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ABSTRACT 

One of the challenges in programming distributed memory parallel machines is decid­
ing how to allocate work to processors. This problem is particularly important for 
computations with unpredictable dynamic behaviors or irregular structures. We present 
a scheme for dynamic scheduling of medium-grained processes that is useful in this 
context. The adaptive contracting within neighborhood (ACWN) is a dynamic, distrib­
uted, load-dependent, and scalable scheme. It deals with dynamic and unpredictable 
creation of processes and adapts to different systems. The scheme is described and 
contrasted with two other schemes that have been proposed in this context, namely the 
randomized allocation and the gradient model. The performance of the three schemes 
on an Intel iPSC/2 hypercube is presented and analyzed. The experimental results show 
that even though the ACWN algorithm incurs somewhat larger overhead than the ran­
domized allocation, it achieves better performance in most cases due to its adaptive­
ness. Its feature of quickly spreading the work helps it outperform the gradient model in 
performance and scalability. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Large distributed memory parallel machines are 
becoming increasingly available. To efficiently use 
such large machines to solve an application prob­
lem, the computation must first be divided into 
parallel actions. These parallel actions are then 
mapped and scheduled onto processors. 

Static, compile time allocation is one way to 
accomplish this. As a rather simple example, con­
sider the problem of multiplying two 64 X 64 ma­
trices on 16 processors. One may decide that each 
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processor will compute a 16 X 16 sub matrix of the 
result matrix by using appropriate rows and 
columns from the original matrix. This leads to 16 
subcomputations, as desired, and either an auto­
matic scheduler or a programmer can specify the 
appropriate data movement and computations. 

Such static scheduling schemes cannot be used 
when the size of subcomputations cannot be ac­
curately determined. In fact, in many computa­
tions, the subcomputations themselves are not 
known at compile time. Combinatorial search 
problems encountered frequently in AI provide an 
extreme example. Exploring a node in the search 
tree may lead to a large subtree search, may 
quickly lead to a dead end, or may lead to a solu­
tion. Even with deterministic computations, data 
dependencies and variable computational costs of 
operations lead to programs in which the detailed 
structure of computation cannot be predicted in 
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advance. In such computations, one cannot di­
vide the work into lV equal parts, where S is the 
number of processing elements (PEs) in the sys­
tem because the computational costs of subtasks 
cannot be predicted accurately. A reasonable 
strategy for such computations is to divide the 
work at run-time into many ('PlV) smaller granules 
and attempt to dynamically distribute them across 
the processors of the system. The grain size must 
be large enough to offset the overhead of parallel­
ization. There are systems, such as the chare ker­
nel described in the next section, that can support 
a grain size as small as a few milliseconds. Parti­
tioning an application with small grain size would 
provide a large pool of work. Thus, even if the 
amount of computation within individual granules 
may vary unpredictably, it at least becomes possi­
ble to move these granules among processors to 
balance the load. 

A scheduling scheme in such a context must 
deal with dynamic creation of work. It must cope 
with work generation and consumption rates that 
vary from processor to processor and from time to 
time. It cannot be a centralized scheme as it must 
work with a large number of processors and must 
scale up to a larger future system. Rather, it must 
be a distributed scheme, in which each processor 
participates in realizing the load-balancing objec­
tives. 

Obviously, a static scheduling scheme cannot 
be used for a computation that involves dynamic 
creation of work. However, a dynamic scheduling 
scheme can also be used for statically allocatable 
computations, such as the matrix multiplication 
problem mentioned above. In fact, a good dy­
namic scheduler may perform better than static 
schedulers even in some statically schedulable 
computations because it will automatically adapt 
to variable speeds of processors and to variable 
numbers of processors. 

