝑤) − (𝑑 − 𝑠 − 1, 𝑖, 𝑤 − 1) = (𝑑 − 𝑠 − 1)V + 𝑖; that is, for
𝑡 = 𝑎 + 𝑑 − 𝑤 + 1, . . . , 𝑎 + 𝑑, 𝑏

𝑡
= (𝑑 − 𝑡 + 𝑎)V + 𝑖. This ends

the proof of the theorem.

5. Results and Discussion

In this section, we will present three numerical examples to
show the effectiveness of our proposed algorithms.

Example 1. Solve byAlgorithm 2 the following instance of the
1|𝑝
𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
problem:

𝑛 := 9,

𝑝 := 2,

𝑆 := 5,

𝐵 := 5.

(26)

Solution. Let 𝐹(𝑗, 𝑖) = 𝑗[𝑆 + (𝑗 − 𝑖)𝑝] + 𝐹(𝑖). We have 𝐹(𝑗) =

min𝑗−1
𝑖=max{0,𝑗−𝐵}𝐹(𝑗, 𝑖). Set 𝐹(0) = 0.

By 𝐹(1, 0) = 1[5 + (1 − 0)2] + 𝐹(0) = 7, we have that
𝐹(1) = 7. Thus SUCC(1) = 0.

By 𝐹(2, 0) = 2[5 + (2 − 0)2] + 𝐹(0) = 18 and 𝐹(2, 1) =

2[5 + (2 − 1)2] + 𝐹(1) = 21, we have that 𝐹(2) = 18. Thus
SUCC(2) = 0.

By 𝐹(3, 0) = 33, 𝐹(3, 1) = 34, and 𝐹(3, 2) = 39, we have
that 𝐹(3) = 33. Thus SUCC(3) = 0.

By 𝐹(4, 0) = 52, 𝐹(4, 1) = 51, 𝐹(4, 2) = 54, and 𝐹(4, 3) =

61, we have that 𝐹(4) = 51. Thus SUCC(4) = 1.
By 𝐹(5, 0) = 75, 𝐹(5, 1) = 72, 𝐹(5, 2) = 73, 𝐹(5, 3) = 78,

and 𝐹(5, 4) = 86, we have that 𝐹(5) = 72. Thus SUCC(5) = 1.
By 𝐹(6, 1) = 97, 𝐹(6, 2) = 96, 𝐹(6, 3) = 99, 𝐹(6, 4) = 105,

and 𝐹(6, 5) = 114, we have that 𝐹(6) = 96. Thus SUCC(6) =

2.
By 𝐹(7, 2) = 123, 𝐹(7, 3) = 124, 𝐹(7, 4) = 128, 𝐹(7, 5) =

135, and 𝐹(7, 6) = 145, we have that 𝐹(7) = 123. Thus
SUCC(7) = 2.

By 𝐹(8, 3) = 153, 𝐹(8, 4) = 155, 𝐹(8, 5) = 160, 𝐹(8, 6) =

168, and 𝐹(8, 7) = 179, we have that 𝐹(8) = 153. Thus
SUCC(8) = 3.

By 𝐹(9, 4) = 186, 𝐹(9, 5) = 189, 𝐹(9, 6) = 195, 𝐹(9, 7) =

204, and 𝐹(9, 8) = 216, we have that 𝐹(9) = 186. Thus
SUCC(9) = 4.

We obtain the optimal solution of the problem instance:
the number of batches 𝑘 = 3; batch sizes 𝑏

1
= 5, 𝑏

2
= 3, and

𝑏
3
= 1.

Example 2. Solve by Algorithm 5 the following instance of
the 1|𝑝

𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
problem:

𝑛 := 81,

𝑝 := 2,

𝑆 := 5,

𝐵 := 5.

(27)
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Solution. By doing same calculations in Example 1, we have
that SUCC(1) = 0, SUCC(2) = 0, SUCC(3) = 0, SUCC(4) =

1, SUCC(5) = 1, SUCC(6) = 2, and SUCC(7) = 2. Noting the
fact that ℎ∗ = 7 is the minimal integer such that SUCC(ℎ

∗
) =

𝑡
∗ and ℎ

∗
− 𝑡
∗

= 𝐵, along with Algorithm 5, we obtain
the optimal solution of the problem instance: the number of
batches 𝑘 = 17; batch sizes 𝑏

𝑡
= 5 for 𝑡 = 1, . . . , 15, 𝑏

16
= 4,

and 𝑏
17

= 2.

Example 3. Solve by Algorithm 8 the following instance of
the 1|𝑝

𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
problem:

𝑛 := 2000,

𝑝 := 7,

𝑆 := 28 = 4 × 𝑝,

𝐵 := 111.

(28)

Solution. Since 𝐵 = 27 × 4 + 3, we have that ℎ∗ = (28, 3, 28) =

∑
27

𝑡=1
4𝑡 + 3 × 28 = 1596. 2000 can be written as 2000 =

⌈(2000−1596)/111⌉111+(𝑑, 𝑖, 𝑤) = 4×111+1556 = 4×111+

(27, 6, 17). By Algorithm 8, we obtain the optimal solution of
the problem instance: the number of batches 𝑘 = 31; batch
sizes 𝑏

𝑡
= 111 for 𝑡 = 1, 2, 3, 4, 𝑏

𝑡
= 4(27− 𝑡+ 4)+ 5 = 129−4𝑡

for 𝑡 = 5, . . . , 14, and 𝑏
𝑡
= 4(27 − 𝑡 + 4) + 6 = 130 − 4𝑡 for

𝑡 = 15, . . . , 31.

6. Conclusions

In this paper, we study the supply chain problem of batching
identical orders with lifespan constraints and from the same
location on a single machine. The problem is to choose the
number of batches and batch sizes to minimize the total
delivery time without violating the order lifespan. We first
give a backward dynamic programming algorithm, but it
is not an actually polynomial-time algorithm. Then, we do
further research into the recursion formula in the dynamic
programming algorithm and prove that 𝑗 − SUCC(𝑗) = 𝐵

when 𝑗 is a sufficiently large integer. Following from the prop-
erty, a constant time partial dynamic programming algorithm
is given. Further, using the difference characteristics of the
optimal value function, a specific calculating formula to solve
the problem in case 𝑆 = V𝑝 is obtained. An interesting open
question is whether there is a specific calculating formula to
solve the problem 1|𝑝

𝑗
= 𝑝; 𝐵; 𝑆 − batch| ∑𝐶

𝑗
in a general

case of 𝑆. The difference analysis technique should be able to
be used to study some other supply chain scheduling problem
with lifespan constraints.
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