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In this paper, we study a general second-order m-point boundary value problem for nonlinear
singular dynamic equation on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+λq(t)f(t, u(t)) = 0, t ∈ (0, 1)

T
,

u(ρ(0)) = 0, u(σ(1)) =
∑m−2

i=1 αiu(ηi). This paper shows the existence of multiple positive solutions
if f is semipositone and superlinear. The arguments are based upon fixed-point theorems in a cone.

1. Introduction

In this paper, we consider the following dynamic equation on time scales:

uΔ∇(t) + a(t)uΔ(t) + b(t)u(t) + λq(t)f(t, u(t)) = 0, t ∈ (0, 1)
T
,

u
(
ρ(0)

)
= 0, u(σ(1)) =

m−2∑

i=1

αiu
(
ηi
)
,

(1.1)

where αi ≥ 0, 0 < ηi < ηi+1 < 1; for all i = 1, 2, . . . , m − 2; f, q, a and b satisfy

(C1) q ∈ L is continuously and nonnegative function and there exists t0 ∈ (ρ(0), σ(1)) s.t.
q(t0) > 0, q(t)may be singular at t = ρ(0), σ(1);

(C2) a ∈ C([0, 1], [0,+∞)), b ∈ C([0, 1], (−∞, 0]).

In the past few years, the boundary value problems of dynamic equations on time
scales have been studied by many authors (see [1–15] and references therein). Recently,
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multiple-point boundary value problems on time scale have been studied, for instance, see
[1–9].

In 2008, Lin and Du [2] studied them-point boundary value problem for second-order
dynamic equations on time scales:

uΔ∇(t) + f(t, u) = 0, t ∈ (0, T) ∈ T,

u(0) = 0, u(T) =
m−2∑

i=1

kiu(ξi),
(1.2)

where T is a time scale. This paper deals with the existence of multiple positive solutions for
second-order dynamic equations on time scales. By using Green’s function and the Leggett-
Williams fixed point theorem in an appropriate cone, the existence of at least three positive
solutions of the problem is obtained.

In 2009, Topal and Yantir [1] studied the general second-order nonlinear m-point
boundary value problems (1.1) with no singularities and the case. The authors deal with the
determining the value of λ; the existences of multiple positive solutions of (1.1) are obtained
by using the Krasnosel’skii and Legget-William fixed point theorems.

Motivated by the abovementioned results, we continue to study the general second-
order nonlinear m-point boundary value problem (1.1), but the nonlinear term may be
singularity and semipositone.

In this paper, the nonlinear term f of (1.1) is suit to and semipositone and the
superlinear case, we will prove our two existence results for problem (1.1) by using
Krasnosel’skii fixed point theorem. This paper is organized as follows. In Section 2, starting
with some preliminary lemmas, we state the Krasnosel’skii fixed point theorem. In Section 3,
we give the main result which state the sufficient conditions for the m-point boundary value
problem (1.1) to have existence of positive solutions.

2. Preliminaries

In this section, we state the preliminary information that we need to prove the main results.
From Lemmas 2.1 and 2.3 in [1], we have the following lemma.

Lemma 2.1 (see [1]). Assuming that (C2) holds. Then the equations

φΔ∇
1 (t) + a(t)φΔ

1 (t) + b(t)φ1(t) = 0, t ∈ (0, 1)
T
,

φ1
(
ρ(0)

)
= 0, φ1(σ(1)) = 1,

(2.1)

φΔ∇
2 (t) + a(t)φΔ

2 (t) + b(t)φ2(t) = 0, t ∈ (0, 1)
T
,

φ2
(
ρ(0)

)
= 1, φ2(σ(1)) = 0

(2.2)

have unique solutions φ1 and φ2, respectively, and

(a) φ1 is strictly increasing on [ρ(0), σ(1)],

(b) φ2 is strictly decreasing on [ρ(0), σ(1)].
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For the rest of the paper we need the following assumption:

(C3) 0 <
∑m−2

i=1 αiφ1(ηi) < 1.

Lemma 2.2 (see [1]). Assuming that (C2) and (C3) hold. Let y ∈ C[ρ(0), σ(1)]. Then boundary
value problem

xΔ∇(t) + a(t)xΔ(t) + b(t)x(t) + y(t) = 0, t ∈ (0, 1)
T
,

x
(
ρ(0)

)
= 0, x(σ(1)) =

m−2∑

i=1

αix
(
ηi
) (2.3)

is equivalent to integral equation

x(t) =
∫σ(1)

ρ(0)
H(t, s)p(s)y(s)∇s +Aφ1(t), (2.4)

where

p(t) = ea
(
ρ(t), ρ(0)

)
, A =

1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αi

∫σ(1)

ρ(0)
H
(
ηi, s

)
p(s)y(s)∇s, (2.5)

H(t, s) =
1

φΔ
1

(
ρ(0)

)

⎧
⎨

⎩

φ1(s)φ2(t), s ≤ t,

φ1(t)φ2(s), t ≤ s.
(2.6)

