
Adaptive Dynamic Process Scheduling on
Distributed Memory Parallel Computers

WEI SHU

Department of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260

ABSTRACT

One of the challenges in programming distributed memory parallel machines is decid­
ing how to allocate work to processors. This problem is particularly important for
computations with unpredictable dynamic behaviors or irregular structures. We present
a scheme for dynamic scheduling of medium-grained processes that is useful in this
context. The adaptive contracting within neighborhood (ACWN) is a dynamic, distrib­
uted, load-dependent, and scalable scheme. It deals with dynamic and unpredictable
creation of processes and adapts to different systems. The scheme is described and
contrasted with two other schemes that have been proposed in this context, namely the
randomized allocation and the gradient model. The performance of the three schemes
on an Intel iPSC/2 hypercube is presented and analyzed. The experimental results show
that even though the ACWN algorithm incurs somewhat larger overhead than the ran­
domized allocation, it achieves better performance in most cases due to its adaptive­
ness. Its feature of quickly spreading the work helps it outperform the gradient model in
performance and scalability. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Large distributed memory parallel machines are
becoming increasingly available. To efficiently use
such large machines to solve an application prob­
lem, the computation must first be divided into
parallel actions. These parallel actions are then
mapped and scheduled onto processors.

Static, compile time allocation is one way to
accomplish this. As a rather simple example, con­
sider the problem of multiplying two 64 X 64 ma­
trices on 16 processors. One may decide that each

Received April 1994
Accepted May 1994

C 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 3, pp. 341-352 (1994)
CCC 1058-9244/94/040341-12

processor will compute a 16 X 16 sub matrix of the
result matrix by using appropriate rows and
columns from the original matrix. This leads to 16
subcomputations, as desired, and either an auto­
matic scheduler or a programmer can specify the
appropriate data movement and computations.

Such static scheduling schemes cannot be used
when the size of subcomputations cannot be ac­
curately determined. In fact, in many computa­
tions, the subcomputations themselves are not
known at compile time. Combinatorial search
problems encountered frequently in AI provide an
extreme example. Exploring a node in the search
tree may lead to a large subtree search, may
quickly lead to a dead end, or may lead to a solu­
tion. Even with deterministic computations, data
dependencies and variable computational costs of
operations lead to programs in which the detailed
structure of computation cannot be predicted in

342 SHU

advance. In such computations, one cannot di­
vide the work into lV equal parts, where S is the
number of processing elements (PEs) in the sys­
tem because the computational costs of subtasks
cannot be predicted accurately. A reasonable
strategy for such computations is to divide the
work at run-time into many ('PlV) smaller granules
and attempt to dynamically distribute them across
the processors of the system. The grain size must
be large enough to offset the overhead of parallel­
ization. There are systems, such as the chare ker­
nel described in the next section, that can support
a grain size as small as a few milliseconds. Parti­
tioning an application with small grain size would
provide a large pool of work. Thus, even if the
amount of computation within individual granules
may vary unpredictably, it at least becomes possi­
ble to move these granules among processors to
balance the load.

A scheduling scheme in such a context must
deal with dynamic creation of work. It must cope
with work generation and consumption rates that
vary from processor to processor and from time to
time. It cannot be a centralized scheme as it must
work with a large number of processors and must
scale up to a larger future system. Rather, it must
be a distributed scheme, in which each processor
participates in realizing the load-balancing objec­
tives.

Obviously, a static scheduling scheme cannot
be used for a computation that involves dynamic
creation of work. However, a dynamic scheduling
scheme can also be used for statically allocatable
computations, such as the matrix multiplication
problem mentioned above. In fact, a good dy­
namic scheduler may perform better than static
schedulers even in some statically schedulable
computations because it will automatically adapt
to variable speeds of processors and to variable
numbers of processors.

In this article we describe a dynamic and dis­
tributed scheduling scheme called adaptive con­
tracting within neighborhood (ACWI1

.;")_ The next
section discusses background and context in
which the scheme is to operate and outlines basic
issues. Section 3 describes some algorithms with
similar objectives. Section 4 presents the AGWN
algorithm and compares three different schedul­
ing algorithms. Performance evaluation is given in
Section 5, showing that ACWl\" maintains good
load balance with low overhead. In Section 6, we
discuss why the ACWN algorithm outperforms the
other algorithms.

2 BACKGROUND

The chare kernel is a run-time support system
that is designed to support machine-independent
parallel programming [1-4 J. The kernel is re­
sponsible for dynamically managing and schedul­
ing parallel actions, called chares. A chare-the
work stands for a small chore or task-is a process
with some specific properties. Programmers use
kernel primitives to create instances of chares and
send messages between them, without concerning
themselves with mapping these chares to proces­
sors or deciding which chare to execute next.
Chares have some properties that distinguish
them from processes in general. On creation and
on receipt of a message, chares usually execute for
a relatively short time. They may create other
chares or send messages to existing ones. Having
processed a message, the chare suspends. to be
awakened by another message meant for it. These
characteristics simplify the scheduling of chares
considerably.

