
Hindawi Publishing Corporation
Journal of Robotics
Volume 2010, Article ID 360925, 12 pages
doi:10.1155/2010/360925

Research Article

Cohesive Motion Control Algorithm for Formation of
Multiple Autonomous Agents

Debabrata Atta,1 Bidyadhar Subudhi,1 and Madan M. Gupta2

1 Centre of Industrial Electronics & Robotics, Department of Electrical Engineering, National Institute of Technology Rourkela,
Rourkela 768018, India

2 Intelligent Systems Research Laboratory, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A9

Correspondence should be addressed to Bidyadhar Subudhi, bidyadharnitrkl@gmail.com

Received 2 October 2009; Accepted 31 May 2010

Academic Editor: Noriyasu Homma

Copyright © 2010 Debabrata Atta et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a motion control strategy for a rigid and constraint consistent formation that can be modeled by a directed
graph whose each vertex represents individual agent kinematics and each of directed edges represents distance constraints
maintained by an agent, called follower, to its neighbouring agent. A rigid and constraint consistent graph is called persistent
graph. A persistent graph is minimally persistent if it is persistent, and no edge can be removed without losing its persistence.
An acyclic (free of cycles in its sensing pattern) minimally persistent graph of Leader-Follower structure has been considered here
which can be constructed from an initial Leader-Follower seed (initial graph with two vertices, one is Leader and another one is
First Follower and one edge in between them is directed towards Leader) by Henneberg sequence (a procedure of growing a graph)
containing only vertex additions. A set of nonlinear optimization-based decentralized control laws for mobile autonomous point
agents in two dimensional plane have been proposed. An infinitesimal deviation in formation shape created continuous motion
of Leader is compensated by corresponding continuous motion of other agents fulfilling the shortest path criteria.

1. Introduction

There are several examples of coordinated team work of
mobile agents in nature like food foraging by a group of ants,
flocking birds, fish schooling for protection from enemies,
and so forth. These examples give us a lesson that a particular
task accomplished by a single mobile autonomous agent (like
fish and birds) may be done more efficiently by a group of
agents if they perform in a collaborative manner. During last
thirty years or more, this fact has motivated many researchers
in the field of control and automation significantly to
contribute in several similar applications in industry. In
some particular applications during their motion as whole,
autonomous agents (e.g., robots, vehicles, etc.) need to
maintain a particular geometrical shape for cohesive motion,
called formation which satisfies some constraints like desired
distance between two agents, desired angle between two
lines joining two agents each. Examples of these types
of formations are found in collective attack by a group
of combat aircraft, search/rescue/surveillance/cooperative

transportation by a troop of robots, underwater explo-
ration/underwater inspection (like pipeline inspection) by
a group of Autonomous Underwater Vehicles, attitude
alignment of clusters of satellites, air traffic management
system, automated highway system, and so forth.

In the area of formation control of autonomous agents
like robots, the motion control strategies may be either a
centralized one or it could be a decentralized control. In
centralized mode of control [1, 2], the command for all
agents of the group are assigned by the central command
control board or a designated group leader for monitoring
and control of all agents to guide them be placed at desired
position. The centralized formation control could be a good
scheme for a small group of robots, when it is implemented
with a single computer and a single sensor to monitor and
control the entire group. Control of large number of robots
in a formation requires greater computational capacity
and large amount communication. Due to these problems,
decentralized control is recommended when formation
involves a large number of agents. In the decentralized mode
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of control [3–5], one agent of the group can be a leader and
others are followers (or each agent of the group can be a
leader and follower except a designated group leader and the
two outmost agents) and as a follower, each agent generates
its own commands autonomously (i.e., control law for each
agent is provided separately such that each agent works
autonomously) based on the relative measurement only from
its neighbours without the need of an external supervisor,
and the whole purpose of the formation motion is achieved.

Although two types of basic control strategies are
discussed in the last paragraph, motion control scheme for
formation may be modified depending upon some factors
like agent dynamics, interagent information exchange struc-
ture, control goals in different applications, and so forth.

Formations are modeled using formation graph whose
each vertex represents individual agent kinematics and each
edge represents interagent constraint (e.g., desired distance)
that must be maintained during motion of formation.
Specifically, graph is used to represent coordinated behaviour
among agents. Depending upon the pattern of information
exchange in that coordination, two types of graphs are
possible, that is, directed and undirected.

In undirected formation graph both of any pair of agents,
constrained by an edge have equal responsibility to satisfy
the constraint. For example, distance between any pair of
agents is sensed by both the agents; that is, sensing is
distributed. Therefore, structure of undirected graph suffers
from various disadvantages. One of those disadvantages is
information-based instability [6], which happens due to
possibility of difference in distances measured by noisy
sensors of any pair of agents. Communication requirement
among agents is more. Therefore, external observer-based
centralized control strategy is best suited for undirected
formation graph. Control law is mainly focused on rigidity
property of formation.

Formation graph is rigid [7] if distance between any pair
of agents remains constant during any continuous motion of
formation. A graph is said to be minimally rigid if it is rigid
and if there is no rigid graph having the same vertices but
fewer edges.

In directed formation graph, only one (called follower) of
any pair of agents, constrained by an edge has responsibility
to satisfy the constraint. Therefore, decentralized control
strategy is best suited for directed formation graph.