In this article we describe a dynamic and dis­
tributed scheduling scheme called adaptive con­
tracting within neighborhood (ACWI1

.;")_ The next 
section discusses background and context in 
which the scheme is to operate and outlines basic 
issues. Section 3 describes some algorithms with 
similar objectives. Section 4 presents the AGWN 
algorithm and compares three different schedul­
ing algorithms. Performance evaluation is given in 
Section 5, showing that ACWl\" maintains good 
load balance with low overhead. In Section 6, we 
discuss why the ACWN algorithm outperforms the 
other algorithms. 

2 BACKGROUND 

The chare kernel is a run-time support system 
that is designed to support machine-independent 
parallel programming [ 1-4 J. The kernel is re­
sponsible for dynamically managing and schedul­
ing parallel actions, called chares. A chare-the 
work stands for a small chore or task-is a process 
with some specific properties. Programmers use 
kernel primitives to create instances of chares and 
send messages between them, without concerning 
themselves with mapping these chares to proces­
sors or deciding which chare to execute next. 
Chares have some properties that distinguish 
them from processes in general. On creation and 
on receipt of a message, chares usually execute for 
a relatively short time. They may create other 
chares or send messages to existing ones. Having 
processed a message, the chare suspends. to be 
awakened by another message meant for it. These 
characteristics simplify the scheduling of chares 
considerably. 

In this article the chare kernel concepts and 
terminology are used in discussing dynamic 
scheduling strategies. However, it should be clear 
that the scheduling strategies that are applicable 
in this context can also be used in other contexts 
that involve dynamic creation of small-grained 
tasks. For example, the REDIFLOW system [5] 
for applicative programming, other parallel imple­
mentations of functional languages, rewrite sys­
tems and logic languages, and actor-based lan­
guages such as Cantor [ 6], can all benefit from 
such strategies. 

Many previous research efforts have been di­
rected towards the task allocation in distributed 
systems [7 -17]. Although some basic ideas can 
be shared, these strategies cannot simply be ap­
plied to multicomputer networks. A recent com­
parison study of dynamic load-balancing strate­
gies on highly parallel computers is given by 
Willebeek-LeMair and Reeves [18]. Work with a 
similar assumption as mentioned in this article in­
cludes the gradient model developed by Lin and 
Keller [ 19 J. Athas and Seitz also point out that 
random placement can be a quite simple and ef­
fective strategy [20, 21 J. These strategies are dis­
cussed in the next section. 

A chare instance goes through three phases in 
its life cycle: the allocating phase, the standing 
phase, and the active phase. It is in the allocating 
phase upon its creation until it enters in a pool of 
chares at some PE, and to be in the standing 



phase until it starts execution for the first time. 
Then the active phase begins. Opportunities for 
chare scheduling exist in all three phases but with 
different cost and effectiveness. The allocating 
phase strategies as well as standing phase strate­
gies are instances of placement strategies. The ac­
tive phase can also be used for scheduling. Strate­
gies that move a chare in the active phase are 
called migration strategies. Because the grain size 
of chares is not large, migration is expensive and 
not necessary for load balance. Hence, this strat­
egy is not considered in this article. 

Scheduling strategies can also be classified 
based on the amount of load information thev use. 
The "load'' measure mav include the number of 
messages waiting to be processed .. the number of 
active chares, available memory, etc., possibly in 
a weighted combination. For the following discus­
sion, the specific load measure is unimportant. 
The scheduler at a PE may periodically collect 
information from other PEs to calculate its own 
"status" information on which the scheduling de­
cision is based. The strategies can be classified as 
follows: 

1. Type I strategies involve using no status in­
formation. 

2. Type II strategies calculate the status infor­
mation by using local load information only. 

3. Type III strategies calculate the status infor­
mation by collecting load information from 
neighbors. 

4. Type IV strategies calculate the status infor­
mation by collecting status information 
from neighbors. 

5. Type V strategies calculate the status infor­
mation by collecting load information from 
all the PEs in the system. 

Type I and II strategies typically have low over­
head. The randomized allocation to be discussed 
in Section 3 is an example of a Type I strategy. It is 
believed that a strategy that adapts to variations in 
the system is necessary, and using local informa­
tion alone is not sufficient to judge such varia­
tions. Type V strategies, on the other hand, are 
expensive in large systems and are not scalable. 