In this article the chare kernel concepts and
terminology are used in discussing dynamic
scheduling strategies. However, it should be clear
that the scheduling strategies that are applicable
in this context can also be used in other contexts
that involve dynamic creation of small-grained
tasks. For example, the REDIFLOW system [5]
for applicative programming, other parallel imple­
mentations of functional languages, rewrite sys­
tems and logic languages, and actor-based lan­
guages such as Cantor [6], can all benefit from
such strategies.

Many previous research efforts have been di­
rected towards the task allocation in distributed
systems [7 -17]. Although some basic ideas can
be shared, these strategies cannot simply be ap­
plied to multicomputer networks. A recent com­
parison study of dynamic load-balancing strate­
gies on highly parallel computers is given by
Willebeek-LeMair and Reeves [18]. Work with a
similar assumption as mentioned in this article in­
cludes the gradient model developed by Lin and
Keller [19 J. Athas and Seitz also point out that
random placement can be a quite simple and ef­
fective strategy [20, 21 J. These strategies are dis­
cussed in the next section.

A chare instance goes through three phases in
its life cycle: the allocating phase, the standing
phase, and the active phase. It is in the allocating
phase upon its creation until it enters in a pool of
chares at some PE, and to be in the standing

phase until it starts execution for the first time.
Then the active phase begins. Opportunities for
chare scheduling exist in all three phases but with
different cost and effectiveness. The allocating
phase strategies as well as standing phase strate­
gies are instances of placement strategies. The ac­
tive phase can also be used for scheduling. Strate­
gies that move a chare in the active phase are
called migration strategies. Because the grain size
of chares is not large, migration is expensive and
not necessary for load balance. Hence, this strat­
egy is not considered in this article.

Scheduling strategies can also be classified
based on the amount of load information thev use.
The "load'' measure mav include the number of
messages waiting to be processed .. the number of
active chares, available memory, etc., possibly in
a weighted combination. For the following discus­
sion, the specific load measure is unimportant.
The scheduler at a PE may periodically collect
information from other PEs to calculate its own
"status" information on which the scheduling de­
cision is based. The strategies can be classified as
follows:

1. Type I strategies involve using no status in­
formation.

2. Type II strategies calculate the status infor­
mation by using local load information only.

3. Type III strategies calculate the status infor­
mation by collecting load information from
neighbors.

4. Type IV strategies calculate the status infor­
mation by collecting status information
from neighbors.

5. Type V strategies calculate the status infor­
mation by collecting load information from
all the PEs in the system.

Type I and II strategies typically have low over­
head. The randomized allocation to be discussed
in Section 3 is an example of a Type I strategy. It is
believed that a strategy that adapts to variations in
the system is necessary, and using local informa­
tion alone is not sufficient to judge such varia­
tions. Type V strategies, on the other hand, are
expensive in large systems and are not scalable.

The algorithm developed in this article is a
Type III strategy in which the status information of
aPE may be determined based on load informa­
tion from itself and from its neighbors. The gradi­
ent model to be described in the next section is a
Type IV strategy. The status information of aPE is

ADAPTIYE DY:\"A~HC PROCESS SCHEDULI:'I/G 343

determined from its neighbors' status informa­
tion. Thus, the status of a PE depends on its
neighbors, and theirs, in tum, depend on their
neighbors. However, the time required to ex­
change information causes the status to be depen­
dent on possibly outdated information.

3 RANDOMIZED ALLOCATION AND
GRADIENT MODEL

Athas and Seitz [20, 21] have proposed a global
randomized allocation algorithm. The random­
ized allocation is an allocating phase scheduling
strategy and no standing phase action is involved.
A randomized allocation algorithm dictates that
each PE, when it generates a new chare, should
send it to a randomly chosen PE. One advantage
of this algorithm is simplicity of implementation.
No local load information needs to be maintained
nor is any load information sent to other PEs. Sta­
tistical analysis shows that the randomized alloca­
tion has a respectable performance as far as the
number of chares per PE is concerned. However,
a few factors may degrade the performance of the
randomized allocation. First, the grain size of
chares may vary. Even if each PE processes about
the same number of chares, the load on each PE
may still be uneven. Second, the lack of locality
leads to large overhead and communication traf­
fic. Only 1/N subtasks stay on the creating PE,
where N is the number of PEs in the system. Thus,
most messages between chares have to cross pro­
cessor boundaries. The average distance traveled
by messages is the same as the average internode
distance of the system. This leads to a higher com­
munication load on large systems. Because the
bandwidth consumed by a long-distance message
is certainly larger, the system is more likely to be
communication bound compared to a system us­
ing other load-balancing strategies that encourage
locality. Eager et al. [8] have modified the naive
randomized allocation algorithm. They use
threshold, a kind of local load information, to de­
termine whether to process a chare locally or lo­
cate a chare randomly.