A graph is constraint consistent [8] if every agent is
able to satisfy all the constraints on it provided all others
are trying to do so. A formation that both rigid and
constraint consistent is termed as persistent graph.Persistence
is a generalization to directed graphs of the undirected
notion of rigidity. A persistent graph is minimally persistent if
it is persistent and if no edge can be removed without losing
persistence.

However, focus in this paper is in development of
control strategy for directed graph-based formation. There
are several papers in which basics of directed formation
graph-related issues are discussed [7–10]. Definitions and
theorems [7–10] with regard to undirected and directed
graphs included in Section 2.

Digraph is called acyclic when no cycle is present in its
sensing pattern [6, 8]. Control scheme for cyclic formation
is more complicated than acyclic formation. Minimally
persistent formation of autonomous agents may be formed
in two ways. First one is leader-follower graph architecture
constructed from an initial leader-follower seed by Hen-
neberg Sequence with standard vertex additions or edge
splitting [11]. Leader-follower type minimally persistent
graph is always acyclic. Another type of construction by
sequence of specific operation elaborated in [9] such that
every intermediate construction is also persistent. Minimally
persistent graph constructed by this method may have cycles.
In this paper, control strategies for only leader-follower type
formation constructed from sequence of vertex addition is
described.

Although a number of research works have been directed
in the area of cyclic formation graph, but still there remains
scope of further work. In [12], Anderson et al. have
proposed a distance preservation-based control law when
cycles contain in the formation graph.

In most recent works [13, 14] or some previous works
[6], distributed control is provided with exploiting gradient
control law for each autonomous agent in a formation
separately. In [5], formation control strategy of leader-
follower and three coleader structures is set up based on
discrete-time motion equations considering decentralized
approach. In [15], Anderson et al. analyzed control of
leader-follower structure in continuous domain assuming
linearized system for small motion and stability aspects are
also discussed. However, we proceed for the control of leader-
follower formation in a different way; that is, our approach is
based on optimization of some distances.

In the present paper, we consider the motion control
scheme of the leader-follower structure type persistent forma-
tion in continuous domain that is based on optimization of
a set of nonlinear objective functions under a set of equality
constraints where each objective function (corresponding to
each agent) corresponds to a specific constraints separately,
as control scheme considers a decentralized approach. With
advent of high speed computational platforms the solution
associated with optimization procedure in the control gener-
ation is possible.

This paper is organized as follows. In Section 2, appli-
cation of graph theory in formation control has been
discussed. Problem formulation for formation control of
multiple autonomous agents has been included in Section 3
followed by the development of control law, simulation, and
conclusion in Sections 4, 5, and 6, respectively.

2. Application of Graph Theory in
Formation Control

As briefly described about the graph theory in Section 1, it is
observed that graph is the best way for proper understanding
of information flow among agents in a formation. This
makes groundwork for control engineers to design an
efficient control scheme for the motion control of formation.
In this paper, formation of leader-follower structure has been
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considered and it may be extended to any number of agents.
Therefore, it is worthwhile to understand how a leader-
follower type formation graph is built up from an arbitrarily
chosen number of agents. In this section, at the outset the
pertinent definitions and theorems given in [7–10] about the
rigidity and persistence are reviewed and subsequently the
procedure of creating a leader-follower formation for a case
of four numbers of autonomous agents is described.

2.1. Definitions Associated with Rigid Graph

2.1.1. Infinitesimally Rigid Graph. A representation p of an
undirected graph G(V ,E) with vertex set V and edge set E is
a function p : V → Rd, where d(2, 3, . . .) is the dimension of
Euclidean space. Representation p is rigid if there exists ε > 0
such that for all realizations due to continuous deformations
p′ of distance set induced by p and satisfying, d(p, p′) < ε
(where, d(p, p′) = max ‖p(i) − p′(i)‖, where, i ∈ V), there
holds ‖p′(i) − p′( j)‖ = ‖p(i) − p( j)‖ for all i, j ∈ V .
We simply say this phenomenon as congruence relationship
between p and p′.

2.1.2. Generically Rigid Graph. A graph is said to be gener-
ically rigid if almost all realizations due to continuous
deformations are rigid. This definition of rigidity is to
exclude some undesirable situations like certain collections
of vertices are collinear during continuous deformations.

2.1.3. Minimally Rigid Graph. A rigid graph is minimally
rigid when no single edge can be removed without losing its
rigidity.

2.1.4. Laman’s Criteria (see [10]). If an undirected graph
G = (V ,E) in R2 with at least two vertices is rigid, then
there exists a subset E′ of edges such that |E′|= 2|V | − 3 and
any subgraph G′′ = (V ′′,E′′) of G′ with at least two vertices
satisfies |E′′| ≤ 2|V(E′′)| − 3, where |V(E′′)|is number of
vertices that are end-vertices of the edges in E′′.

Lemma 1 (see [7]). Let G = (V ,E) be a minimally rigid graph
in R2 and G′ = (V ′,E′) a subgraph of G such that |E′| =
2|V ′| − 3. Then, G′ is minimally rigid.

In directed graph, each agent is only aware of its own
distance constraints and can move freely as long as these
distance constraints are satisfied. Persistence is a directed
notion and rigidity is an undirected notion. The properties
of directed graphs are described below.

