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We propose a new adaptive gain robust output feedback controller for a class of the Lipschitz nonlinear systems with unknown
upper bound of uncertainty. The proposed adaptive gain robust output feedback controller is designed so as to reduce the effect
of uncertainties and Lipschitz nonlinearities. In this paper, we show that sufficient conditions for the existence of the proposed
adaptive gain robust output feedback controller are reduced to LMI conditions. Finally, the effectiveness of the proposed robust
output feedback controller is demonstrated by numerical simulations.

1. Introduction

Robustness of control systems to uncertainties has always
been the central issue in feedback control, and therefore the
problems of stability analysis and stabilization for uncertain
systems have received much attention for a long time (e.g.,
[1, 2] and references therein). In particular, there are lots
of existing results for state feedback robust control such as
quadratic stabilizing control and H∞ control (see [3, 4] and
references therein). Besides, some design methods of variable
gain robust state feedback controllers for uncertain systems
have been suggested (e.g., [5–8]). Yamamoto and Yamauchi
[5] proposed a design method of a robust controller with
the ability to adjust control performances adaptively. In [6],
an adaptive robust controller with adaptation mechanism
has been presented and the adaptive robust controller is
tuned on-line based on the information about parameter
uncertainties. Besides, we have proposed robust controllers
with adaptive compensation inputs [7, 8]. These controllers
consist of a fixed gain controller and a variable gain one, and
the variable gain controller is tuned by updating laws.

However, not all the states are measurable in practical
systems because of technical, physical, and/or economic

reasons. Therefore, the control strategies via observer-based
robust controllers (e.g., [9, 10]) or robust output feedback
one (e.g., [11–13]), which is of interest in this paper, have also
been well studied. For robust output feedback controllers,
Moheimani and Petersen [11] have presented a set of cross-
coupled algebraic Riccati equations and algebraic Lyapunov
equations. Geromel et al. [12] and Iwasaki et al. [13] adopted
linear matrix inequality (LMI) approaches to design static
output feedback controllers based on a set of the Lyapunov
inequalities coupled by the constraint that one Lyapunov
matrix is the inverse of another. Additionally the work of
Matsuoka and Hagino [14] has presented an observer-based
variable gain controller for a class of linear systems with
uncertainties of which upper bounds are unknown, and
we have also proposed an adaptive robust output feedback
controller for a class of linear systems with uncertainties [15].

By the way, in recent years, there have been increasing
attention for the problem of global stabilization of nonlinear
systems via output feedback control (e.g., [16–18]). In
the work of Mazenc et al. [16], it was presented through
counter examples that some extra growth conditions on the
unmeasurable states of the controlled system are usually
necessary for the global stabilization of nonlinear systems
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via output feedback. Additionally, finite-time method and
homogeneous domination approach for the output feedback
control problem have also been proposed (e.g., [19–21]).
Polendo and Qian [20] have suggested output feedback
controllers for a class of uncertain nonlinear systems via
homogeneous domination approach, and Li and Qian [21]
adopted the concept of finite-time stabilization so as to
design a dynamic output feedback controller for a class
of continuous but nonsmooth nonlinear systems. Besides,
some results have focused on considering a selective class
of nonlinear systems by placing some structural constraints
on the nonlinearities in order to derive output feedback
control. The nonlinear systems whose nonlinearity is in a
triangular form are considered in [22]. In the work of Choi
and Lim [23], a solution to the output feedback stabilization
problem for a class of single-input single-output Lipschitz
nonlinear systems and the nonlinearity characterization
function (NCF) concept has been presented. However, in the
existing results, the design parameters are determined by trial
and error, and uncertainties in the system dynamics have not
been considered.

From these viewpoints on the basis of our results [15, 24],
we propose a new adaptive gain robust output feedback con-
troller for a class of uncertain Lipschitz nonlinear systems.
The uncertainties and the nonlinearities under consideration
supposed to satisfy the matching condition, and the pertur-
bation region of uncertainty is bounded, but its upper bound
is unknown. Besides, the proposed adaptive gain robust
output feedback controller consists of a fixed gain controller,
a variable gain one, and an adjustable parameter tuned by
updating laws. The fixed gain controller is determined by
using the nominal system, and the variable gain controller
and the adjustable parameter are designed so as to reduce the
effect of both uncertainties and nonlinearities. In this paper,
we show that sufficient conditions for the existence of the
proposed adaptive gain robust output feedback controller are
reduced to LMI conditions.

This paper is organized as follows. In Section 2, we
introduce the class of uncertain Lipschitz nonlinear systems
under consideration. Section 3 contains the main results.
The design method of the adaptive robust output feedback
controller for the uncertain Lipschitz nonlinear systems
is presented. Finally, numerical examples are included to
illustrate the results developed in this paper.