Proof. First we show that the unique solution of (2.3) can be represented by (2.4). From
Lemma 2.1, we know that the homogenous part of (2.3) has two linearly independent
solution φ1 and φ2 since

∣
∣
∣
∣
∣
∣

φ1
(
ρ(0)

)
φΔ
1

(
ρ(0)

)

φ2
(
ρ(0)

)
φΔ
2

(
ρ(0)

)

∣
∣
∣
∣
∣
∣
= −φΔ

1

(
ρ(0)

)
/= 0. (2.7)

Now by the method of variations of constants, we can obtain the unique solution of
(2.3)which can be represented by (2.4)where A andH are as in (2.5) and (2.6), respectively.
Next we check the function defined in (2.4) is the solution of the boundary value problem
(2.3). For this purpose we first show that (2.4) satisfies (2.3). From the definition of Green’s
function (2.6), we get

x(t) =
1

φΔ
1

(
ρ(0)

)

(∫ t

ρ(0)
φ1(s)φ2(t)p(s)y(s)∇s +

∫σ(1)

t

φ1(t)φ2(s)p(s)y(s)∇s

)

+Aφ1(t).

(2.8)
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Hence, the derivatives xΔ and xΔ∇ are as follows:

xΔ(t) =
1

φΔ
1

(
ρ(0)

)

(

φΔ
2 (t)

∫ t

ρ(0)
φ1(s)p(s)y(s)∇s + φΔ

1 (t)
∫σ(1)

t

φ2(s)p(s)y(s)∇s

)

+AφΔ
1 (t),

xΔ∇(t) =
1

φΔ
1

(
ρ(0)

)

(

φΔ∇
2 (t)

∫ρ(t)

ρ(0)
φ1(s)p(s)y(s)∇s + φΔ

2 (t)φ1(t)p(t)y(t)

+φΔ∇
1 (t)

∫σ(1)

ρ(t)
φ2(s)p(s)y(s)∇s + φΔ

1 (t)φ2(t)p(t)y(t)

)

+AφΔ∇
1 (t).

(2.9)

Replacing the derivatives in (2.3), we deduce that

xΔ∇(t) + a(t)xΔ(t) + b(t)x(t)

= A
(
φΔ∇
1 (t) + a(t)φΔ

1 (t) + b(t)φ1(t)
)

+

(
1

φΔ
1

(
ρ(0)

)

∫ t

ρ(0)
φ1(s)p(s)y(s)∇s

)
(
φΔ∇
2 (t) + a(t)φΔ

2 (t) + b(t)φ2(t)
)

+

(
1

φΔ
1

(
ρ(0)

)

∫σ(1)

t

φ2(s)p(s)y(s)∇s

)
(
φΔ∇
1 (t) + a(t)φΔ

1 (t) + b(t)φ1(t)
)

+
1

φΔ
1

(
ρ(0)

)

(

φΔ∇
2 (t)

∫ρ(t)

t

φ1(s)p(s)y(s)∇s + φΔ∇
1 (t)

∫ t

ρ(t)
φ2(s)p(s)y(s)∇s

)

+
1

φΔ
1

(
ρ(0)

)
(
φΔ
2 (t)φ1(t) − φΔ

1 (t)φ2(t)
)
p(t)y(t)

=
1

φΔ
1

(
ρ(0)

)
(
φΔ∇
2 (t)

(
ρ(t) − t

)
φ1(t)p(t)y(t) − φΔ∇

1 (t)φ2(t)p(t)y(t)

+φΔ
2 (t)φ1(t)p(t)y(t) − φΔ

1 (t)φ2(t)p(t)y(t)
)

=
1

φΔ
1

(
ρ(0)

)p(t)y(t)
(
φΔ
2 (t)φ1(t) − φΔ

1 (t)φ2(t)
)

+
1

φΔ
1

(
ρ(0)

)p(t)y(t)
(
ρ(t) − t

)(
φΔ∇
2 (t)φ1(t) − φΔ∇

1 (t)φ2(t)
)

=
1

φΔ
1

(
ρ(0)

)p(t)y(t)
{(

φΔ
2 (t)φ1(t) − φΔ

1 (t)φ2(t)
)
+
(
ρ(t) − t

)(
φΔ
2 (t)φ1(t) − φΔ

1 (t)φ2(t)
)∇}

=
1

φΔ
1

(
ρ(0)

)p(t)y(t)
(
φΔ
2
(
ρ(t)

)
φ1
(
ρ(t)

) − φΔ
1

(
ρ(t)

)
φ2
(
ρ(t)

))



Abstract and Applied Analysis 5

=
1

φΔ
1

(
ρ(0)

)p(t)y(t)eΘa

(
ρ(t), ρ(0)

)(−φΔ
1

(
ρ(0)

))

= −y(t).
(2.10)

Therefore the function defined in (2.4) satisfies (2.3). Further we obtain that the boundary
value conditions are satisfied by (2.4). The first condition follows from (2.5) and (2.6) and
Lemma 2.1. Now we verify the second boundary condition. Since

H(σ(1), s) =
1

φΔ
1

(
ρ(0)