2.2. Definitions Associated with Persistent Graph. Suppose,
for a directed graph G, desired distances di j > 0 for all
(i, j) ∈ E, edge set where i, j ∈ V , vertex set, and a realization
p, then the following definitions are described.

2.2.1. Active Edge. The edge (i, j) ∈ E is active if ‖p(i) −
p( j)‖ = di j , that is, if the corresponding distance constraint
is satisfied.

2.2.2. Fitting Position of a Vertex. The position of a vertex
i ∈ V is fitting for any desired distance set {d} of G, if it
is not possible to increase the set of active edges leaving i by
changing the position of i while maintaining the positions of
other vertices unchanged. Specifically, the position of vertex
i, for a given realization p, is fitting if there is no p′ ∈ R2 for
which the condition elaborated below is strictly satisfied:

{(
i, j
) ∈ E :

∥∥p(i)− p
(
j
)∥∥ = di j

}

⊂
{(
i, j
) ∈ E :

∥∥p′ − p
(
j
)∥∥ = di j

}
.

(1)

2.2.3. Fitting Realization of a Graph. A realization of a graph
is a fitting realization for a certain distance set {d} if all the
vertices are at fitting positions for {d}.

2.2.4. Constraint Consistent Graph. A realization p of digraph
G is constraint consistent if there exists ε > 0 such that any
realization p′ fitting for the distance set {d} induced by p
and satisfying d(p, p′) < ε is a realization of {d}. A graph is
generically constraint consistent if almost all realizations are
constraint consistent.

2.2.5. Persistent Graph. Realization p of the digraph G having
desired distances di j > 0 for all {i, j} is persistent if there
exists ε > 0 such that every realization due to continuous
deformation, p′ fitting for the distance set induced by p and
satisfying d(p, p′) < ε is congruent to p.

2.2.6. Generically Persistent Graph. A graph is generically
persistent if almost all possible realizations are persistent
(same as elaborated in case of generically rigid).

Theorem 1 (see [8]). A realization is persistent if and only if
it is rigid and constraint consistent.

A graph is generically persistent if and only if it is
generically rigid and constraint consistent.

2.2.7. Minimally Persistent Graph. A persistent graph is
minimally persistent if it is persistent and if no edge can be
removed without losing persistence.

Theorem 2 (see [8]). A rigid graph is minimally persistent
if and only if either of the two conditions elaborated below is
satisfied.

(i) Out of all vertices, each of three vertices has one
outgoing edge and each of rest vertices has two outgoing
edges

(ii) Out of all vertices, one vertex has no outgoing edge;
another one vertex has one outgoing edge and each of
rest vertices has two outgoing edges.

Theorem 3 (see [8]). An acyclic digraph is persistent if all the
conditions elaborated below are satisfied.

Out of all vertices,

(i) one vertex has one outgoing edge. This vertex represents
Leader,
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Figure 1: Henneberg construction for making leader-follower type
formation from four agents “a”, “b”, “c”, and “d” (i) “a”, “b” are initial
vertices with one edge directed towards “a” (leader) from “b” (first
follower) (ii) “c” is new vertex added to (i) (iii) “d” is new vertex
added to (b).

(ii) another vertex has one outgoing edge which must
be incident to the Leader. This vertex represents first
follower,

(iii) each of rest vertices must have two or more number of
outgoing edges.

2.3. Construction of Acyclic Minimally Persistent Graph.
Acyclic minimally persistent graph is always constructed
starting from a combination of two vertices, one is called
leader and the other one is first follower, and an edge directed
towards leader using Henneberg Sequence with only vertex
additions.

2.4. Henneberg Construction (Directed Case) Containing
Vertex Addition. It describes the sequence of graphs
G2,G3, . . . G|V |, such that each graph Gi+1 (i ≥ 2) can be
obtained by a vertex addition starting from Gi, where i is
number of vertices and |V | is cardinality of vertex set of
desired graph. Therefore, the procedure of drawing the graph
using Henneberg sequence is described as

(i) start with a directed edge between two vertices.The
vertex towards which edge is directed is called leader
and remaining vertex is called first follower. The
combination of these two a vertex with a directed
edge is called initial leader-follower seed,

(ii) at each step of growing graph, add a new vertex,

(iii) join the new vertex to two old vertices (corresponding
to leader and first follower) via two new edges,
directed towards old vertices.

Figure 1 shows the construction procedure of formation of
four agents.

3. Problem Formulation

For simplicity, we restrict our analysis only in quadrilateral
formation of leader-follower structure taking into account
four mobile autonomous point agents, in plane. This

R-2

d5

R-1

d2
d3

d4R-4

d1

R-3

Figure 2: Quadrilateral formation of leader-follower structure. In
this figure, the notations are as follows. R-1 denotes the leader and
R-2 denotes the first follower, R-3 is for the ordinary follower-1 and
R-4 is for ordinary follower-2.

formation is shown in Figure 2. One among them is leader
which has no outgoing edge; that is, it is free to move
along a specified path and does not have any responsibility
to maintain any distance constraint from other agents, the
second one as the first follower which has one outgoing
edge; that is, it requires to maintain only one desired
distance constraint from the leader, the third one as ordinary
follower-1 which has two outgoing edges; that is, it requires
to maintain two distance constraints, one of which is directed
towards leader and other one towards first follower, the
fourth one as ordinary follower-2 which has two outgoing
edges; that is, it requires to maintain two distance constraints,
one of which is directed towards first follower and other one
towards ordinary follower-1.