The gradient model [19] is mainly a standing
phase scheduling strategy. As stated by Lin [22],
instead of trying to allocate a newly generated
chare to other PEs, the chare is queued at the
generating PE and waits for some PE to request it.
A separate, asynchronous process on each PE is
responsible for balancing the load. This process

344 SHU

periodically updates the statefunction and prox­
imity on each PE. The state of a PE is decided by
two parameters, the low_water_mark and
high...water_mark. If the load is below the
low_water_mark, the state is idle. If the load is
above the high...water_rnark, the state is abun­
dant. Otherwise, it is neutral. The proximity of a
PE represents an estimate of the shortest distance
to an idle PE, which has a proximity of zero. For
all other PEs, the proximity is one more than the
smallest proximity among the nearest neighbors.
If the calculated proximity is larger than the net­
work diameter, it is in saturation and the proxim­
ity is set to be network-diameter + 1, to avoid
unbounded increase in proximity values. If the
calculated proximity is different from the old
value, it is broadcast to all the neighbors. Based
on the state function and the proximity, this strat­
egy is able to balance the load between PEs. When
a PE is not in saturation and its state is abundant,
it sends a chare from its local queue to the neigh­
bor with the least proximity.

The gradient model may cause load imbalance.
For a tree-structured computation, this behavior
could cause the upper-level nodes to cluster to­
gether near the root PE. When the results need to
be collected at the root of the computation tree,
the computation slows down. Furthermore, the
proximity information may be inaccurate because
of communication delays and the nature of the
proximity update algorithm: By the time the prox­
imity information from an idle PE propagates
through the majority of PEs in a system, the state
of the original PE may have changed.

4ACWN

ACWN is a scheduling algorithm using the Type
III strategy. Here, each PE calculates its own load
function by combining various factors that indi­
cate its current load. A simple measure may be the
number of messages waiting to be processed. Ad­
jacent PEs exchange their load information peri­
odically by sending a small load message or piggy­
backing the load information with regular
messages. Thus, each PE maintains load infor­
mation on all its nearest neighbors. For PE k, its
own load function is denoted by F(k), and its
neighbors' load functions are denoted by a set of
values F' (i), where dist(k, i) = 1. The value ofF (k)
is calculated periodically.

The load information can then be used to de­
termine a system state. For each PE k, l.l function

Table 1. System States

State

Light load
Moderate load
Heavy load

B(k) < low_mark
low_mark ~ B(k) < higlL.mark
high_mark ~ B(k)

B(k) is defined .·as Mindist(kJ)= 1{F' (i)}, which rep­
resents how heavily its neighbors are loaded.
Two predefined parameters, low_mark and
high...mark, are used to compare with B(k) to
ascertain the current system state as shown in
Table 1. If B(k) < low_mark, the system is con­
sidered to be in the light-load state. If B(k) ;:::::
high...mark, it is in the heavy-load state. Other­
wise, it is in the moderate-load state.

The ACWl"'" scheduling consists of both allocat­
ing phase and standing phase strategies. The allo­
cating phase strategy is called contracting and the
standing phase strategy is called redistributing.

As mentioned before, a chare is in its allocating
phase from the time it is created until it enters the
local queue at aPE. The allocating phase strategy
of the ACWN algorithm is shown in Figure 1. Dur­
ing this phase, a newly created chare is contracted
m hops, where 0 ::5 m ::5 d and d is the network
diameter. We set an upper limit of traveling dis­
tance d for each allocating chare to prevent un­
bounded message oscillation. The contracting de­
cision is based on the system state of each PE.
The number of hops traveled so far for each
chare cis recorded as c. hops. Thus, at each PE k,
for an allocating chare c, which either is created
by PE k or received from other PEs, there exist the
following cases: If the system is in the heavy-load
state or c. hops ;::::: d, chare c will be retained locally
and added to the local pool of messages, terminat­
ing its allocating phase; if the system is in the
light-load state and c. hops= 0, PE k will contract
chare c to its least-loaded neighbor no matter
what its own load is. Otherwise, the chare will be
contracted conditionally: If the load on the least­
loaded neighbor is smaller than its own load, the
chare is contracted out to that neighbor. In this
way, the newly generated chare c travels along the
steepest load gradient to a local minimum.

The standing phase strategy of the ACWN algo­
rithm is shown in Figure 2. Load imbalance may
appear even though the allocating phase strategy
is applied. Such imbalance may appear either due
to limitations of the underlying load contracting
scheme, which finds only a local minimum, or due

ADAPTIYE DY.'iA~IIC PROCESS SCHEDCLI:\'G 345

Contracting(k) I• at PE k •I
For each chare c with c.state =allocating do

I• chare c may be either newly created or newly arrived •I
if heavy-load or (c.hops >= d)

c.state = standing

enter chare c into the local queue

else

find i for all j's such that F'(i) <= F'(j), where dist(i,k)=dist(j,k)=1
if (light-load and c.hops = 0) or (moderate-load and F(k) > F'(i))

c.hops = c.hops + 1

send chare c to PE i

else

c.state = standing

enter chare c into the local queue
end if

end if

FIGURE 1 The allocating phase strategy for the ACWN algorithm.

to the different rates of consumption of chares.
Moreover, because each PE has its own system
state, it is possible that there exist PEs in the light­
load state, moderate-load state, or heavy-load
state at the same time in a system. During the
heavy-load state, PEs accumulate chares without
sending them to any other PEs. Thus, after a PE
leaves the heavy-load state, it may own many
more chares than other PEs. These chares need to
be redistributed to other PEs as the allocation of
new chares alone may not be sufficient to correct
the load imbalance. :Kotice that the redistributing
is active only when a PE is not in its heavy-load
state. In the heavy-load state, because all neigh­
bors of the PE have sufficient work to do, it is not
necessary to balance the load among them.