The algorithm developed in this article is a 
Type III strategy in which the status information of 
aPE may be determined based on load informa­
tion from itself and from its neighbors. The gradi­
ent model to be described in the next section is a 
Type IV strategy. The status information of aPE is 
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determined from its neighbors' status informa­
tion. Thus, the status of a PE depends on its 
neighbors, and theirs, in tum, depend on their 
neighbors. However, the time required to ex­
change information causes the status to be depen­
dent on possibly outdated information. 

3 RANDOMIZED ALLOCATION AND 
GRADIENT MODEL 

Athas and Seitz [20, 21] have proposed a global 
randomized allocation algorithm. The random­
ized allocation is an allocating phase scheduling 
strategy and no standing phase action is involved. 
A randomized allocation algorithm dictates that 
each PE, when it generates a new chare, should 
send it to a randomly chosen PE. One advantage 
of this algorithm is simplicity of implementation. 
No local load information needs to be maintained 
nor is any load information sent to other PEs. Sta­
tistical analysis shows that the randomized alloca­
tion has a respectable performance as far as the 
number of chares per PE is concerned. However, 
a few factors may degrade the performance of the 
randomized allocation. First, the grain size of 
chares may vary. Even if each PE processes about 
the same number of chares, the load on each PE 
may still be uneven. Second, the lack of locality 
leads to large overhead and communication traf­
fic. Only 1/N subtasks stay on the creating PE, 
where N is the number of PEs in the system. Thus, 
most messages between chares have to cross pro­
cessor boundaries. The average distance traveled 
by messages is the same as the average internode 
distance of the system. This leads to a higher com­
munication load on large systems. Because the 
bandwidth consumed by a long-distance message 
is certainly larger, the system is more likely to be 
communication bound compared to a system us­
ing other load-balancing strategies that encourage 
locality. Eager et al. [8] have modified the naive 
randomized allocation algorithm. They use 
threshold, a kind of local load information, to de­
termine whether to process a chare locally or lo­
cate a chare randomly. 

The gradient model [19] is mainly a standing 
phase scheduling strategy. As stated by Lin [22], 
instead of trying to allocate a newly generated 
chare to other PEs, the chare is queued at the 
generating PE and waits for some PE to request it. 
A separate, asynchronous process on each PE is 
responsible for balancing the load. This process 
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periodically updates the statefunction and prox­
imity on each PE. The state of a PE is decided by 
two parameters, the low_water_mark and 
high...water_mark. If the load is below the 
low_water_mark, the state is idle. If the load is 
above the high...water_rnark, the state is abun­
dant. Otherwise, it is neutral. The proximity of a 
PE represents an estimate of the shortest distance 
to an idle PE, which has a proximity of zero. For 
all other PEs, the proximity is one more than the 
smallest proximity among the nearest neighbors. 
If the calculated proximity is larger than the net­
work diameter, it is in saturation and the proxim­
ity is set to be network-diameter + 1, to avoid 
unbounded increase in proximity values. If the 
calculated proximity is different from the old 
value, it is broadcast to all the neighbors. Based 
on the state function and the proximity, this strat­
egy is able to balance the load between PEs. When 
a PE is not in saturation and its state is abundant, 
it sends a chare from its local queue to the neigh­
bor with the least proximity. 

The gradient model may cause load imbalance. 
For a tree-structured computation, this behavior 
could cause the upper-level nodes to cluster to­
gether near the root PE. When the results need to 
be collected at the root of the computation tree, 
the computation slows down. Furthermore, the 
proximity information may be inaccurate because 
of communication delays and the nature of the 
proximity update algorithm: By the time the prox­
imity information from an idle PE propagates 
through the majority of PEs in a system, the state 
of the original PE may have changed. 