The different distance constraints among agents assumed
are as follows: d1 is the desired distance maintained by first
follower from leader, d2 is the desired distance maintained
by ordinary follower-1 from first follower, d3 is the desired
distance maintained by ordinary follower-1 from leader, d4

is the desired distance maintained by ordinary follower-2
from ordinary follower-1, and d5 is the desired distance
maintained by ordinary follower-2 from first follower.

We assume the desired distances among the agents satisfy
noncollinear condition such that at least three point agents do
not form a straight line.

Assumptions 1. (i) For simplicity, for each agent “i”, the
kinematic model [5] of unicycle nonholonomic point agent
is considered as follows:

(
ẋi, ẏi

) = (vi cos θi, vi sin θi), θ̇i = ωi, (2)

where pi(t) = (xi(t), yi(t)) with i = 1, 2, 3, 4 denotes, the
position of ith agent, θi(t), and vi(t) denote the orientation
and translational velocity of the ith agent at each instant of
time t, respectively. (xi(t), yi(t)) is with respect to an earth-
fixed coordinate coordinate system.

(ii) Each agent can measure its position with respect to
earth-fixed coordinate system by proper sensor arrangement.

(iii) First follower has position information of leader only
with respect to its own point body system by using an active
sensor (e.g., sonar).
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(iv) Ordinary follower-1 has position information of
leader and first follower only with respect to its own point
body system by using an active sensor (e.g., sonar).

(v) Ordinary follower-2 has position information of first
follower and ordinary follower-1 only with respect to its own
point body system by using an active sensor (e.g., sonar).

(vi) Each agent (except leader) can achieve the positions
of neighbours w.r.t earth-fixed coordinate system from the
relative informations of its neighbours and its own position
w.r.t. earth-fixed coordinate system.

Now, the objective is to provide a control scheme for
this triangular formation (starting from a non-collinear
arrangement) such that during the motion of three robots
for any mission, desired interagent distances are preserved.

4. Development of Control Law

Here, we intend to develop set of decentralized control
laws for overall formation. Therefore, for each agent, we
provide separate control law for continuous movement in
autonomous manner based on local knowledge only of
direction of its neighbours. Control Law for each agent is
derived by optimizing corresponding objective function with
given constraints involving desired distance constraints of
formation. The unknown variables to be solved are x and
y coordinates (which are continuous function of time) of
position (with respect to earth-fixed coordinate system) of
corresponding agent for which objective function is derived.

Assumptions 2. (i) Interagent distances are sufficiently large
so that initial collision among robots can be avoided.

(ii) Initially positions of robots are not collinear (already
stated).

(iii) During motion of formation, failure of sensors do
not occur.

(iv) There is no time delay in sensing.
(v) Control input in the form of translational velocity

and angular velocity (discussed later in this section) calcu-
lated from final and initial position of any agent should be
necessarily generated by controller of each agent.

When all the agents of given formation completes move-
ment to a new set of position coordinates from an old set of
position coordinates during certain period of time such that
desired distances among agents are preserved for both set of
positions and not any other distance preserving position set
is available in between these two position sets during motion,
then the movement of formation from the old set to new set of
positions is called one complete displacement of formation.

Before proceeding to develop the control laws for all
agents, it is assumed that at any time t each agent is main-
taining its own distance constraints. Then how these agents
move to their new positions for a complete displacement is
discussed below.

4.1. Control Law for Leader. Leader does not need to main-
tain any distance constraint from any other agent in forma-
tion. A specified control action is provided for its dynamics

such that it moves along a specified path (trajectory); that
is, each position (at each instant of time t) coordinate is
known (preprogrammed (known)/unknown) to computa-
tional system of the leader. Suppose at time t initial position
coordinate for leader is assumed as ((x1 In(t), y1 In(t)). Let
the leader move to a new position (x1 f (t), y1 f (t)), that is,
the final position (rest point), in very small period of time
dt such that continuity preserves between (x1 In(t), y1 In(t))
& (x1 f (t), y1 f (t)); that is, the distance between these two
positions is sufficiently small. This motion of the leader and
corresponding movement of the first follower is shown in
Figure 3. According to Figure 2, d�s1 = dx1 î + dy1 ĵ, where
�s1(t), a vector field along the trajectory curve of the leader,
î and ĵ are unit vectors along x and y direction of the global
coordinate system, and dx1 = x1 f −x1 In and dy1 = y1 f −y1 In.
It should be noted that (x1 In(t), y1 In(t)) and (x1 f (t), y1 f (t))
are always on�s1(t). Therefore, control input to reach its final
position is

�v1(t) = d�s1(t)
dt

= dx1

dt
î +

dy1

dt
ĵ = v1x(t)î + v1y(t) ĵ, (3)

where, dx1/dt = v1x(t) and dy1/dt = v1y(t).
The translational velocity control input during dt =

‖�v1‖ =
√

(v1x(t))2 + (v1y(t))2 meter/second.
The angular velocity control input (rad./sec) during same

period of time is

ω1(t)= tan−1
∣∣∣∣

dy1

dx1

∣∣∣∣ when dx1 is + ve, dy1 is + ve

=
(
π−tan−1

∣∣∣∣
dy1

dx1

∣∣∣∣
)

when dx1 is − ve, dy1 is + ve

=−
(
π−tan−1

∣∣∣∣
dy1

dx1

∣∣∣∣
)

when dx1 is − ve, dy1 is − ve

= −tan−1
∣∣∣∣

dy1

dx1

∣∣∣∣ when dx1 is + ve, dy1 is − ve

= −π

2
or

π

2
when dx1 = 0 and dy1 is + ve or − ve.