The behavior of both contracting and redistrib­
uting scheduling strategies is affected by the sys­
tem state, which is determined by the load infor­
mation as well as the predefined parameters,
low_rnark and higlLrnark. Low_mark is used to
switch states between the light load and moderate
load. If it is too high, chares are contracted out
frequently and the overhead to move chares be-

Redistributing(k) I• at PE k •I

comes higher. If it is too low, chares are spread
out slowly and load imbalance may occur.
HiglLmark is used to decide whether the system
is heavily loaded, i.e., in saturation. If this m"ark is
too high, the scheduling algorithm keeps moving
chares among PEs even when they all have suffi­
cient work, leading to higher overhead. However,
if high_mark is set too low, the heavy-load state
will be reached prematurely, which may cause
load imbalance. Experiments suggested that per­
formance is not sensitive as long as these parame­
ters are in a reasonable range. As shown in Fig­
ures 3 and 4, the low_rnark could be about 2 to 5
and the high_mark about 8. These experiments
used the number of messages waiting to be pro­
cessed as the measure of load. In the rest of the
experiments with AG\VN, we chose values of
low_mark and higlLmark as 2 and 8, respec­
tively.

Scheduling strategies without migration can be
summarized as a general model. The model con­
sists of three functions. In the allocating phase,
whether a chare is sent out depends on an allocat­
ing phase function. If the function is true, the

For each time interval and when not in the heavy-load state

find i for all j's such that F'(i) <= F'(j), where dist(i,k)=dist(j,k)=1
it F(k) > F'(i)

pick up a chare c from the local queue

with c.state = standing and c.hops < d
c.hops = c.hops + 1
send chare c to PE i

end if

FIGURE 2 The standing phase strategy for the ACWN algorithm.

346 SHU

Ex,•cution
Tltlll' (~f'CS)

10

_..... /oiLmark = :-...

FIGURE 3 Low_mark effect on the performance for
the 10-Queen problem.

chare is sent out; otherwise it is kept local. In the
standing phase, whether chares are moved de­
pends on a standing phase function. If the func­
tion is true, the chares are redistributed between
PEs. The third function is a destination function
that determines which PE "'ill receive a chare
when the chare is to be allocated or redistributed.
Different scheduling strategies can set different
values for each of the three functions. If a sched­
uling strategy sets the allocating phase function
always false, it is considered to be inactive during
the allocating phase. Similarly, if a scheduling
strategy sets the standing phase function always
false, it is said to be inactive in the standing phase.
To compare the randomized allocation, gradient
model, and ACWl\" algorithms under this general
model, we list three functions for each of them in
Table 2. For the gradient model, P(k) represents
the proximity at PE k and dis the network diame­
ter. For the randomized allocation, whenever PE k
generates a new chare, a random number m is
obtained to determine its allocating phase func­
tion as well as its destination function, where 0 :s

ExPcution
Tinw(>-P('s)

;]{)

10

-hudLmar/.: = x
- • -lu~luuark = .~

._- hu~lunark = I

'._

FIGURE 4 High_mark effect on the performance for
the 10-Queen problem.

m < Nand 1\' is the number of PEs in the svstem.
If m is equal to k, the allocating phase function is
false. Otherwise, the chare will be sent toPE m as
its destination.

The gradient model has virtually no allocating
phase action. ~-hen a chare is generated. it is put
in the local queue. This leads to slow spreading of
the load. On the other hand, the randomized allo­
cation does not have standing phase action. It
usually generates good distribution of the load.
However, when the sizes of chares vary in a wide
range, this strategy is unable to redistribute the
load even if some PEs are busy and others are
idle. ACWl\" conducts the actions in both phases,
resulting in a more reliable performance.

5 PERFORMANCE STUDIES

We have tested several examples on an Intel
iPSC/2 hypercube to study the effectiveness of
dynamic scheduling schemes on multicomputers.
The machine used has a 32-node configuration

Table 2. The Allocating Phase, Standing Phase, and Destination Functions of PE k

Randomized
Allocation

Allocating phase function True

Standing phase function False

Destination function Random

Gradient Model

False

It is true if P(k) ::s d and abun­
dant and P(k) > min(P(i)),
where dist(i, k) = 1 otherwise,
it is false

j, where P(j) = min(P(i)), and
dist(i, k) = dist(j, k) = 1

ACWN

It is true if (light load and c.hops
= 0) or ((moderate load or
(light load and c.hops > 0))
and F(k) > min(F'(i))), where
dist(i, k) = 1 otherwise, it is
false

It is true if not heavy load and
F(k) > min(F'(i)), where dist(i,
k) = 1; otherwise, it is false

j, where F'(j) = min(F'(i)), and
dist(i, k) = dist(j, k) = 1

with 4 megabytes of memory at each node. Three
algorithms, randomized allocation. gradient
model, and ACW"l\", were implemented. They
shared most subroutines except for the allocating
phase function, the standing phase function, and
the destination function. Notice that the programs
are chosen not because they are good parallel al­
gorithms for the problems they solve, but for the
suitability of illustrating different computation
patterns handled by the dynamic scheduling. For
each program the best sequential program written
in C was also tested without changing the algo­
rithm.