)φ1(s)φ2(σ(1)) = 0, (2.11)

we obtain that

x(σ(1)) =
∫σ(1)

ρ(0)
H(σ(1), s)p(s)y(s)∇s +Aφ1(σ(1)) = A. (2.12)

On the other hand, by using (2.5), we find that

m−2∑

i=1

αix
(
ηi
)
=

m−2∑

i=1

αi

(∫σ(1)

ρ(0)
H
(
ηi, s

)
p(s)y(s)∇s +Aφ1

(
ηi
)
)

=
m−2∑

i=1

αi

(∫σ(1)

ρ(0)
H
(
ηi, s

)
p(s)y(s)∇s

+
1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αiφ1
(
ηi
)
∫σ(1)

ρ(0)
H
(
ηi, s

)
p(s)y(s)∇s

)

=
1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αi

∫σ(1)

ρ(0)
H
(
ηi, s

)
p(s)y(s)∇s = A.

(2.13)

Combining the two equations above finishes the proof.

Lemma 2.3. Green’s function H(t, s) has the following properties:

H(t, s) ≤ H(t, t),
φΔ
1

(
ρ(0)

)

‖φ1‖‖φ2‖H(t, t)H(s, s) ≤ H(t, s) ≤ H(s, s), H(t, t) ≤ φ1(t)
‖φ2‖

φΔ
1

(
ρ(0)

) .

(2.14)

Lemma 2.4. Assume that (C2) and (C3) hold. Let u be a solution of boundary value problem (1.1) if
and only if u is a solution of the following integral equation:

u(t) =
∫σ(1)

ρ(0)
G(t, s)p(s)q(s)f(s, u(s))∇s, (2.15)
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where

G(t, s) = H(t, s) +
1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αiH
(
ηi, s

)
φ1(t). (2.16)

The proofs of the Lemmas 2.3 and 2.4 can be obtained easily by Lemmas 2.1 and 2.2.

Lemma 2.5. Green’s function G(t, s) defined by (2.16) has the following properties:

C2φ1(t)H(s, s) ≤ G(t, s) ≤ C1H(s, s), G(t, s) ≤ C3φ1(t), (2.17)

where

C1 = 1 +
‖φ1‖

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αi,

C2 =
φΔ
1

(
ρ(0)

)

‖φ1‖‖φ2‖
1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αiH
(
ηi, ηi

)
,

C3 =
‖φ2‖

φΔ
1

(
ρ(0)

) +
1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αiH
(
ηi, ηi

)
.

(2.18)

Proof. From Lemma 2.3, we have

G(t, s) ≤ H(s, s) +
1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αiH(s, s)‖φ1‖ ≤ C1H(s, s),

G(t, s) ≤ ‖φ2‖
φΔ
1

(
ρ(0)

)φ1(t) +
1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αiH
(
ηi, ηi

)
φ1(t) ≤ C3φ1(t),

G(t, s) ≥ 1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αiH
(
ηi, s

)
φ1(t)

≥ 1

1 −∑m−2
i=1 αiφ1

(
ηi
)

m−2∑

i=1

αi

φΔ
1

(
ρ(0)

)

‖φ1‖‖φ2‖H
(
ηi, ηi

)
H(s, s)φ1(t)

≥ C2φ1(t)H(s, s).

(2.19)

The proof is complete.

The following theorems will play major role in our next analysis.
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Theorem 2.6 (see [16]). Let X be a Banach space, and let P ⊂ X be a cone in X. Let Ω1,Ω2 be open
subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P be a completely continuous operator, such
that, either

(1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or

(2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖w ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩Ω2 \Ω1.

3. Main Results

We make the following assumptions:

(H1) f(t, u) ∈ C([ρ(0), σ(1)] × [0,+∞), (−∞,+∞)), moreover there exists a function
g(t) ∈ L1([ρ(0), σ(1)], (0,+∞)) such that f(t, u) ≥ −g(t), for any t ∈ (ρ(0), σ(1)),
u ∈ [0,+∞).

(H∗
1) f(t, u) ∈ C((ρ(0), σ(1)) × [0,+∞), (−∞,+∞)) may be singular at t = ρ(0), σ(1),

moreover there exists a function g(t) ∈ L1((ρ(0), σ(1)), (0,+∞)) such that f(t, u) ≥
−g(t), for any t ∈ (ρ(0), σ(1)), u ∈ [0,+∞).

(H2) f(t, 0) > 0, for t ∈ [ρ(0), σ(1)].

(H3) There exists [θ1, θ2] ∈ (ρ(0), σ(1)) such that limu↑+∞mint∈[θ1,θ2](f(t, u)/u) = +∞.

(H4)
∫σ(1)
ρ(0) H(s, s)p(s)q(s)f(s, z)∇s < +∞ for any z ∈ [0, m],m > 0 is any constant.