(4)

4.2. Control Law for First Follower. It may be noted that first
follower has one outgoing edge; that is, it has to maintain
only one distance constraint (desired distance d1) and that is
to leader. Initial and final position coordinates for the leader
are (x1 In(t), y1 In(t)), (x1 f (t), y1 f (t)), respectively. Then, first
follower senses the disturbance in position of leader; that
is, it senses error in desired distance constraint (d1) by
sensing the final position of the leader staying at its initial
position (x2 In(t), y2 In(t)). It tries to satisfy this distance
constraint to leader. Therefore, suppose it moves to a rest
point (final position) (x2 f (t), y2 f (t)) at the next instant of
time dt after the instant during which the leader moves to its
final position. During this movement of first follower, leader
is assumed to be stationary at the position (x1 f (t), y1 f (t)).
A condition is given to first follower such that only due to
disturbance in position of leader, first follower changes its
position.To maintain the cohesive motion with the leader,
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(x1 f , y1 f )

(0, 0)
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(x1In, y1In)

(x2In, y2In)

d−→s1

d−→s2

Figure 3: Motion of leader and first follower for a very small
duration of time.

distance of the first follower from the leader must be d1 at
final position of both the agents. It can be formulated as
follows:

(
x1 f (t)− x2 f (t)

)2
+
(
y1 f (t)− y2 f (t)

)2 − d2
1 = 0, (5)

where the values of x1 f , y1 f , and d1 are known to compu-
tational system of first follower. But it is clear from (5) that
locus of the position of first follower is a circle. Hence, its
rest position may be at anywhere on this circle. First follower
may take its rest position for which it crosses over the leader
and may collide with leader. Undesirable consequence of
this phenomenon is that ordinary follower may collide with
leader and first follower both for maintaining the distant
constraints from both of them. Hence, to provide a control
avoiding this unsafe situation, a restriction to the motion of
first follower must be imposed, such that it reaches to a.

In Figure 3, ‖d�s2‖ is defined as the distance between the
final and initial position of first follower. Here,�s2(t) a vector
field along the trajectory curve of first follower. It should be
noted that (x2 In(t), y2 In(t)), and (x2 f (t), y2 f (t)) are always
on�s2(t). Then, we have

∥∥d�s2
∥∥2 =

(
x2 f (t), x2 In(t)

)2
+
(
y2 f (t), y2 In(t)

)2
. (6)

Therefore, ‖d�s2‖ must be minimum such that first follower
moves along the shortest path to its final position. Hence,
the first follower follows the leader maintaining safe motion.
Now, we intend to propose a control law for motion of
first follower satisfying the aforesaid conditions. Actually, the
whole problem may be treated as an optimization problem,
where minimization of objective function (7) under equality
constraint (6) should be performed. And a control law based
on this optimization is presented as

�v2(t) = d�s2

dt
= dx2

dt
î +

dy2

dt
ĵ = v2x(t)î + v2y(t) ĵ, (7)

(x2 f , y2 f ) (x1 f , y1 f )

(x3 f , y3 f )

d1

d1

d2 d3y

x

Leader

LeaderFirst follower

First follower

Ordinary follower-1

(0, 0)

(x2In, y2In) (x1In, y1In)

d−→s1d−→s2

Figure 4: Motion of leader, first follower, and ordinary follower-1
for a very small duration of time.

where dx2/dt = v2x(t) and dy2/dt = v2y(t) and î and ĵ are
unit vectors along x and y direction of the global coordinate
system.

The translational velocity control input = ‖�v2‖ =√
(v2x(t))2 + (v2y(t))2 meter/second.

The angular velocity (rad/sec) control input is

ω2(t)= tan−1
∣∣∣∣

dy2

dx2

∣∣∣∣ when dx2 is + ve, dy2 is + ve

=
(
π−tan−1

∣∣∣∣
dy2

dx2

∣∣∣∣
)

when dx2 is − ve, dy2 is + ve

=−
(
π−tan−1

∣∣∣∣
dy2

dx2

∣∣∣∣
)

when dx2 is − ve, dy2 is − ve

= −tan−1
∣∣∣∣

dy2

dx2

∣∣∣∣ when dx2 is + ve, dy2 is − ve

= −π

2
or

π

2
when dx2 = 0 and dy2 is + ve or − ve.