2. Preliminaries

In this section, we show notations and useful and well-
known lemmas which are used in this paper.

In the sequel, we use the following notation. For a
matrix A, the transpose of matrix A and the inverse of
one are denoted by AT and A−1, respectively, and rank{A}
represents the rank of the matrix A. Also, He{A} and
In represent A + AT and n-dimensional identity matrix,
respectively, and vec(A) denotes the column vector of the
matrix A; that is, the operator “vec” vectorizes a matrix
by stacking its columns. The notation diag(A1, . . . , AN )
denotes a block diagonal matrix composed of matrices Ai

for i = 1, . . . ,N . For real symmetric matrices A and B,

A > B (resp., A ≥ B) means that A − B is positive
(resp., nonnegative) definite matrix. For a vector α ∈ Rn,
‖α‖ denotes standard Euclidian norm, and for a matrix A,
‖A‖ represents its induced norm. The symbols “�” and “�”
mean equality by definition and symmetric blocks in matrix
inequalities, respectively. Besides, for a symmetric matrix P ,
λmin{P } (resp., λmax{P }) represents the minimal eigenvalue
(resp. maximal eigenvalue). It is well-known that for any
symmetric matrix P ∈ Rn×n, eigenvalues of P ∈ Rn×n are
real number [25].

Furthermore, the following well-known lemmas are used
in this paper.

Lemma 1. For arbitrary vectors λ and ξ and the matrices
G and H which have appropriate dimensions, the following
relation holds:

He

{
λTGΔ(t)Hξ

}
≤ 2

∥∥∥GTλ
∥∥∥‖Δ(t)‖∥∥Hξ

∥∥

≤ 2ϑ∗
∥∥∥GTλ

∥∥∥
∥∥Hξ

∥∥,
(1)

where Δ(t) ∈ Rp×q is a time-varying unknown matrix
satisfying ‖Δ(t)‖ ≤ ϑ∗.

Proof. The above relation can be easily obtained by
Schwartz’s inequality [25].

Lemma 2 (Schur complement). For a given constant real
symmetric matrix Ξ, the following items are equivalent:

(i) Ξ =
(
Ξ11 Ξ12

ΞT12 Ξ22

)
> 0,

(ii) Ξ11 > 0 and Ξ22 − ΞT12Ξ
−1
11 Ξ12 > 0,

(iii) Ξ22 > 0 and Ξ11 − Ξ12Ξ
−1
22 Ξ

T
12 > 0.

Proof. See Boyd et al. [26].

Lemma 3 (S-procedure). Let F (x) and G(x) be two arbitrary
quadratic forms over Rn. Then F (x) < 0 for all x ∈ Rn

satisfying G(x) ≤ 0 if and only if there exists a nonnegative
scalar τ such that

F (x)− τG(x) ≤ 0 for ∀x ∈ Rn. (2)

Proof. See Boyd et al. [26].

Lemma 4 (Barbalat’s lemma). Let φ : R → R be a uniformly
continuous function on [0,∞). Suppose that limt→∞

∫ t
0 φ(τ)dτ

exists and is finite. Then

φ(t) −→ 0 as t −→ ∞. (3)

Proof. See Khalil [27].

3. Problem Formulation

Consider the uncertain Lipschitz nonlinear system described
by the following state equation:

d

dt
x(t) = (A + BΔ(t)E)x(t) + Bu(t) + δ(x, t)

y(t) = Cx(t),

(4)
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where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rl are the vectors
of the state, the control input, and the measured output,
respectively. In (4), the matrices A, B, and C are the nominal
values of system parameters, and the matrix Δ(t) ∈ Rp×q

denotes unknown time-varying parameters which satisfy

‖Δ(t)‖ ≤ ϑ∗, (5)

where the upper bound ϑ∗ is bounded, but it is unknown.
Additionally in this paper, we assume that the nonlinear term
δ(x, t) ∈ Rn in (4) is given by

δ(x, t) = Bξ(x, t), (6)

and for the function ξ : Rn × R → Rm, there exists a known
positive constant scalar χ∗ such that for all x1, x2 ∈ Rn

∥∥ξ(x1, t)− ξ(x2, t)
∥∥ ≤ χ∗‖x1 − x2‖. (7)

Note that since not all the states are measurable, the
nonlinear term δ(x, t) is unknown. Besides, we introduce the
following assumption for the system parameters [15, 24]:

BT = T C, (8)

where T ∈ Rm×l is a known constant matrix.
The nominal system, ignoring unknown parameters and

nonlinearities in (4), is given by

d

dt
x(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

(9)

and it is supposed to be stabilizable via static output feed-
back control. Namely, there exists a static output feedback
stabilizing control u(t) = Ky(t) (i.e., a fixed gain matrix
K ∈ Rm×l). In other words since the nominal system of (9)
is stabilizable via static output feedback control, the matrix
AK � A+BKC is asymptotically stable. Note that the output
feedback gain matrix K ∈ Rm×l is designed by using the
existing results (e.g., [28, 29]). Besides, in this paper, we
consider the following target model so as to generate the
desirable trajectory:

d

dt
xt(t) = Axt(t) + But(t) + δ(xt, t),

yt(t) = Cxt(t).