In fact, we only consider the boundary value problem

xΔ∇(t) + a(t)xΔ(t) + b(t)x(t) + λq(t)
[
f
(
t, [x(t) − v(t)]∗

)
+ g(t)

]
= 0, λ > 0,

x
(
ρ(0)

)
= 0, x(σ(1)) =

m−2∑

i=1

αix
(
ηi
)
,

(3.1)

where

y(t)∗ =

⎧
⎨

⎩

y(t), y(t) ≥ 0,

0, y(t) < 0,
(3.2)

and v(t) = λ
∫σ(1)
ρ(0) G(t, s)p(s)q(s)g(s)∇s, which is the solution of the boundary value problem

vΔ∇(t) + a(t)vΔ(t) + b(t)v(t) + λq(t)g(t) = 0,

v
(
ρ(0)

)
= 0, v(σ(1)) =

m−2∑

i=1

αiv
(
ηi
)
.

(3.3)

From Lemma 2.1, it is easy to verify that v(t) ≤ λC0φ1(t) and C0 = C3
∫σ(1)
ρ(0) q(s)g(s)∇s.
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We will show that there exists a solution x for boundary value problem (3.1) with
x(t) ≥ v(t), t ∈ [ρ(0), σ(1)]. If this is true, then u(t) = x(t) − v(t) is a nonnegative solution
(positive on (ρ(0), σ(1))) of boundary value problem (3.1). Since for any t ∈ (ρ(0), σ(1)), from

(u(t) + v(t))Δ∇ + a(t)(u(t) + v(t))Δ + b(t)(u(t) + v(t)) = −λq(t)[f(t, u) + g(t)
]
, (3.4)

we have

uΔ∇(t) + a(t)uΔ(t) + b(t)u(t) = −λq(t)f(t, u). (3.5)

As a result, we will concentrate our study on boundary value problem (3.1).
We note that x(t) is a solution of (3.1) if and only if

x(t) = λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)

(
f
(
t, [x(t) − v(t)]∗

)
+ g(t)

)∇s. (3.6)

For our constructions, we will consider the Banach space X = C[ρ(0), σ(1)] equipped
with standard norm ‖x‖ = max0≤t≤1|x(t)|, x ∈ X. We define a cone P by

P =
{

x ∈ X | x(t) ≥ C2

C1
φ1(t)‖x‖, t ∈ [ρ(0), σ(1)]

}

, (3.7)

where φ1 is defined by Lemma 2.1 (namely, φ1 is solution (2.1)). Define an integral operator
T : P → X by

Tx(t) = λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)

(
f
(
t, [x(t) − v(t)]∗

)
+ g(t)

)∇s. (3.8)

Notice, from (3.8) and Lemma 2.5, we have Tx(t) ≥ 0 on [0, 1] for x ∈ P and

Tx(t) = λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)

(
f
(
t, [x(t) − v(t)]∗

)
+ g(t)

)∇s

≤ C1λ

∫σ(1)

ρ(0)
H(s, s)p(s)q(s)

(
f
(
t, [x(t) − v(t)]∗

)
+ g(t)

)∇s,

(3.9)

then ‖Tx‖ ≤ C1λ
∫σ(1)
ρ(0) H(s, s)p(s)q(s)(f(t, [x(t) − v(t)]∗) + g(t))∇s.
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On the other hand, we have

Tx(t) = λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)

(
f
(
t, [x(t) − v(t)]∗

)
+ g(t)

)∇s

≥ λ

∫σ(1)

ρ(0)
C2φ1(t)H(s, s)p(s)q(s)

(
f
(
t, [x(t) − v(t)]∗

)
+ g(t)

)∇s

≥ C2

C1
φ1(t)λ

∫σ(1)

ρ(0)
C1H(s, s)p(s)q(s)

(
f
(
t, [x(t) − v(t)]∗

)
+ g(t)

)∇s

≥ C2

C1
φ1(t)‖Tx‖.

(3.10)

Thus, T(P) ⊂ P . In addition, standard arguments show that T(P) ⊂ P and T is a compact, and
completely continuous.

Theorem 3.1. Suppose that (H1)-(H2) hold. Then there exists a constant λ > 0 such that, for any
0 < λ ≤ λ, boundary value problem (1.1) has at least one positive solution.

Proof. Fix δ ∈ (0, 1). From (H2), let 0 < ε < 1 be such that

f(t, z) ≥ δf(t, 0), for ρ(0) ≤ t ≤ σ(1), 0 ≤ z ≤ ε. (3.11)

Suppose that

0 < λ <
ε

2cf(ε)
:= λ (3.12)

where f(ε) = maxρ(0)≤t≤σ(1),0≤z≤ε{f(t, z) + g(t)} and c = C1
∫σ(1)
ρ(0) H(s, s)p(s)q(s)∇s. Since

lim
z↓0

f(z)
z

= +∞,

f(ε)
ε

<
1

2cλ
,

(3.13)

there exists a R0 ∈ (0, ε) such that

f(R0)
R0

=
1

2cλ
. (3.14)
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Let x ∈ P and ν ∈ (0, 1) be such that x = νT(x), we claim that ‖x‖/=R0. In fact

‖Tx(t)‖ ≤ νλ

∫σ(1)

ρ(0)
C1H(s, s)p(s)q(s)