In general, the sum of execution times of all
PEs can be broken into three parts: computation
time, overhead, and idle time. Computation time
is spent on problem solving and should be equal
to the sequential execution time. This time is in­
variant with different scheduling strategies, differ­
ent numbers of PEs, and different grain sizes.
Overhead includes the work of bookkeeping. com­
munication, and load balancing. Idle time is the
time in which PEs have no work to do. The over­
head and idle time depend on granularity of parti­
tioning as well as scheduling strategy. Experi­
ments for different grain sizes of the 1 0-Queen
problem were conducted for analysis of the factors
of granularity. Figure 5 shows the efficiency of this
problem for different numbers of PEs with differ­
ent grain sizes. The performance of the largest
grain size slumps as the number of PEs increases
because the pool of available chares is not large
enough to keep all the PEs busy. The poor perfor­
mance of the curve with the smallest grain size is
due to overhead. For example, Figure 6 shows the
components of the execution time for different
grain sizes with 16 PEs. Here, a small grain size
imposes a large amount of overhead. On the other

ElfirwrKy

1 00

0./.t}

U.25

~
~

---&- grain SlZf' :! .U m~t'fS :a

--- gra111 SIZe 8 4 JllSI'fS

~grain size 46 msecs

-+-grain sizP 3i:l msers

If) 32 :"iu!llfwrofPE-.

FIGURE 5 Comparison of different grain si~es for the
1 0-Queen problem.

ADAPTIVE DY;\;A:\IIC PROCESS SCHEDULING 347

~IJm<P<'S~~~-==~ K ,, 11\Sf'('!.

Hi ITI~PCS

Ji:lmsPcs

0 Computation II Idle

FIGURE 6 Overhead and idle time as grain size
varies.

hand, a large grain size reduces overhead but may
result in longer processor idle time because of load
imbalance.

Bookkeeping overhead depends on the number
of chares and the number of messages only. For
each individual chare, the system maintains a
chare block, and for each message there is a mes­
sage header including its source and destination
chare information. The overhead of bookkeeping
is about 250-400 microseconds whenever a new
chare is created or a message is sent. The com­
munication overhead consists of the time spent by
the processor that deals with sending and receiv­
ing messages. The actual transmission time is
overlapped with computation and does not need
to be considered. The overhead for each com­
munication is about 450 microseconds. The gran­
ularity also affects communication overhead
because the number of messages exchanged be­
tween PEs tends to increase when the grain size
becomes smaller. Not all the messages between
chares introduce communication overhead. Only
those going to PEs other than the source PE have
the result. Thus, the load-balancing strategies
also influence the communication overhead, as
different strategies have different effects on what
fraction of the messages will be between local
chares. Scheduling overhead can be divided into
two parts: updating load information and chare
placement. Time spent on chare placement is pro­
portional to the number of chares and is deter­
mined by granularity. System load information
can be exchanged periodically. As shown in Fig­
ure 7 for the 10-Queen problem on 16 PEs, too
short a period increases communication overhead
and too long a period leads to inaccurate load in­
formation due to sluggish updates. With a long
exchanging period, the system acts unstably. We
give both worst and best time from many repeti­
tions of experiments for periods after 256 millisec­
onds. In Figure 7, two curves are shown, with and
without piggybacking for different exchanging pe­
riods. Piggybacking load information on the regu-

348 SHU

Ex~'cut ton

Tune (sees)

---6-- without pig;p;yh:H·k

FIGURE 7 Comparison of different periods to ex­
change load information.

lar outgoing messages can reduce the number of
load information messages exchanged. One with
piggybacking behaves better than one without pig­
gybacking because with every message we update
load information with a negligible additional cost.
Figure 8 selects one instance with piggybacking to
show the sum of overhead and sum of idle time at
all 16 PEs. A short exchanging period makes the
frequently updated load information unnecessary.
However, if the period is too long, load is highly
unbalanced with long idle time. From the curves,
it can be seen that the best period is between 50
and 150 milliseconds. In the rest of the experi­
ments, piggybacking is applied to both the ACWN
and the gradient model algorithms. The period of
load information exchanging is set to be 100 milli­
seconds for ACWN and the best value of exchang­
ing interval is also selected for the gradient model.

The influence of sch~duling strategies will now
be discussed. A good scheduling algorithm must
be able to balance load for different application
problems. At the same time, it has to keep sched­
uling overhead small. Furthermore, it must keep
good locality so that most chares can be executed
locally to reduce communication overhead. Three
scheduling algorithms are compared, randomized

Time (sees)

20

-overhead

15 -tdletime

10

16 32 64 128 256 512 .:JU Period (msecs)

FIGURE 8 Total overhead and idle time at all16 PEs.