(10)

In order to generate the desirable trajectory for the uncertain
system of (4), we select the control input for the target model
such as ut(t) = KLQxt(t) − ξ(xt, t) where KLQ ∈ Rm×n is
determined by adopting the standard LQ problem. Namely,
by using the solution of the algebraic Riccati equation
He{ATXt} −XtBR−1

t BTXt + Qt = 0, the gain matrix KLQ

is determined as KLQ = −R−1
t BTXt . Of course, some other

design methods can also be utilized. Note that the target
model with the control input ut(t) = KLQxt(t)− ξ(xt, t) can
be written as the following form:

d

dt
xt(t) = (A + BKLQ)xt(t),

yt(t) = Cxt(t).

(11)

Now on the basis of the works of Oya and Hagino ([15,
24]), by introducing the error vectors e(t) � x(t)− xt(t) and
ey(t) � y(t)− yt(t), we consider the following control input
for the uncertain Lipschitz nonlinear system of (4):

u(t) � Key(t) + KLQxt(t)− ξ(xt, t) + ψ
(
ey , xt, θ̂, t

)
. (12)

In (12), ψ(ey , xt, θ̂, t) ∈ Rm is an adaptive compensation

input where θ̂(t) ∈ R1 is an adjustable parameter. Then
one can see from (4), (6), and (10)–(12) that the following
uncertain error system with nonlinear terms can be derived:

d

dt
e(t) = AKe(t) + BΔ(t)Ex(t)

+ B(ξ(x, t)− ξ(xt, t)) + Bψ
(
ey , xt, θ̂, t

)
,

ey(t) = Ce(t).

(13)

From the above, our control objective is to design
the adaptive gain robust output feedback controller which
achieves not only robust stability for the uncertain Lipschitz
nonlinear system of (4) but also satisfactory transient behav-
ior as closely as possible to desired trajectory generated by
the target model. That is to derive the adaptive compensation

input ψ(ey , xt, θ̂, t) ∈ Rm which stabilizes the uncertain
nonlinear error system of (13).

4. Main Results

In this section, we show an LMI-based design method of
the adaptive gain robust output feedback controller for the
uncertain Lipschitz nonlinear system of (4). The following
theorem gives an LMI-based design method of an adaptive
gain robust output feedback controller.

Theorem 5. Consider the uncertain nonlinear error system of

(13) with the adaptive compensation input ψ(ey , xt, θ̂, t) ∈
Rm.

If there exist symmetric positive definite matrices S ∈
Rn×n, Ξ ∈ Rl×l, and Ψ ∈ Rl×l and the positive scalars γ1, γ2,
and ε satisfying the LMIs:

He{SAK} + γ1E
TE + ε

(
χ∗
)2
In ≤ −Q,

CTΞC −He

{
SCTT TT C

}
≤ 0,

⎛
⎜⎝
−CTΨγC SCTT SCTT
� −γ1Im 0
� � −γ2Im

⎞
⎟⎠ ≤ 0,

(
−CTΨεC SCTT T

� −εIm

)
≤ 0,

(14)

then by using the solution of the LMIs of (14), we consider the
adaptive compensation input

ψ
(
ey , xt, θ̂, t

)
� − 1

‖Ξ1/2Ce(t)‖2ω
(
ey , xt, θ̂, t

)
T ey(t), (15)
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where ω(ey , xt, θ̂, t) is the positive scalar function given by

ω
(
ey , xt, θ̂, t

)
�

∥∥∥Ψ1/2
γ ey(t)

∥∥∥4
θ̂2(t)

∥∥∥Ψ1/2
γ ey(t)

∥∥∥2
θ̂(t) + σ(t)

+

∥∥∥Ψ1/2
ε ey(t)

∥∥∥4

∥∥∥Ψ1/2
ε ey(t)

∥∥∥2
+ σ(t)

+
γ2

2‖Ext(t)‖4

γ2‖Ext(t)‖2 + σ(t)
.

(16)

Besides, we introduce the following updating law for the adjust-

able parameter θ̂(t) ∈ R1:

d

dt
θ̂(t) � − 1

2ϑ

{
σ(t)

(
θ̂(t)− ϑ∗

)

−
∥∥∥Ψ1/2

γ ey(t)
∥∥∥2

+ σ(t)ϑ∗
}

(
= − 1

2ϑ

(
σ(t)−

∥∥∥Ψ1/2
γ ey(t)

∥∥∥2
))
.