(8)

4.3. Control Law for Ordinary Follower-1. Ordinary follower-
1 tries to satisfy two distance constraints; that is, it has
two outgoing edges, the first one (d2) is directed towards
first follower and the second one (d3) is directed towards
leader. Let the leader and first follower be placed at their
corresponding final positions. The ordinary follower senses
the disturbances in position of leader and first follower; that
is, it senses error in desired distance constraints d2 and d3

by sensing the final position of the first follower and leader,
respectively. It tries to satisfy these distance constraints to
first follower and leader (as shown in Figure 4). Therefore,
suppose the ordinary follower moves to its final position
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(rest point) at the next time instant of the time (dt) after
the instant during which first follower moves to its final
position. During this movement of ordinary follower, leader
and first follower are assumed to be stationary at the position
(x1 f (t), y1 f (t)) and (x2 f (t), y2 f (t)), respectively. At the final
position, ordinary follower satisfies its distance constraints.
Here, a condition is given to the ordinary follower such
that only when disturbances in positions of both leader as
well as first follower (not merely leader) occur; ordinary
follower changes its position to final one. This final position
is assumed (x3 f (t), y3 f (t)). The assumed initial position of
the ordinary follower is (x3 In(t), y3 In(t)). Now, according to
the desired distance constraints for it, two conditions are to
be satisfied as given in

(
x1 f (t)− x3 f (t)

)2
+
(
y1 f (t)− y3 f (t)

)2 − d2
3 = 0,

(
x2 f (t)− x3 f (t)

)2
+
(
y2 f (t)− y3 f (t)

)2 − d2
2 = 0,

(9)

where x1 f , y1 f , x2 f , y2 f ,d2, and d3 are known to the com-
putational system of ordinary follower. Hence, ‖d�s3‖ is
defined as the distance between the final and initial position
of ordinary follower. Here, �s3(t) a vector field along the
trajectory curve of ordinary follower. It should be noted
that (x3 In(t), y3 In(t)) and (x3 f (t), y3 f (t)) are always on�s3(t).
Then, we define

∥∥d�s3
∥∥2 =

(
x3 f (t), x3 In(t)

)2
+
(
y3 f (t), y3 In(t)

)2
. (10)

Actually, (9) are equations of two circles. They meet at two
different points. The ordinary follower will follow the leader
and first follower maintaining safe motion and moves to
any one meeting point such that ‖d�s3‖ is minimum. By
maintaining ‖d�s3‖minimum, ordinary follower moves along
shortest path to its final position. Now, it is the need to
propose a control law for motion of first follower satisfying
the aforesaid conditions. Actually, the whole problem may be
treated as an optimization problem, where minimization of
objective function (10) under equality constraint (9) should
be performed. And a control law based on this optimization
is presented as

�v3(t) = d�s3

dt
= dx3

dt
î +

dy3

dt
ĵ = v3x(t)î + v3y(t) ĵ, (11)

where, dx3/dt = v3x(t), dy3/dt = v3y(t), î and ĵ are unit
vectors along x, and y direction of the global coordinate
system.

The translational velocity control input ‖�v3‖ =√
(v3x(t))2 + (v3y(t))2 m/second.

Angular velocity (rad./sec) control input is

ω3(t)= tan−1
∣∣∣∣

dy3

dx3

∣∣∣∣ when dx3 is + ve, dy3 is + ve

=
(
π−tan−1

∣∣∣∣
dy3

dx3

∣∣∣∣
)

when dx3 is − ve, dy3 is + ve

=−
(
π−tan−1

∣∣∣∣
dy3

dx3

∣∣∣∣
)

when dx3 is − ve, dy3 is − ve

= −tan−1
∣∣∣∣

dy3

dx3

∣∣∣∣ when dx3 is + ve, dy3 is − ve

= −π

2
or

π

2
when dx3 = 0 and dy3 is + ve or − ve.

(12)

4.4. Control Law for Ordinary Follower-2. Ordinary follower-
2 tries to satisfy two distance constraints; that is, it has two
outgoing edges, first one (d4) is directed towards ordinary
follower-1 and second one (d5) is directed towards first
follower. Let the first follower and ordinary follower-1 be
placed at their corresponding final positions. The ordinary
follower senses the disturbances in position of first follower
and ordinary follower-1; that is, it senses error in desired dis-
tance constraints d5 and d4 by sensing the final position of the
first follower and ordinary follower-1. It tries to satisfy these
distance constraints to first follower and ordinary follower-1.
Therefore, suppose the ordinary follower-2 moves to its final
position (rest point) at the next instant of the time (dt) after
the instant during which ordinary follower-1 moves to its
final position. During this movement of ordinary follower-2–
ordinary follower-1, first follower and leader are assumed to
be stationary at the position (x3 f (t), y3 f (t)), (x2 f (t), y2 f (t)),
and (x1 f (t), y1 f (t)), respectively. At the final position, the
ordinary follower satisfies its distance constraints. Here, a
condition is given to the ordinary follower such that only
when disturbances in positions of both leader as well as first
follower (not merely leader) occur, ordinary follower changes
its position to final one. This final position is assumed
(x4 f (t), y4 f (t)). The assumed initial position of the ordinary
follower is (x4 In(t), y4 In(t)). Now according to the desired
distance constraints for it, two conditions are to be satisfied
as given in

(
x2 f (t)− x4 f (t)

)2
+
(
y2 f (t)− y4 f (t)

)2 − d2
5 = 0,

(
x3 f (t)− x4 f (t)

)2
+
(
y3 f (t)− y4 f (t)