PE: 0 1 2 3 4 56 7 0 1 2 3 4 56 7 0 1 2 3 4 5 6 7

Random Gradient model

D # of chares from other PEs

• # of chares locally generated

ACWN

FIGURE 9 Distribution of chares over PEs

allocation, gradient model, and AG\V~. Figure 9
lists chare distribution at each PE with different
scheduling algorithms for Fibonacci 32 on 8 PEs.
Each chare processed at PE k is either generated
by PE k itself or from other PEs. The ACW~ has
the most locally generated chares and a few from
other PEs. At the other extreme, the randomized
allocation has a few local chares (about 1 IN) and
most chares from other PEs.

The only scheduling overhead for the random­
ized allocation is to generate random numbers
whenever a chare is created. However, communi­
cation overhead is high because most chares are
sent to other PEs irrespective of whether the sys­
tem is heavily or lightly loaded. For the same
problem shown in Figure 9, Figure 10 illustrates
percentage of computation time, overhead, and
idle time. To compare the algorithms, the over­
head time can be subdivided further into three
subcategories: the bookkeeping overhead (T8),

communication overhead (Tc), and load-balanc­
ing overhead (TL). Figure 11 extracts the overhead
parts from Figure 10 and illustrates each kind of
overhead for different algorithms. The random-

D Computation ~ Overhead I Idle

FIGURE 10 Timing analysis for different scheduling
algorithms.

Random L=:::J~~~~

Gradient model L=:::J~··

~ Tc

ACWN Ll _ __.,9 ...
0 Tn

FIGURE 11 Three parts of overhead.

ized allocation has large overhead spent on com­
munication although its scheduling overhead is
negligible. The gradient model utilizes the system
status information to make loads balanced among
PEs so that the idle time is reduced. More impor­
tantly, the gradient model sends chares away only
when necessary. Due to this locality property, the
gradient model does not incur high communica­
tion overhead compared to the randomized allo­
cation case. However, the gradient model must
exchange load information more frequently to
balance the load, resulting in large load balancing
overhead. The ACWI\" exhibits better localitv than
the gradient model. Therefore, it has less. com­
munication overhead. Its scheduling overhead is
also small due to a low frequency of load informa­
tion exchange.

In Table 3 and Figures 12-15, we give the per­
formance comparison of the randomized alloca­
tion, the gradient model, and the ACWN algo­
rithms. Here, one instance of each program has
been chosen for execution, i.e., 10 Queens, Fi­
bonacci 32, one configuration of 15-puzzle, and

ADAPTIVE DY~A.\IIC PROCESS SCHEDULING 349

Effirlt'n<_\

I 011

l)j':)

' • ',
----e- raudom

'•

16 :1:2 Numlwr of PEs

FIGURE 12 Comparison for the 10-Queen problem.

the Romberg integration with 14 integrations.
Characteristic features for different problems are
shown in Table 4. The granularity is between 1 to
100 milliseconds, resulting from the medium­
grained partitioning. Coarse granularity causes
serious load imbalance and fine granularity leads
to large overhead. The Fibonacci problem is a reg­
ular tree-structured computation. The grain sizes
of leaf chares are roughly the same. In the Queen
problem, the grain size is not even because when­
ever a new queen is placed, the search either suc­
cessfully continues to the next row or fails. The
15-puzzle is a good example of an AI search prob­
lem. Here the iterative deepening A* algorithm is
used [23 J. The grain size may vary substantially
because it dynamically depends on the current es­
timate cost. Also, synchronization at each itera-

Table 3. Performance on Intel iPSC/2 Hypercube: Execution Time (seconds)

l\umber of PEs

Seq. 1 2 4 8 16 32

Queen 10
Random 29.5 29.9 15.5 8.41 4.72 2.56 1.69
Gradient 29.5 29.9 15.4 7.98 4.74 3.53 3.54
ACWN 29.5 29.9 15.2 7.74 4.07 2.24 1.24

Fibonacci 32
Random 30.0 36.2 21.2 11.4 5.99 3.21 1.73
Gradient 30.0 36.4 18.6 9.68 5.65 3.51 1.99
ACWN 30.0 36.4 18.4 9.51 4.89 2.52 1.36

15-puzzle/IDA *
Random 50.2 50.9 29.3 16.2 10.8 8.17 5.17
Gradient 50.2 51.0 26.6 15.0 9.94 8.50 8.48
ACWN 50.2 50.9 27.2 14.9 8.55 5.52 4.11

Romberg integration 14
Random 24.8 26.1 15.2 8.50 4.77 2.99 1.97
Gradient 24.8 26.1 14.5 8.46 5.76 4.55 4.51
ACWN 24.8 2~.1 14.0 7.30 4.02 2.41 1.64

350 SHL'

I 00

0.7!)

0 ..)0

--eo- ra11dom

31 .\illlnlwr of PE."

FIGURE 13 Comparison for the Fibonacci problem.

tion reduces the effective parallelism. Perfor­
mance of this problem is therefore not as good as
others. In the Romberg integration, the evaluation
of function points at each iteration is performed in
parallel. As we can see, AG\n'' is better than both
the randomized allocation and the gradient model
in all the cases.