(17)

Hereby asymptotical stability of the uncertain nonlinear error
system of (13) is guaranteed. In (14), Q ∈ Rn×n is a symmetric
positive definite matrix selected by designers, and σ(t) ∈ R1 in
(16) is any positive uniform continuous and bounded function
which satisfies

∫ t
t0
σ(τ)dτ ≤ σ∗ <∞, (18)

where t0 and σ∗ are an initial time and any positive constant,
respectively.

Proof of Theorem 5. Firstly, we introduce the quadratic func-
tion

V
(
e, θ̂, t

)
� eT(t)Se(t) + ϑ

(
θ̂(t)− ϑ∗

)2
. (19)

The time derivative of the quadratic function V(e, θ̂, t) can
be written as

d

dt
V
(
e, θ̂, t

)
= eT(t)[He{SAK}]e(t)

+He

{
eT(t)SBΔ(t)Ex(t)

+eT(t)SBψ
(
ey , xt, θ̂, t

)}

+He

{
eT(t)SB(ξ(x, t)− ξ(xt, t))

}

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t).

(20)

Now, using Lemma 1 and the assumptions of (6) and (7), we
can obtain the following relation for the time derivative of

the quadratic function V(e, θ̂, t):

d

dt
V
(
e, θ̂, t

)
≤ eT(t)[He{SAK}]e(t)

+He

{
eT(t)SBΔ(t)Ex(t)

+eT(t)SBψ
(
ey , xt, θ̂, t

)}

+ 2χ∗
∥∥∥BTSe(t)

∥∥∥
∥∥ξ(x, t)− ξ(xt, t)

∥∥

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t)

≤ eT(t)[He{SAK}]e(t)

+He

{
eT(t)SBΔ(t)Ee(t)

+ eT(t)SBΔ(t)Ext(t)

+eT(t)SBψ
(
ey , xt, θ̂, t

)}

+ 2χ∗
∥∥∥BTSe(t)

∥∥∥‖e(t)‖

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t).

(21)

Notice the fact that, for any positive constant μ and any
vectors a and b with appropriate dimensions,

2aTb ≤ μaTa +
1
μ
bTb. (22)

Then some algebraic manipulations yield

d

dt
V
(
e, θ̂, t

)
≤ eT(t)

[
He{SAK} + γ1E

TE + ε
(
χ∗
)2
In

]
e(t)

+He

{
eT(t)SCTT Tψ

(
ey , xt, θ̂, t

)}

+ γ2x
T
t (t)ETExt(t)

+ ϑ∗
(

1
γ1
eT(t)SCTT TT CSe(t)

+
1
γ2
eT(t)SCTT TT CSe(t)

)

+
1
ε
eT(t)SCTT TT CSe(t)

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t).

(23)
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Besides, we obtain the following inequality for the time

derivative of the quadratic function V(e, θ̂, t),

d

dt
V
(
e, θ̂, t

)
≤ eT(t)

[
He{SAK} + γ1E

TE + ε
(
χ∗
)2
In

]
e(t)

+He

{
eT(t)SCTT Tψ

(
ey , xt, θ̂, t

)}

+ ϑ∗eT(t)CTΨγCe(t) + eT(t)CTΨεCe(t)

+ γ2x
T
t (t)ETExt(t) + 2ϑ

(
θ̂(t)− ϑ∗

) d
dt
θ̂(t),

(24)

because, by using Lemma 2 (Schur complement), one can see
that the third LMI of (14) can be written as

−CTΨγC +
1
γ1

SCTT TT CS +
1
γ2

SCTT TT CS ≤ 0, (25)

and fourth LMI of (14) is equivalent to the following matrix
inequality:

−CTΨεC +
1
ε
SCTT TT CS ≤ 0. (26)

Using the first LMI and the second one of LMIs of (14) and
introducing the adaptive compensation input of (15) and
(16) and the updating law of (17), we have

d

dt
V
(
e, θ̂, t

)
≤ − eT(t)Qe(t) + ϑ∗eT(t)CTΨγCe(t)

+ eT(t)CTΨεCe(t) + γ2x
T
t (t)ETExt(t)

+He

{
eT(t)SCTT T ×

(
− 1

‖Ξ1/2Ce(t)‖2

×ω
(
ey , xt, θ̂, t

)
T ey(t)

)}

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t)

= − eT(t)Qe(t) +
∥∥∥Ψ1/2

γ ey(t)
∥∥∥2
θ̂(t)

− σ(t)
(
θ̂(t)− ϑ∗

)2 − σ(t)ϑ∗
(
θ̂(t)− ϑ∗

)

−
∥∥∥Ψ1/2

γ ey(t)
∥∥∥4
θ̂2(t)

∥∥∥Ψ1/2
γ ey(t)

∥∥∥2
θ̂(t) + σ(t)

+

∥∥∥Ψ1/2
ε ey(t)

∥∥∥2

∥∥∥Ψ1/2
ε ey(t)

∥∥∥2
+ σ(t)

σ(t)

+
γ2‖Ext(t)‖2

γ2‖Ext(t)‖2 + σ(t)
σ(t).