[
f
(
s, [x(s) − v(s)]∗

)
+ g(s)

]∇s

≤ λ

∫σ(1)

ρ(0)
C1H(s, s)p(s)q(s)

[
f
(
s, [x(s) − v(s)]∗

)
+ g(s)

]∇s

≤ λ

∫σ(1)

ρ(0)
C1H(s, s)p(s)q(s) max

0≤s≤1;0≤z≤R0

[
f(s, z) + g(s)

]∇s

≤ λ

∫σ(1)

ρ(0)
C1H(s, s)p(s)q(s)f(R0)∇s

≤ λcf(R0),

(3.15)

that is,

f(R0)
R0

≥ 1
cλ

>
1

2cλ
=

f(R0)
R0

(3.16)

which implies that ‖x‖/=R0. Let U = {x ∈ P : ‖x‖ < R0}. By nonlinear alternative of Leray-
Schauder type theorem, T has a fixed point x ∈ U. Moreover, combing (3.8), (3.28), and
R0 < ε, we obtain that

x(t) = λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)

[
f
(
s, [x(s) − v(s)]∗

)
+ g(s)

]∇s

≥ λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)

[
δf(s, 0) + g(s)

]∇s

≥ λ

[

δ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)f(s, 0)∇s +

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)g(s)∇s

]

> λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)g(s)∇s

= v(t) for t ∈ (ρ(0), σ(1)).

(3.17)

Let u(t) = x(t) − v(t) > 0. Then (1.1) has a positive solution u and ‖u‖ ≤ ‖x‖ ≤ R0 < 1. This
completes the proof of Theorem 3.1.
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Theorem 3.2. Suppose that (H∗
1) and (H3)-(H4) hold. Then there exists a constant λ∗ > 0 such that,

for any 0 < λ ≤ λ∗, boundary value problem (1.1) has at least one positive solution.

Proof. LetΩ1 = {x ∈ P : ‖x‖ < R1}, where R1 = max{1, r} and r = (C1C3/C2)
∫σ(1)
ρ(0) q(s)g(s)∇s.

Choose

λ∗ = min

⎧
⎨

⎩
1, R1

[

C1

∫σ(1)

ρ(0)
H(s, s)p(s)q(s)

[

max
0≤z≤R1

f(s, z) + g(s)
]

∇s

]−1⎫⎬

⎭
. (3.18)

Then for any x ∈ P ∩ ∂Ω1, then ‖x‖ = R1 and x(s) − v(s) ≤ x(s) ≤ ‖x‖, we have

‖Tx(t)‖ ≤ λ

∫σ(1)

ρ(0)
C1H(s, s)p(s)q(s)

[
f
(
s, [x(s) − v(s)]∗

)
+ g(s)

]∇s

≤ λ

∫σ(1)

ρ(0)
C1H(s, s)p(s)q(s)

[
f
(
s, [x(s) − v(s)]∗

)
+ g(s)

]∇s

≤ λC1

∫σ(1)

ρ(0)
H(s, s)p(s)q(s)

[

max
0≤z≤R1

f(s, z) + g(s)
]

∇s

≤ R1 = ‖x‖.

(3.19)

This implies that

‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1. (3.20)

On the other hand, choose a constant N > 0 such that

λC2
2N

2C1

∫θ2

θ1

H(s, s)φ1(s)p(s)q(s)∇s min
θ1≤t≤θ2

φ1(t) ≥ 1. (3.21)

By assumption (H3), for any t ∈ [θ1, θ2], there exists a constant B > 0 such that

f(t, z)
z

> N, namely, f(t, z) > Nz, for z > B. (3.22)
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Choose R2 = max{R1 + 1, 2λr, 2C1(B + 1)/C2minθ1≤t≤θ2φ1(t)}, and let Ω2 = {x ∈ P : ‖x‖ < R2},
then for any x ∈ P ∩ ∂Ω2, we have

x(t) − v(t) = x(t) − λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)g(s)∇s

≥ x(t) − λC3φ1(t)
∫σ(1)

ρ(0)
p(s)q(s)g(s)∇s

≥ x(t) − C1x(t)
C2‖x‖ λC3

∫σ(1)

ρ(0)
p(s)q(s)g(s)∇s

≥ x(t) − x(t)
R2

λr

≥
(

1 − λr

R2

)

x(t)

≥ 1
2
x(t) ≥ 0, t ∈ [0, 1].

(3.23)

Then,

min
θ1≤t≤θ2

{x(t) − v(t)} ≥ min
θ1≤t≤θ2

{
1
2
x(t)

}

≥ min
θ1≤t≤θ2

{
C2

2C1
φ1(t)‖x‖

}

=
R2C2minθ1≤t≤θ2φ1(t)

2C1
≥ B + 1 > B.