4ACWN 

ACWN is a scheduling algorithm using the Type 
III strategy. Here, each PE calculates its own load 
function by combining various factors that indi­
cate its current load. A simple measure may be the 
number of messages waiting to be processed. Ad­
jacent PEs exchange their load information peri­
odically by sending a small load message or piggy­
backing the load information with regular 
messages. Thus, each PE maintains load infor­
mation on all its nearest neighbors. For PE k, its 
own load function is denoted by F(k), and its 
neighbors' load functions are denoted by a set of 
values F' (i), where dist(k, i) = 1. The value ofF (k) 
is calculated periodically. 

The load information can then be used to de­
termine a system state. For each PE k, l.l function 

Table 1. System States 

State 

Light load 
Moderate load 
Heavy load 

B(k) < low_mark 
low_mark ~ B(k) < higlL.mark 
high_mark ~ B(k) 

B(k) is defined .·as Mindist(kJ)= 1{F' (i)}, which rep­
resents how heavily its neighbors are loaded. 
Two predefined parameters, low_mark and 
high...mark, are used to compare with B(k) to 
ascertain the current system state as shown in 
Table 1. If B(k) < low_mark, the system is con­
sidered to be in the light-load state. If B(k) ;::::: 
high...mark, it is in the heavy-load state. Other­
wise, it is in the moderate-load state. 

The ACWl"'" scheduling consists of both allocat­
ing phase and standing phase strategies. The allo­
cating phase strategy is called contracting and the 
standing phase strategy is called redistributing. 

As mentioned before, a chare is in its allocating 
phase from the time it is created until it enters the 
local queue at aPE. The allocating phase strategy 
of the ACWN algorithm is shown in Figure 1. Dur­
ing this phase, a newly created chare is contracted 
m hops, where 0 ::5 m ::5 d and d is the network 
diameter. We set an upper limit of traveling dis­
tance d for each allocating chare to prevent un­
bounded message oscillation. The contracting de­
cision is based on the system state of each PE. 
The number of hops traveled so far for each 
chare cis recorded as c. hops. Thus, at each PE k, 
for an allocating chare c, which either is created 
by PE k or received from other PEs, there exist the 
following cases: If the system is in the heavy-load 
state or c. hops ;::::: d, chare c will be retained locally 
and added to the local pool of messages, terminat­
ing its allocating phase; if the system is in the 
light-load state and c. hops= 0, PE k will contract 
chare c to its least-loaded neighbor no matter 
what its own load is. Otherwise, the chare will be 
contracted conditionally: If the load on the least­
loaded neighbor is smaller than its own load, the 
chare is contracted out to that neighbor. In this 
way, the newly generated chare c travels along the 
steepest load gradient to a local minimum. 

The standing phase strategy of the ACWN algo­
rithm is shown in Figure 2. Load imbalance may 
appear even though the allocating phase strategy 
is applied. Such imbalance may appear either due 
to limitations of the underlying load contracting 
scheme, which finds only a local minimum, or due 



ADAPTIYE DY.'iA~IIC PROCESS SCHEDCLI:\'G 345 

Contracting(k) I• at PE k •I 
For each chare c with c.state =allocating do 

I• chare c may be either newly created or newly arrived •I 
if heavy-load or (c.hops >= d) 

c.state = standing 

enter chare c into the local queue 

else 

find i for all j's such that F'(i) <= F'(j), where dist(i,k)=dist(j,k)=1 
if (light-load and c.hops = 0) or (moderate-load and F(k) > F'(i)) 

c.hops = c.hops + 1 

send chare c to PE i 

else 

c.state = standing 

enter chare c into the local queue 
end if 

end if 

FIGURE 1 The allocating phase strategy for the ACWN algorithm. 