(27)

In addition, utilizing the well-known inequality for any posi-
tive constants α and β,

0 ≤ αβ

α + β
≤ α ∀α,β > 0, (28)

and some trivial manipulations give the relation

d

dt
V
(
e, θ̂, t

)
≤ − eT(t)Qe(t) + 3σ(t)− σ(t)

(
θ̂(t)− ϑ∗

)2

− σ(t)ϑ∗
(
θ̂(t)− ϑ∗

)
.

(29)

Namely, we have the following inequality:

d

dt
V
(
e, θ̂, t

)
≤ −eT(t)Qe(t) + ϕσ(t). (30)

Here we have used the well-known inequality of (22), and ϕ
in (30) is a positive constant given by ϕ � 3+(ϑ∗)2. By letting
ζ∗ � min{λmin{Q}}, one can see that the inequality of (30)
can be rewritten as

d

dt
V
(
e, θ̂, t

)
≤ −ζ∗‖e(t)‖2 + ϕσ(t). (31)

On the other hand, letting eθ̂(t) = (eT(t) θ̂(t))
T

, we see

from the definition of the quadratic function V(e, θ̂, t) that
there always exist two positive constants δmin and δmax such
that, for any t ≥ t0,

ξ−
(∥∥∥eθ̂(t)

∥∥∥
)
≤ V

(
e, θ̂, t

)
≤ ξ+

(∥∥∥eθ̂(t)
∥∥∥
)

, (32)

where ξ−(‖eθ̂(t)‖) and ξ+(‖eθ̂(t)‖) are given by

ξ−
(∥∥∥eθ̂(t)

∥∥∥
)

� δmin

∥∥∥eθ̂(t)
∥∥∥2

,

ξ+
(∥∥∥eθ̂(t)

∥∥∥
)

� δmax

∥∥∥eθ̂(t)
∥∥∥2
.

(33)

It is obvious that any solution e(t; t0, e(t0)) of the
uncertain nonlinear error system of (13) is continuous. In
addition, it follows from (31) and (32) that, for any t ≥ t0, the

relations of 0 ≤ ξ−(‖eθ̂(t)‖) ≤ V(e, θ̂, t) and the following
inequality holds:

V
(
e, θ̂, t

)
= V

(
e, θ̂, t0

)
+
∫ t
t0

d

dt
V
(
e, θ̂, τ

)
dτ

≤ ξ+
(∥∥∥eθ̂(t0)

∥∥∥
)
−
∫ t
t0
ξ∗(‖e(τ)‖)dτ

+ ϕ
∫ t
t0
σ(τ)dτ.

(34)

In (34), ξ∗(‖e(t)‖) is defined as

ξ∗(‖e(t)‖) � ζ∗‖e(t)‖2. (35)

Therefore, from (34) we can obtain the following two
results. Firstly, taking the limit as t approaches infinity on
both sides of the inequality of (34), we have the inequality

0 ≤ ξ+
(∥∥∥eθ̂(t0)

∥∥∥
)
− lim

t→∞

∫ t
t0
ξ∗(‖e(τ)‖)dτ

+ ϕ lim
t→∞

∫ t
t0
σ(τ)dτ.

(36)
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Thus one can see from (18) and (36) that

lim
t→∞

∫ t
t0
ξ∗(‖e(τ)‖)dτ ≤ ξ+

(∥∥∥eθ̂(t0)
∥∥∥
)

+ ϕσ∗. (37)

On the other hand, from (34), we obtain

0 ≤ ξ−
(∥∥∥eθ̂(t)

∥∥∥
)
≤ ξ+

(∥∥∥eθ̂(t0)
∥∥∥
)

+ ϕ
∫ t
t0
σ(τ)dτ. (38)

It follows from (18) and (38) that

0 ≤ ξ−
(∥∥∥eθ̂(t)

∥∥∥
)
≤ ξ+

(∥∥∥eθ̂(t0)
∥∥∥
)

+ ϕσ∗. (39)

The relation of (39) implies that e(t) is uniformly
bounded. Since e(t) has been shown to be continuous, it
follows that e(t) is uniformly continuous. Therefore, one
can see that ξ∗(‖e(t)‖) is also uniformly continuous. Thus
applying Lemma 4 (Barbalat’s lemma) to (37) yields

lim
t→∞ξ

∗(‖e(t)‖) = lim
t→∞ζ

∗‖e(t)‖ = 0. (40)

Namely, asymptotical stability of the uncertain nonlinear
error system of (13) is ensured. Thus the uncertain Lipschitz
nonlinear system of (4) is also stable.