)2 − d2
4 = 0,

(13)

where x2 f , y2 f , x3 f , y3 f ,d4, and d5 are known to the compu-
tational system of ordinary follower. Hence, ‖d�s4‖ is defined
as distance between the final and initial position of ordinary
follower. Here,�s4(t) is a vector field along the trajectory curve
of ordinary follower. It should be noted that (x4 In(t), y4 In(t))
and (x4 f (t), y4 f (t)) are always on�s4(t). Then we define

∥∥d�s4
∥∥2 =

(
x4 f (t), x4 In(t)

)2
+
(
y4 f (t), y4 In(t)

)2
. (14)
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Actually, (13) are equations of two circles. They meet at two
different points. The ordinary follower will follow the leader
and first follower maintaining safe motion and moving to
any one meeting point such that ‖d�s4‖ is minimum. By
maintaining ‖d�s4‖minimum, ordinary follower moves along
shortest path to its final position. Now it is the need to
propose a control law for motion of first follower satisfying
aforesaid conditions. Actually, the whole problem may be
treated as an optimization problem where minimization of
objective function (14) under equality constraint (13) should
be performed. And a control law based on this optimization
is presented as

�v4(t) = d�s4

dt
= dx4

dt
î +

dy4

dt
ĵ = v4x(t)î + v4y(t) ĵ, (15)

where dx4/dt = v4x(t) and dy4/dt = v4y(t) and î and ĵ are
unit vectors along x and y directions of the global coordinate
system.

The translational velocity control input ‖�v4‖ =√
(v4x(t))2 + (v4y(t))2 m/second.

Angular velocity (rad./sec) control input is

ω4(t)= tan−1
∣∣∣∣

dy4

dx4

∣∣∣∣, when dx4 is + ve, dy4 is + ve

=
(
π−tan−1

∣∣∣∣
dy4

dx4

∣∣∣∣
)

, when dx4 is− ve, dy4 is + ve

=−
(
π−tan−1

∣∣∣∣
dy4

dx4

∣∣∣∣
)

, when dx4 is − ve, dy4 is − ve

= −tan−1
∣∣∣∣

dy3

dx3

∣∣∣∣, when dx3 is + ve, dy3 is − ve

= −π

2
or

π

2
, when dx3 = 0 and dy3 is + ve or − ve.

(16)

Remarks 1. Hence, from the previous discussion it is con-
cluded that for each complete displacement of considered
quadrilateral formation, at the end of first instant of time
dt the leader moves to its desired final position. Then,
at the end of next instant dt (which is the second one)
the first follower moves to its final desired position to
maintain distance constraints to the leader, during which
leader is kept stationary. At end of another instant dt (which
is third one) the ordinary follower-1 reaches to its final
position to maintain distance constraints to both leader
and first follower. At end of another instant dt (which
is fourth one) the ordinary follower-2 reaches to its final
position to maintain distance constraints to both leader
and first follower. Therefore, the agents are not reaching
their corresponding final position exactly at the same time.
Consequently, during the period from “after the starting of
first instant” and “before the end of fourth instant” desired
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Figure 5: Straight line motion of formation of four agents with
leader-follower structure.

distances are not preserved among the agents, rather the first
follower, ordinary follower-1 and ordinary follower-2 try to
form up. So it may be concluded that after every 4∗ dt time,
the desired formation is obtained. Therefore, each agent start
to move to its new position (to be in a new position set) after
every 3∗dt time. That is there is a discontinuous motion that
occurs for every agent. Therefore, for formation of n number
of agents, after every n ∗ dt time the desired formation is
maintained. Each agent start to move to its new position
(to be in a new position set) after every (n − 1) ∗ dt time.
However, if the dt is chosen as very small we may assume
that all the agents reach their corresponding final (new)
positions during first instant of time dt (almost same time
taken by leader to reach its desired final position) and during
each complete displacement of formation, and continuous
motion of formation is maintained. Consequently we may
also assume all the agents move with continuous motion.
Simulation results in the next section are also done based on
this assumption.

5. Simulation Studies

The control laws (3), (7), (11), and (15) for different agents
have been tested successfully via three cases of simulations
for specified formation with consideration of d1 = d 2 =
d3 = d4 = d5 = 2 meters. Length of each time
instant is considered as 0.01 second for simulation during
optimization as described in what follows.
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Figure 6: Motion of formation of four agents with leader-
follower structure, with 0.09 degree (approximately 0.00157 radian)
orientation at each instant of time provided in the motion of leader.
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Figure 7: Plot of distance between leader and first follower versus
time.

5.1. Specific Assumptions in Different Cases

5.1.1. Case I and Case II . In Case I and Case II, the
assumptions are as follows:

(i) Initial position coordinates are (2, 4), (2, 2),
(3.732, 3), and (3.732, 1) for leader, first follower,
Ordinary Follower-1, and Ordinary Follower-2,
respectively;

(ii) Translational velocity input to the leader is
1 meter/second;

(iii) Distance travelled by leader is 1.5 meter in each case;

5.1.2. Case III . Here the considerations are as follows:

(i) Initial position coordinates are (2, 4), (2, 2),
(3.732, 3), and (3.732, 1) for leader, First follower,
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Figure 8: Plot of distance between first follower and ordinary
follower 1 versus time.
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Figure 9: Plot of distance between leader and ordinary follower 1
versus time.