to the different rates of consumption of chares. 
Moreover, because each PE has its own system 
state, it is possible that there exist PEs in the light­
load state, moderate-load state, or heavy-load 
state at the same time in a system. During the 
heavy-load state, PEs accumulate chares without 
sending them to any other PEs. Thus, after a PE 
leaves the heavy-load state, it may own many 
more chares than other PEs. These chares need to 
be redistributed to other PEs as the allocation of 
new chares alone may not be sufficient to correct 
the load imbalance. :Kotice that the redistributing 
is active only when a PE is not in its heavy-load 
state. In the heavy-load state, because all neigh­
bors of the PE have sufficient work to do, it is not 
necessary to balance the load among them. 

The behavior of both contracting and redistrib­
uting scheduling strategies is affected by the sys­
tem state, which is determined by the load infor­
mation as well as the predefined parameters, 
low_rnark and higlLrnark. Low_mark is used to 
switch states between the light load and moderate 
load. If it is too high, chares are contracted out 
frequently and the overhead to move chares be-

Redistributing(k) I• at PE k •I 

comes higher. If it is too low, chares are spread 
out slowly and load imbalance may occur. 
HiglLmark is used to decide whether the system 
is heavily loaded, i.e., in saturation. If this m"ark is 
too high, the scheduling algorithm keeps moving 
chares among PEs even when they all have suffi­
cient work, leading to higher overhead. However, 
if high_mark is set too low, the heavy-load state 
will be reached prematurely, which may cause 
load imbalance. Experiments suggested that per­
formance is not sensitive as long as these parame­
ters are in a reasonable range. As shown in Fig­
ures 3 and 4, the low_rnark could be about 2 to 5 
and the high_mark about 8. These experiments 
used the number of messages waiting to be pro­
cessed as the measure of load. In the rest of the 
experiments with AG\VN, we chose values of 
low_mark and higlLmark as 2 and 8, respec­
tively. 

Scheduling strategies without migration can be 
summarized as a general model. The model con­
sists of three functions. In the allocating phase, 
whether a chare is sent out depends on an allocat­
ing phase function. If the function is true, the 

For each time interval and when not in the heavy-load state 

find i for all j's such that F'(i) <= F'(j), where dist(i,k)=dist(j,k)=1 
it F(k) > F'(i) 

pick up a chare c from the local queue 

with c.state = standing and c.hops < d 
c.hops = c.hops + 1 
send chare c to PE i 

end if 

FIGURE 2 The standing phase strategy for the ACWN algorithm. 
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FIGURE 3 Low_mark effect on the performance for 
the 10-Queen problem. 

chare is sent out; otherwise it is kept local. In the 
standing phase, whether chares are moved de­
pends on a standing phase function. If the func­
tion is true, the chares are redistributed between 
PEs. The third function is a destination function 
that determines which PE "'ill receive a chare 
when the chare is to be allocated or redistributed. 
Different scheduling strategies can set different 
values for each of the three functions. If a sched­
uling strategy sets the allocating phase function 
always false, it is considered to be inactive during 
the allocating phase. Similarly, if a scheduling 
strategy sets the standing phase function always 
false, it is said to be inactive in the standing phase. 
To compare the randomized allocation, gradient 
model, and ACWl\" algorithms under this general 
model, we list three functions for each of them in 
Table 2. For the gradient model, P(k) represents 
the proximity at PE k and dis the network diame­
ter. For the randomized allocation, whenever PE k 
generates a new chare, a random number m is 
obtained to determine its allocating phase func­
tion as well as its destination function, where 0 :s 

ExPcution 
Tinw(>-P('s) 

;]{) 

10 

-hudLmar/.: = x 
- • -lu~luuark = .~ 

._ ........- hu~lunark = I 

'._ 

FIGURE 4 High_mark effect on the performance for 
the 10-Queen problem. 

m < Nand 1\' is the number of PEs in the svstem. 
If m is equal to k, the allocating phase function is 
false. Otherwise, the chare will be sent toPE m as 
its destination. 