It follows that the result of the theorem is true. Thus the
proof of Theorem 5 is completed.

Theorem 5 provides a sufficient condition for the exis-
tence of an adaptive gain robust output feedback controller
for uncertain Lipschitz nonlinear system of (4). Next, we
consider a special case. In this case, we deal with the
uncertain Lipschitz nonlinear system described by

d

dt
x(t) = (A + BΔ(t)C)x(t) + Bu(t) + δB(x, t),

y(t) = Cx(t).

(41)

In (41) the nonlinear term δB(x, t) ∈ Rn satisfies

δB(x, t) = S−1CTξ(x, t), (42)

where the matrix S ∈ Rn×n is symmetric positive definite
and it is a solution of the following LMIs:

He{SAK} + ε
(
χ∗
)2
In ≤ −Q,

CTΞC −He

{
SCTT TT C

}
≤ 0,

(
−CTΨγC SCTT
� −γIm

)
≤ 0.

(43)

In (43), Q ∈ Rn×n is a symmetric positive definite matrix
selected by designers. Thus one can see from (6), (10)–(12),
(42), and (43) that we have

d

dt
e(t) = AKe(t) + BΔ(t)Cx(t)

+ S−1CT(ξ(x, t)− ξ(xt, t)) + Bψ
(
ey , xt, θ̂, t

)
,

ey(t) = Ce(t).
(44)

Next theorem gives an LMI-based design method of an
adaptive gain robust output feedback controller for this case.

Theorem 6. Consider the uncertain nonlinear error system of

(44) with the adaptive compensation input ψ(ey , xt, θ̂, t) ∈
Rm.

If there exist symmetric positive definite matrices S ∈
Rn×n, Ψ ∈ Rl×l, and Ξ ∈ Rl×l and the positive scalars γ and
ε satisfying the LMIs of (43), then by using the solution of the
LMIs of (43), one considers the adaptive compensation input

ψ(ey , xt, θ̂, t) ∈ Rm described as

ψ
(
ey , xt, θ̂, t

)
� − 1

‖Ξ1/2Ce(t)‖2ωB
(
ey , xt, θ̂, t

)
T ey(t),

(45)

ωB
(
ey , xt, θ̂, t

)
�

∥∥∥Ψ1/2
γ ey(t)

∥∥∥4
θ̂2(t)

∥∥∥Ψ1/2
γ ey(t)

∥∥∥2
θ̂(t) + σ(t)

+
γ2
∥∥y(t)

∥∥4

γ
∥∥y(t)

∥∥2 + σ(t)

+

∥∥∥(ε−1
)
ey(t)

∥∥∥4

∥∥∥(ε−1)ey(t)
∥∥∥2

+ σ(t)
,

(46)

and the updating law of (17) for the adjustable parameter

θ̂(t) ∈ R1. Hereby asymptotical stability of the uncertain error
system with nonlinear terms of (4) is guaranteed. In (46),
σ(t) ∈ R1 is any positive uniform continuous and bounded
function satisfying (18).

Proof of Theorem 6. By using the symmetric positive definite
matrix S ∈ Rn×n, we consider the quadratic function

V(e, θ̂, t) of (19). Then using the assumptions of (6) and (42)
we have

d

dt
V
(
e, θ̂, t

)
= eT(t)[He{SAK}]e(t)

+He

{
eT(t)SCTT TΔ(t)Cx(t)

+eT(t)SCTT Tψ
(
ey , xt, θ̂, t

)}

+He

{
eT(t)CT(ξ(x, t)− ξ(xt, t))

}

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t)

≤ eT(t)[He{SAK}]e(t)

+He

{
eT(t)SCTT TΔ(t)Cx(t)

}

+ 2χ∗‖Ce(t)‖‖e(t)‖

+He

{
eT(t)SCTT Tψ

(
ey , xt, θ̂, t

)}

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t).

(47)

In addition, applying the well-known inequality of (22) to
the second term and the third one on the right-hand side of
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(47), we obtain the following relation for the time derivative

of the quadratic function V(e, θ̂, t):

d

dt
V
(
e, θ̂, t

)
≤ eT(t)

[
He{SAK} + ε

(
χ∗
)2
In

]
e(t)

+
ϑ∗

γ
eT(t)SCTT TT CSe(t)

+ γyT(t)y(t) +
1
ε
eTy (t)ey(t)

+He

{
eT(t)SCTT Tψ

(
ey , xt, θ̂, t

)}

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t).