(3.24)

Now,

‖Tx(t)‖ ≥ max
0≤t≤1

λ

∫σ(1)

ρ(0)
C2φ1(t)H(s, s)p(s)q(s)

[
f
(
s, [x(s) − v(s)]∗

)
+ g(s)

]∇s

≥ max
0≤t≤1

λC2φ1(t)
∫σ(1)

ρ(0)
H(s, s)p(s)q(s)f

(
s, [x(s) − v(s)]∗

)∇s

≥ λC2 min
θ1≤t≤θ2

φ1(t)
∫θ2

θ1

H(s, s)p(s)q(s)f(s, x(s) − v(s))∇s

≥ λC2 min
θ1≤t≤θ2

φ1(t)
∫θ2

θ1

H(s, s)p(s)q(s)N(x(s) − v(s))∇s

≥ λC2 min
θ1≤t≤θ2

φ1(t)
∫θ2

θ1

H(s, s)p(s)q(s)
N

2
x(s)∇s
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≥ λC2
2N

2C1
min
θ1≤t≤θ2

φ1(t)
∫θ2

θ1

H(s, s)p(s)q(s)φ1(s)‖x‖∇s

≥ λC2
2N

2C1
min
θ1≤t≤θ2

φ1(t)
∫θ2

θ1

H(s, s)φ1(s)p(s)q(s)∇s‖x‖

≥ ‖x‖.
=⇒ ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2.

(3.25)

Condition (2.1) of Krasnosel’skii’s fixed-point theorem is satisfied. So T has a fixed
point x with R1 ≤ ‖x‖ < R2 such that

xΔ∇(t) + a(t)xΔ(t) + b(t)x(t) = −λq(s)(f(s, [x(s) − v(s)]∗
)
+ g(s)

)
, 0 < t < 1,

x
(
ρ(0)

)
= 0, x(σ(1)) =

m−2∑

i=1

αix
(
ηi
)
.

(3.26)

Since r < ‖x‖,

x(t) − v(t) ≥ C2

C1
φ1(t)‖x‖ − λ

∫σ(1)

ρ(0)
G(t, s)p(s)q(s)g(s)∇s

≥ C2

C1
φ1(t)‖x‖ − φ1(t)λC3

∫σ(1)

ρ(0)
p(s)q(s)g(s)∇s

≥ C2

C1
φ1(t)‖x‖ − C2

C1
φ1(t)λr

≥ C2

C1
φ1(t)r − C2

C1
φ1(t)λr

≥ (1 − λ)
C2

C1
rφ1(t) > 0.

(3.27)

Let u(t) = x(t) − v(t), then u(t) is a positive solution of boundary value problem (1.1). This
completes the proof of Theorem 3.2.

Since condition (H1) implies conditions (H∗
1) and (H4), and from proof of Theorems

3.1 and 3.2, we immediately have the following theorem.

Theorem 3.3. Suppose that (H1)–(H3) hold. Then boundary value problem (1.1) has at least two
positive solutions for λ > 0 sufficiently small.
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Proof. On the hand, fix δ ∈ (0, 1). From (H2), let 0 < ε < min{1, r/2} be such that

f(t, z) ≥ δf(t, 0), for ρ(0) ≤ t ≤ σ(1), 0 ≤ z ≤ ε. (3.28)

Choose

ε

2cf(ε)
:= λ, (3.29)

where f(ε) = maxρ(0)≤t≤σ(1),0≤z≤ε{f(t, z) + g(t)}, c = C1
∫σ(1)
ρ(0) H(s, s)p(s)q(s)∇s, and r =

(C1C3/C2)
∫σ(1)
ρ(0) q(s)g(s)∇s.

On the other hand, set Ω1 = {x ∈ P : ‖x‖ < R1}, where R1 = 1 + r. Choose

λ∗ = min

⎧
⎨

⎩
1, R1

[

C1

∫σ(1)

ρ(0)
H(s, s)p(s)q(s)

[

max
0≤z≤R1

f(s, z) + g(s)
]

∇s

]−1⎫⎬

⎭
. (3.30)

So, let

0 < λ < min
{
λ, λ∗

}
. (3.31)

From 0 < λ < min{λ, λ∗}, we have 0 < λ < λ, from proof of Theorem 3.1, we know
that (1.1) has a positive solution u1 and ‖u1‖ ≤ ‖u1‖ ≤ R0 < r/2. Further, also from 0 < λ <

min{λ, λ∗}, we have 0 < λ < λ∗, from proof of Theorem 3.2, we know that (1.1) has a positive
solution u2 and ‖u2‖ ≥ R1/2 > r/2. Then (1.1) has at least two positive solutions u1 and u2.
This completes the proof of Theorem 3.3.

4. Examples

To illustrate the usefulness of the results, we give some examples.