Ordinary Follower-1, and Ordinary Follower-2,
respectively;

(ii) Leader is assumed to move along a sinusoidal path.
The equations that describe that sinusoidal path of
the leader is considered as

x(t) = 0.03t meter,

y(t) = sin(0.03t) meter;
(17)

(iii) Time travelled by the leader is 100 second;

Control laws given in (3), (7), (11), and (15) require the
final position of the corresponding agent at each instant of
time during their motion. For the leader, the final position
at each instant of time is available as the path is specified for
it, but for other agents, these positions must be calculated.
To find out the final position at each instant of time t, the
controller in each case requires optimization of an quadratic
objective function under one or two quadratic equality
constraints as described in Section 4. Several optimization
methods are available for this purpose. Our choice here
is to exploit Sequential Quadratic Programming (SQP) as
it is one of the most popular and robust algorithms for
nonlinear continuous optimization. The method is based
on solving a series of subproblems designed to minimize a
quadratic model of the objective subject to a linearization



10 Journal of Robotics

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

0.5

1.5

2.5

Time (sec)

d 4
(m

)

Figure 10: Plot of distance between ordinary follower 1 and
ordinary follower 2 versus time.
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Figure 11: Plot of distance between first follower and and ordinary
follower 2 versus time.

of the constraints. In the proposed controller, the objective
functions are chosen as quadratic whilst the constraints
are taken as nonlinear quadratic which can be linearized
during course of optimization procedure. At the beginning
of each instant of time t (i.e., at the beginning of a complete
displacement of the whole formation), the position of each
agent is used as the initial position in control law of that
particular agent. This position coordinate is also assumed
as starting point of that agent’s complete iterative procedure
(in optimization process using SQP) for finding out its final
position.That iterative procedure follows the steps elaborated
below:

(i) making a Quadratic Programming (QP) subprob-
lem (based on a quadratic approximation of the
Lagrangian function) using nonlinear objective func-
tion and equality constraints,

(ii) solving that Quadratic Programming (QP) sub prob-
lem at each iteration,

(iii) during (ii) updating an estimate of the Hessian of
the Lagrangian at each iteration using the BFGS
(Broyden–Fletcher–Goldfarb–Shanno) formula [16,
17],

(iv) quadratic Programming solution at each iteration
performing appropriate Line Search using Merit
Function [16–18].
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Figure 12: Plot of angular velocity (rad/second) versus time
(second) for sinusoidal motion of leader.
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Figure 13: Plot of velocity versus time for sinusoidal motion of
leader.

In this work, MATLAB optimization toolbox has been
used for solving the above said optimization problem using
Sequential Quadratic Programming. However, alternatively
other packages such as NPSOL, NLPQL, OPSYC, and
OPTIMA can be used.

5.2. Description of Simulation Result in Different Cases

5.2.1. Case I . We provide straight line motion to the Leader
such that it moves along global x-axis. The paths followed by
all agents during motion of formation are shown in Figure 5.
Distances (d1,d2,d3,d4, and d5) are observed maintained at
specified values.

5.2.2. Case II . We provide 0.09 degree (approximately
0.00157 rad/sec) angular velocity input to the motion of
leader.The translational velocity input is constant at 1 m/s.
In this case complete path of the leader may be considered
as part of a complete circle. For this case paths of all agents
during motion are shown in Figure 6. From the simulation
studies of Case II it is found that the distances among agents
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Figure 14: Motion of triangular formation of leader-follower struc-
ture, with sinusoidal motion of leader. In this figure during motion
of formation, paths of leader, first follower, and ordinary follower
are shown. During motion interagent distances are maintained at
desired value.

are maintained at the desired values during the motion of the
formation as in case of Case-I. Plots of d1 versus t, d2 versus
t and d3 versus t, d4 versus t, d5 versus t are shown in Figures
7, 8, 9, 10, and 11, respectively. These plots are also observed
in Case-I also.

5.2.3. Case III . As the path of leader is sinusoidal the
velocity and orientation (corresponding angular velocity)
change at each instant. The changes in translational velocity
and angular velocity (which are control inputs for leader)
along sinusoidal path are shown in Figure 12, Figure 13, and
Figure 10. for travelling time 250 seconds. For this case path
followed by first follower and ordinary follower along with
leader are shown in Figure 11. Here also in this case similar
observations are made on the maintaining of the distance
constraints during the motion of the formation as in Case
I and Case II.

6. Conclusions

In this paper, a new algorithm using a set of decentral-
ized control laws based on optimization (using Sequential
Quadratic Programming) of distance constraints has been
proposed for the motion control of a leader-follower structure
type formation of multiple mobile autonomous agents.
The effectiveness of the proposed control schemes have
been demonstrated through a number simulation studies.
During the motion of formation, the interagent distances are
maintained at desired values.

The above described control design strategy may be
extended to the formation of any number of autonomous
agents in the form of leader-follower structure in which
each agent (except First Follower) observes the distances of
only two neighboring agents to which it needs to main-
tain distance constraints. The control strategy considering
kinematics (other than unicycle nonholonomic point model)
of each agent and phenomenon of obstacle avoidance are
currently in contemplation. The future work in this context
may be to pursue the stability study of proposed control
design.
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