(48)

Now, one can see from (17), (43), (45), and (46) that if
the following inequality holds, then the condition of (48) is
also satisfied

d

dt
V
(
e, θ̂, t

)
≤ − eT(t)Qe(t) +

ϑ∗

γ
eT(t)CTΨγCe(t)

+ γyT(t)y(t) +
1
ε
eTy (t)ey(t)

+He

{
eT(t)SCTT Tψ

(
ey , xt, θ̂, t

)}

+ 2ϑ
(
θ̂(t)− ϑ∗

) d
dt
θ̂(t)

≤ − eT(t)Qe(t) +
∥∥∥Ψ1/2

γ ey(t)
∥∥∥2
θ̂(t)

− σ(t)
(
θ̂(t)− ϑ∗

)2 − σ(t)ϑ
(
θ̂(t)− ϑ∗

)

−
∥∥∥Ψ1/2

γ ey(t)
∥∥∥4
θ̂2(t)

∥∥∥Ψ1/2
γ ey(t)

∥∥∥2
θ̂(t) + σ(t)

+
γ
∥∥y(t)

∥∥2

γ
∥∥y(t)

∥∥2 + σ(t)
σ(t)

+

∥∥∥(ε−1
)
ey(t)

∥∥∥2

∥∥∥(ε−1)ey(t)
∥∥∥2

+ σ(t)
σ(t).

(49)

Besides, from (49) we obtain the inequality of (30). There-
fore, one can see from Proof of Theorem 5 that the rest of
proof of Theorem 6 is straightforward.

Remark 7. The proposed control scheme is adaptable when
some assumptions are satisfied, and in cases where only the
output signal of the system is available, the proposed scheme
can be used widely. In addition, the proposed controller is
more effective for systems with large uncertainties and Lips-

chitz constants. Note that the adjustable parameter θ̂(t) ∈ R1

is not an estimate of the unknown bound ϑ∗.

5. Numerical Examples

In order to demonstrate the efficiency of the proposed
control scheme, we have run a simple example. The control
problem considered here is not necessary practical. However,
the simulation results stated below illustrate the distinct
feature of the proposed output feedback controller.

Consider the uncertain Lipschitz nonlinear system
described by the following state equation

d

dt
x(t) =

⎛
⎜⎝
−2.0 0.0 −6.0
0.0 1.0 1.0
3.0 0.0 −7.0

⎞
⎟⎠x(t)

+

⎛
⎜⎝

2.0
1.0
0.0

⎞
⎟⎠Δ(t)

(
1.0 0.0 1.0
0.0 3.0 1.0

)
x(t)

+

⎛
⎜⎝

2.0
1.0
0.0

⎞
⎟⎠u(t) +

⎛
⎜⎝

2.0
1.0
0.0

⎞
⎟⎠ξ(x, t),

y(t) =
(

1.0 0.0 0.0
0.0 1.0 0.0

)
x(t),

(50)

that is, T = (2.0 1.0). In this example we assume that
the function ξ(x, t) and the positive scalar χ∗ ∈ R1 in (5)
are given by ξ(x, t) = √

3.0 × sin(x2(t)) and χ∗ = √
3.0,

respectively.
Firstly by adopting the similar way to the standard

linear quadratic control problem, we consider designing the
fixed gain matrix KLQ ∈ R2×3. Thus selecting the design
parameters Qt ∈ R3×3 and Rt ∈ R1 such that Qt = 1.0× I3
and Rt = 1.0 × 101, respectively, and solving the algebraic
Riccati equation He{ATXt} −XtBR−1

t BTXt + Qt = 0, we
obtain

Xt=
⎛
⎜⎝

2.23662× 10−1 1.04459 1.95383× 10−2

� 1.6170145× 101 1.25624
� � 2.22160× 10−1

⎞
⎟⎠,

(51)

KLQ =
(
−1.49191× 10−1 −1.82593 −1.29532× 10−1

)
.

(52)

Next we design an output feedback gain matrix K ∈
R1×2 by using the the nominal system of (9). We select
the design parameter α ∈ R1 such as α = 5.0, then by
applying the LMI-based design algorithm (see [29] and the
Appendix section in [15]), we obtain the following solutions
for LMI problems in Appendix in [15] and the following gain
matrices, respectively:

X =
⎛
⎜⎝

1.26046× 103 1.25379× 102 3.19323× 102

� 8.97329× 101 −1.13357× 102

� � 5.45874× 102

⎞
⎟⎠,

Y =
(
1.02905× 103 −5.78548× 102 −4.11077× 102

)
,
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P =
⎛
⎜⎝

1.34029× 101 −4.46413× 101 −2.31136
� 1.74644× 102 4.12700
� � 1.03904

⎞
⎟⎠,

ρ = 4.38355× 104,

(53)

Ksf =
(

2.18703 −1.63634× 101 −5.43048
)

,

K =
(

3.17745× 10−1 −1.20809× 101
)
.