6 DISCUSSION

The ACWN algorithm outperforms the random­
ized allocation and the gradient model partly due
to its two-phase scheduling strategy and partly
due to its adaptive locality. Its good locality re­
duces communication overhead whereas the ran­
domized allocation does not. Besides the standing
phase strategy, the allocating phase strategy of
ACWN allows load to spread out faster than the
gradient model. The ACWl\" can adapt to different
chare sizes too. Assume at a time both PE i and
PE j have m messages waiting for processing, re­
spectively. It happens that PE i gets a message

Efficiency

1.00

0.75

o .. \o

0.25 -~-gradient model

~ACWN

16 32 Number of PEs

FIGURE 14 Comparison for 15-puzzle/IDA* prob­
lem.

Efficiency

I 011

0 j:)

'•
-e- random '•
- -o-- gradient moJPI

---If- ACW:'-1 ••

Jl)

FIGURE 15 Comparison for Romberg Integration.

with a large amount of computation. After a while,
PE i still holds m- 1 messages and PEj may have
no messages left. At this time, A.CWl\" is able to
schedule messages from PE i to PE j to balance
the load. In contrast, the randomized allocation
cannot adapt to such a case.

For a small number of PEs, the gradient model
can make better load balance than the random­
ized allocation. However, because the gradient
model was designed based on good locality to re­
duce communication overhead, it does not spread
the load very fast. For a large number of PEs, the
gradient model leads to more load imbalance than
the randomized allocation does. As shown in Fig­
ure 16 for the 1 0-Queen problem, the idle time of
the gradient model at 16 and 32 PEs is longer
than the randomized allocation. A similar conclu­
sion is also made by Grunwald [24]. ACWJ\
reaches the most even load distribution among the
three scheduling algorithms.

From experiments, the overhead for a local
chare that does not involve communication over-

ldk

75%

50%

---&-random

- -o-- gradiPnt modt>l

, AC'WN

' '
-

' ' ' '

16

' '

32 Number of PEs

FIGURE 16 Comparison of PE idle rime for different
scheduling algorithms (10-Queen).

ADAPTI\.E DY~A~IIC PROCESS SCHEDULIJ."G 351

Table 4. Characteristics of Different Problems

!\"umber of Execution Time !\"umber of Execution Time
Problems Chares per Chan~ (milliseconds) Messages per msg (milliseconds)

Queen 10 593
Fibonacci 32 8:361
15-puzzle/ IDA* 1172
Romberg Integration 1 't 2026

head is about 0.3 to OA milliseconds and for a
remote chare that involves communication over­
head it is about 1.2 to 1.3 milliseconds. Thus,
performance may not suffer much from book­
keeping and communication overhead if the grain
size of a chare is much larger than that. A few 10-
milliseconds can therefore be counted as a rea­
sonable grain size. Due to a large number of re­
mote chares, the communication overhead for the
randomized allocation is large, which in turn im­
plies a large grain size.

Does overhead of a complicated scheduling al­
gorithm always overwhelm the benefit it achieves?
Certainly, a complex algorithm (as an extreme ex­
ample, one that looks for the least loaded proces­
sor across the entire system at every scheduling
decision) loses its uniform distribution advantage
to its high overhead. The randomized allocation
algorithm bears negligible overhead for load-bal­
ancing decisions but the communication overhead
is high and the suspension is large. ·we have
shown that a good load balance can be obtained
by a simple algorithm with low scheduling over­
head. Even though ACWl\' pays more scheduling
overhead compared to the randomized allocation,
it still can achieve better performance in most
cases.

Overhead can be reduced by using coproces­
sors. A coprocessor can be attached to the main
processor in each PE, which handles all book­
keeping, load-balancing, and communication ac­
tivities. In the iPCS/2 hypercube, each PE has a
communication coprocessor that shares part of
the communication overhead. Because we are not
able to program coprocessors, overhead of book­
keeping, load balancing, and part of communica­
tion must be handled by the main processor. If the
AC\VN scheduling can be applied to a system with
coprocessors, the frequency of load information
exchange can be increased and more communica­
tion activities may take place to improve load bal­
ance, as long as the load of the coprocessor does
not exceed the load of the main processor. The

't9.7 1186 24.9
3.59 16722 1.79

42.8
12.2

2344 21.4
40.52 6.1

randomized allocation and the gradient model
may benefit more from the coprocessor than
ACWN does because the randomized allocation
has more communication overhead and the gradi­
ent model has more scheduling overhead.

7 CONCLUSION

We described a scheme for dynamic scheduling of
medium-grained processes on multicomputers.
The scheme, called ACWN employs two sub­
strategies: an allocating phase strategy and a
standing phase strategy. The allocating phase
strategy moves a new piece of work along the
steepest load gradient to a local minimum within a
neighborhood. It estimates the system state and
ensures that pieces of work are moved only when
the system requires it. The standing phase strat­
egy corrects load imbalance by redistributing
pieces of work that were initially allocated by the
allocating phase strategy. Every processor main­
tains load information about their neighbors only,
and such information is often exchanged by pig­
gybacking it on regular messages. Thus, the
scheme incurs low load balancing overhead. As it
manages to retain many pieces of work on the pro­
cessor that produced them, it has low communi­
cation overhead.