Example 4.1. Consider the boundary value problem

uΔ∇(t) + a(t)uΔ(t) + b(t)u(t) + λ

(

ua(t) +
1

(t − t2)1/2
cos(2πu(t))

)

= 0, λ > 0,

u
(
ρ(0)

)
= 0, u(σ(1)) =

m−2∑

i=1

αiu
(
ηi
)
,

(4.1)

where a > 1. Then, if λ > 0 is sufficiently small, (4.1) has a positive solution u with u(t) > 0
for t ∈ (0, 1).
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To see this, we will apply Theorem 3.2 with

q(t) = 1, f(t, u) = ua(t) +
1

(t − t2)1/2
cos(2πu(t)), g(t) =

1

(t − t2)1/2
. (4.2)

Clearly

f(t, 0) =
1

(t − t2)1/2
> 0, f(t, u) + g(t) ≥ ua(t) > 0, lim

u↑+∞
f(t, u)

u
= +∞, (4.3)

for t ∈ (ρ(0), σ(1)), u > 0. Namely, (H∗
1) and (H2)–(H4) hold. From

∫σ(1)
ρ(0) (1/((σ(1) − ρ(0))s −

(s − ρ(0))2)1/2)∇s = π , set R1 = C1π and m = maxρ(0)≤t≤σ(1){p(t)} + 1, we have

∫σ(1)

ρ(0)
C1H(s, s)p(s)

[

max
0≤z≤R1

f(s, z) + g(s)
]

∇s

≤
∫σ(1)

ρ(0)

mC1‖φ1‖‖φ2‖
φΔ
1

(
ρ(0)

)

⎡

⎢
⎣(C1π)a +

1
((

σ(1) − ρ(0)
)
s − (s − ρ(0)

)2
)1/2

⎤

⎥
⎦∇s

≤ mC1‖φ1‖‖φ2‖
φΔ
1

(
ρ(0)

)
(
(C1π)a + π

)

(4.4)

and λ∗ = min{1, φΔ
1 (ρ(0))/m‖φ1‖‖φ2‖((Ca

1π
a−1 + 1)}. Now, if λ < λ∗, Theorem 3.2 guarantees

that (4.1) has a positive solution u with ‖u‖ ≥ 2.

Example 4.2. Consider the boundary value problem

uΔ∇(t) + a(t)uΔ(t) + b(t)u(t) + λ

(

u2(t) − 9
2
u(t) + 2

)

= 0, 0 < t < 1, λ > 0,

u
(
ρ(0)

)
= 0, u(σ(1)) =

m−2∑

i=1

αiu
(
ηi
)
.

(4.5)

Then, if λ > 0 is sufficiently small, (4.5) has two solutions ui with ui(t) > 0 for t ∈ (0, 1), i =
1, 2.

To see this, we will apply Theorem 3.3 with

f(t, u) = u2(t) − 9
2
u(t) + 2, g(t) = 4. (4.6)

Clearly

q(t) = 0, f(t, 0) = 2 > 0, f(t, u) + g(t) ≥ 15
16

> 0, lim
u↑+∞

f(t, u)
u

= +∞. (4.7)
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Namely, (H1)–(H3) hold. Let δ = 1/4, ε = 1/4 and c =
∫σ(1)
ρ(0) C1H(s, s)p(s)∇s, then we may

have

λ =
1

8c
(
max0≤z≤εf(t, z) + 4

) =
1
48c

. (4.8)

Now, if λ < λ, Theorem 3.2 guarantees that (4.5) has a positive solution u1 with ‖u1‖ ≤ 1/4.
Next, let R1 = p, where p = 4cC3/C2 + 1 is a constant, then we have

∫σ(1)

ρ(0)
C1H(s, s)p(s)

[

max
0≤z≤R1

f(s, z) + g(s)
]

∇s =
∫σ(1)

ρ(0)
C1H(s, s)p(s)

[
9
2
+ 4
]

∇s =
17c
2

(4.9)

and λ∗ = min{1, 2p/17c}. Now, if 0 < λ < λ∗, Theorem 3.1 guarantees that (4.5) has a positive
solution u2 with ‖u2‖ ≥ p.

So, since all the conditions of Theorem 3.3 are satisfied, if λ < min{λ, λ∗}, Theorem 3.3
guarantees that (4.5) has two solutions ui with ui(t) > 0 (i = 1, 2).

Example 4.3. Consider the boundary value problem

uΔ∇(t) + a(t)uΔ(t) + b(t)u(t) + λ(ua(t) + cos(2πu(t))) = 0, 0 < t < 1, λ > 0,

u
(
ρ(0)

)
= 0, u(σ(1)) =

m−2∑

i=1

αiu
(
ηi
)
,

(4.10)

where a > 1. Then, if λ > 0 is sufficiently small, (4.10) has two solutions ui with ui(t) > 0 for
t ∈ (0, 1), i = 1, 2.