(54)

Now, we use Theorem 5 to design the proposed adaptive
gain robust output feedback controller; that is, we solve the
LMIs of (14). By selecting the symmetric positive definite
matrix Q ∈ R3×3 such as Q = 0.1× I3, we have

S =
⎛
⎜⎝

1.67330 −1.49618 −6.50900× 10−3

� 4.17725 1.48476× 10−1

� � 6.58185

⎞
⎟⎠,

Ξ =
(

4.30003 2.32356
� 2.04206

)
,

Ψγ =
(

1.07015 8.119016× 10−1

� 1.00293

)
,

Ψε =
(

9.56125 7.12983
� 9.13154

)
,

γ1 = 7.14302, γ2 = 7.57592,

ε = 9.55061.

(55)

In this example, we consider the following two cases for
the unknown parameter Δ(t) ∈ R1×2 and its unknown upper
bound ϑ∗ in (5):

Case (1):

ϑ∗ = 5.0,

Δ(t) = ϑ∗ ×
(

8.113249 −5.56040
)
× 10−1.

(56)

Case (2):

ϑ∗ = 5.0× 10−1,

Δ(t) = ϑ∗ ×
(

sin(10πt) cos(10πt)
)
.

(57)

Furthermore, initial values for the uncertain system of
(50), its target model, and the adjustable parameter

θ̂(t) are selected as x(0) = (1.5 2.0 − 4.5)T , xt(0) =
(2.0 2.0 − 5.0)T , and θ̂(0) = 1.0, respectively. Besides, we
choose σ(t) ∈ R+ in (16) and the design parameter ϑ ∈ R1

in (17) such as σ(t) = 5.0 × 104 × exp(−1.0 × 10−4t) and
ϑ = 2.5× 103, respectively.

The results of the simulation of this example are depicted
in Figures 1, 2, 3, 4, and 5. In these figures, the time histories
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Figure 1: Time histories of the state variable x1(t).

43210

Time

St
at

e

Case 1
Case 2

Desired

2

1.5

1

0.5

0

−0.5

Figure 2: Time histories of the state variable x2(t).

of the state variables x1(t), x2(t), and x3(t), the control input
u(t), and the adjustable parameter θ(t) ∈ R1 are shown.
“Desired” in these figures represents the trajectories for the
state variables and the control input generated by the target
model; that is, “Desired” for state variables shows a desirable
response for the uncertain nonlinear systems.

From Figures 1, 2, 3, and 4, we find that the proposed
adaptive gain robust output feedback controller stabilizes
the controlled system of (50) in spite of plant uncertainties
and nonlinearities. Besides, one can see that the proposed
adaptive gain robust output feedback controller achieves
good transient performance and the proposed control input
is tuned by the measurable signals and the adjustable
parameter. In particular the time responses of the uncertain
nonlinear system of (50) for Case (2) close to the trajectory
of the target model and the control input also achieves
satisfactory trajectory. This result shows that the proposed
adaptive robust output feedback controller reflects the effect
of uncertainties and nonlinearities as online information.
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Furthermore, we can see from Figure 5 that the parameter

θ̂(t) is tuned by the updating law and is not an estimate of
the upper bound ϑ∗.

6. Conclusions

In this paper, we have proposed an adaptive gain robust
output feedback controller for a class of uncertain Lipschitz
nonlinear system of which upper bounds are unknown. For
the uncertain Lipschitz nonlinear system, we have shown that
the proposed adaptive gain robust output feedback controller
can be obtained by solving LMIs. Besides, by numerical
simulations, the effectiveness of the proposed adaptive robust
controller has been presented. One can see that the crucial
difference between the existing results [24] and our new
one is that information is not required on the upper bound
of the unknown parameter Δ(t) in the system matrix. The
proposed controller design method is adaptable when some
assumptions are satisfied and in cases where only the output
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Figure 5: Time histories of the adjustable parameter θ̂(t).

signal of the system is available. Namely, if for uncertain
Lipschitz nonlinear systems which satisfy the assumptions
for the system parameters, the LMIs of (14) are feasible, then
the proposed adaptive gain robust output feedback controller
is applicable.

The future research subjects are extension of the pro-
posed adaptive gain robust output feedback controller
synthesis to such a broad class of systems as uncertain
time-delay systems and uncertain large-scale interconnected
systems. Furthermore in future work, we will examine the
assumption of (7).
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