ACWN was compared with two other schemes,
the randomized allocation and the gradient
model. The randomized allocation incurs negligi­
ble load balancing overhead and achieves reason­
ably uniform distribution of work. However, it
incurs much communication overhead. The gra­
dient model, on the other hand, enforces locality
at the expense of agility in spreading work out
quickly to processors. All these schemes were im­
plemented in a system called the chare kernel run­
ning on the Intel iPSC/2 hypercube. The experi­
mental results demonstrate that AGWN performs
better than the other two algorithms for many
computation patterns.

352 SHU

ACKNOWLEDGMENT

The research was partially supported by NSF grant
CCR-9109114.

REFERENCES

[1] W. Shu and L. V. Kale, "Chare Kernel-a run­
time support system for parallel computations,"
J. Parallel Distrib. Comput., vol. 11, pp. 198-
211' 1991.

[2] W. Shu, "Chare Kernel and its Implementation
on Multicomputers," PhD thesis, Department of
Computer Science, University of Illinois at Cr­
bana-Champaign, January 1990.

[3] W. Shu and L. V. Kale, Supercomputing '59.
1989, pp. 389-398. ACM Press.

[4] L. V. Kale and W. Shu, International Conference
on Parallel Processing. 1989, pp. 118-121. CRC
Press.

[5] R. Keller and F. C. H. Lin, "Simulated perfor­
mance of a reduction based multiprocessor,"
IEEE Comput, vol. 17, pp. 74-82, 198-t.

[6] W. C. Athas and C. L. Seitz. "Cantor user re­
port," Technical Report, Department of Com­
puter Science, California Institute of Technology,
January 1987.

[7] N. G. Shivaratri, P. Krieger, and ~1. Singhal.
"Load distributing for locally distributed sys­
tems," IEEE Comput., vol. 25. pp. 33-44. 1992.

[8] D. L. Eager, E. D. Lazowska, and J. Zahorjan,
"Adaptive load sharing in homogeneous distrib­
uted systems," IEEE Trans. Software Eng .. vol.
SE-12, pp. 662-674, 1986.

[9] D. L. Eager, E. D. Lazowska, and J. Zahorjan,
"A comparison of receiver-initiated and sender­
initiated adaptive load sharing,., Performance
Eva!., vol. 6, pp. 53-68, 1986.

[10] J. A. Stankovic, "Simulations of three adaptive.
decentralized controlled, job scheduling algo­
rithms," Comput. Networks, vol. 8, pp. 199-
217, 1984.

[11] T. L. Casavant and J. G. Kuhl, International
Conference on Distributed Computing System.

1986, pp. 232-239. IEEE Computer Society
Press.

[12] T. L. Casavant and I. G. Kuhl, International
Conference on Distributed Computing System.
1987, pp. 185-192. IEEE Computer Society
Press.

[13] A. Hac and X. Jin, International Conference on
Distributed Computing System. 1987, pp. 170-
177. IEEE Computer Society Press.

[14] V. Singh and M. H. Genesereth, 9th International
Joint Conference on Artificial Intelligence. 1985,
pp. 39-45.

[15] Y.-T. Wang and R. J. T. Morris, "Load sharing in
distributed systems," IEEE Trans. Comput., vol.
C-34, pp. 204-217, 1985.

[16] A. Barak and A. Shiloh, "A distributed load-bal­
ancing policy for a multicomputer," Software
Practice Exp., vol. 15, pp. 901-913, 1985.

[17] Z. Lin, "A distributed fair polling scheme applied
to parallel logic programming." Int. J. Parallel
Programming, vol. 20, 1991.

[18] M. Willebeek-LeMair and A. P. Reeves. "Strate­
gies for dynamic load balancing on highly parallel
computers," J. Parallel Distrib. Comput .. vol. 9,
pp. 979-993, 1993.

[19] F. C. H. Lin and R. M. Keller, ·'The gradient
model load balancing method.'' IEEE Trans.
Software Eng., vol. 13, pp. 32-38, 1987.

[20] W. C. Athas, "Fine grain concurrent computa­
tions," PhD thesis, Department of Computer Sci­
ence, California Institute of Technology. May
1987.

[21] W. C. Athas and C. L. Seitz, .. ~lulticomputers:
Message-passing concurrent computers." IEEE
Comput., vol. 21, pp. 9-24, 1988.

[22] F. C. H. Lin, "Load balancing and fault toler­
ance in applicative systems," PhD thesis, Depart­
ment of Computer Science, Lniversity of Ctah.
August 1985.

[23] R. E. Korf, "Depth-first iterative-deepening: An
optimal admissible tree search," Artificial Intelli­
gence, vol. 27, pp. 97-109,1985.

[24] D. C. Grunwald, ··Curcuit switched multicompu­
ters and heuristic load placement." PhD thesis.
Department of Computer Science, Lniversity of
Illinois at Urbana-Champaign, CICCDCS-R-89-
1514, September 1989.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