To see this we will apply Theorem 3.3 with

f(t, u) = ua(t) + cos(2πu(t)), g(t) = 2. (4.11)

Clearly

f(t, 0) = 1 > 0, f(t, u) + g(t) ≥ ua(t) + 1 > 0, lim
u↑+∞

f(t, u)
u

= +∞, for t ∈ (ρ(0), σ(1)).
(4.12)

Namely, (H1)–(H3) hold. Let δ = 1/2, ε = 1/8 and c =
∫σ(1)
ρ(0) C1H(s, s)p(s)∇s, then we may

have

ε

2c
(
max0≤x≤εf(t, x) + 2

) ≥ 1
16c

(
(1/8)a + 3

) := λ. (4.13)

Now, if 0 < λ < λ then 0 < λ < ε/2c(max0≤x≤εf(t, x) + 2), Theorem 3.2 guarantees that (4.10)
has a positive solution u1 with ‖u1‖ ≤ 1/8.
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Next, let R1 = p, where p = 4cC3/C2 + 1 is a constant, then we have

∫σ(1)

ρ(0)
C1H(s, s)p(s)

[

max
0≤z≤R1

f(s, z) + g(s)
]

∇s ≤
∫σ(1)

ρ(0)
C1H(s, s)p(s)

[
pa + 2

]∇s =
(
pa + 2

)
c

(4.14)

and λ∗ = min{1, p/(pa + 2)c}. Now, if 0 < λ < λ∗, then 0 < λ < p ×
(
∫σ(1)
ρ(0) C1H(s, s)p(s)[max0≤z≤R1f(s, z) + g(s)]∇s)−1, Theorem 3.1 guarantees that (4.10) has a

positive solution u2 with ‖u2‖ ≥ 1.
So, if λ < min{λ, λ∗}, Theorem 3.3 guarantees that (4.10) has two solutions ui with

ui(t) > 0 (i = 1, 2).

Example 4.4. Let T = {0, 1/4, 2/4, 3/4, 1, 5/4, . . .}. We consider the following four point
boundary value problem:

uΔ∇(t) +
12
5
uΔ(t) − 16

5
u(t) + λ(ua(t) + cos(2πu(t))) = 0, λ > 0,

u(0) = 0, u

(
5
4

)

=
1
2
u

(
1
4

)

+
1
4
u

(
1
2

)

,

(4.15)

where a(t) = 12/5, b(t) = −16/5, and q(t) = 1. Then, if λ > 0 is sufficiently small, (4.15) has
two solutions ui with ui > 0 (i = 1, 2).

Let φ1 and φ2 be the solutions of the following linear boundary value problems,
respectively,

uΔ∇(t) +
12
5
uΔ(t) − 16

5
u(t) = 0, u(0) = 0, u

(
5
4

)

= 1,

uΔ∇(t) +
12
5
uΔ(t) − 16

5
u(t) = 0, u(0) = 1, u

(
5
4

)

= 0.
(4.16)

It is evident (form the Corollaries 4.24 and 4.25 and Theorem 4.28 of [17]) that

φ1(t) =
(5/4)4t − (1/2)4t

(5/4)5 − (1/2)5
, φ2(t) =

(5/4)5(1/2)4t − (1/2)5(5/4)4t

(5/4)5 − (1/2)5
. (4.17)

Also φ1 satisfies (C3). Green’s function is

H(t, s) =
1024
9279

⎧
⎪⎪⎨

⎪⎪⎩

(
5
4

)4s

−
(
1
2

)4s(5
4

)5(1
2

)4t

−
(
1
2

)5(5
4

)4t

, s ≤ t,
(
5
4

)4t

−
(
1
2

)4t(5
4

)5(1
2

)4s

−
(
1
2

)5(5
4

)4s

, t ≤ s,

(4.18)

and p(t) = (2/5)4t−1 follows from eα(t, t0) = (1 + αh)(t−t0)/h on T = hN.
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To see this, we will apply Theorem 3.3 with

f(t, u) = ua(t) + cos(2πu(t)), g(t) = 2. (4.19)

Clearly

f(t, 0) = 1 > 0, f(t, u) + g(t) ≥ ua(t) + 1 > 0, lim
u↑+∞

f(t, u)
u

= +∞, for t ∈ (ρ(0), σ(1)).
(4.20)

Namely, (H1)–(H3) hold. Let δ = 1/2, ε = 1/8 and c =
∫σ(1)
ρ(0) C1H(s, s)p(s)∇s, then we may

have

ε

2c
(
max0≤x≤εf(t, x) + 2

) ≥ 1
16c

(
(1/8)a + 3

) := λ. (4.21)

Now, if 0 < λ < λ then 0 < λ < ε/2c(max0≤x≤εf(t, x) + 2), Theorem 3.2 guarantees that (4.15)
has a positive solution u1 with ‖u1‖ ≤ 1/8.

Next, let R1 = 4cC3/C2 + 1 is a constant, then we have

∫σ(1)

ρ(0)

[

max
0≤z≤R1

f(s, z) + g(s)
]

∇s ≤
∫σ(1)

ρ(0)
C1H(s, s)p(s)

[
Ra

1 + 2
]∇s =

(
pa + 2

)
c (4.22)

and λ∗ = min{1, R1/(Ra
1 + 2)c}. Now, if 0 < λ < λ∗, then 0 < λ < R1 ×

(
∫σ(1)
ρ(0) C1H(s, s)[max0≤z≤R1f(s, z) + g(s)]∇s)−1, Theorem 3.1 guarantees that (4.15) has a

positive solution u2 with ‖u2‖ ≥ 1.
So, if λ < min{λ, λ∗}, Theorem 3.3 guarantees that (4.15) has two solutions ui with

ui(t) > 0 (i = 1, 2).
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