The gradient model has virtually no allocating 
phase action. ~-hen a chare is generated. it is put 
in the local queue. This leads to slow spreading of 
the load. On the other hand, the randomized allo­
cation does not have standing phase action. It 
usually generates good distribution of the load. 
However, when the sizes of chares vary in a wide 
range, this strategy is unable to redistribute the 
load even if some PEs are busy and others are 
idle. ACWl\" conducts the actions in both phases, 
resulting in a more reliable performance. 

5 PERFORMANCE STUDIES 

We have tested several examples on an Intel 
iPSC/2 hypercube to study the effectiveness of 
dynamic scheduling schemes on multicomputers. 
The machine used has a 32-node configuration 

Table 2. The Allocating Phase, Standing Phase, and Destination Functions of PE k 

Randomized 
Allocation 

Allocating phase function True 

Standing phase function False 

Destination function Random 

Gradient Model 

False 

It is true if P(k) ::s d and abun­
dant and P(k) > min(P(i)), 
where dist(i, k) = 1 otherwise, 
it is false 

j, where P(j) = min(P(i)), and 
dist(i, k) = dist(j, k) = 1 

ACWN 

It is true if (light load and c.hops 
= 0) or ((moderate load or 
(light load and c.hops > 0)) 
and F(k) > min(F'(i))), where 
dist(i, k) = 1 otherwise, it is 
false 

It is true if not heavy load and 
F(k) > min(F'(i)), where dist(i, 
k) = 1; otherwise, it is false 

j, where F'(j) = min(F'(i)), and 
dist(i, k) = dist(j, k) = 1 



with 4 megabytes of memory at each node. Three 
algorithms, randomized allocation. gradient 
model, and ACW"l\", were implemented. They 
shared most subroutines except for the allocating 
phase function, the standing phase function, and 
the destination function. Notice that the programs 
are chosen not because they are good parallel al­
gorithms for the problems they solve, but for the 
suitability of illustrating different computation 
patterns handled by the dynamic scheduling. For 
each program the best sequential program written 
in C was also tested without changing the algo­
rithm. 

In general, the sum of execution times of all 
PEs can be broken into three parts: computation 
time, overhead, and idle time. Computation time 
is spent on problem solving and should be equal 
to the sequential execution time. This time is in­
variant with different scheduling strategies, differ­
ent numbers of PEs, and different grain sizes. 
Overhead includes the work of bookkeeping. com­
munication, and load balancing. Idle time is the 
time in which PEs have no work to do. The over­
head and idle time depend on granularity of parti­
tioning as well as scheduling strategy. Experi­
ments for different grain sizes of the 1 0-Queen 
problem were conducted for analysis of the factors 
of granularity. Figure 5 shows the efficiency of this 
problem for different numbers of PEs with differ­
ent grain sizes. The performance of the largest 
grain size slumps as the number of PEs increases 
because the pool of available chares is not large 
enough to keep all the PEs busy. The poor perfor­
mance of the curve with the smallest grain size is 
due to overhead. For example, Figure 6 shows the 
components of the execution time for different 
grain sizes with 16 PEs. Here, a small grain size 
imposes a large amount of overhead. On the other 
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FIGURE 5 Comparison of different grain si~es for the 
1 0-Queen problem. 
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FIGURE 6 Overhead and idle time as grain size 
varies. 

hand, a large grain size reduces overhead but may 
result in longer processor idle time because of load 
imbalance. 

Bookkeeping overhead depends on the number 
of chares and the number of messages only. For 
each individual chare, the system maintains a 
chare block, and for each message there is a mes­
sage header including its source and destination 
chare information. The overhead of bookkeeping 
is about 250-400 microseconds whenever a new 
chare is created or a message is sent. The com­
munication overhead consists of the time spent by 
the processor that deals with sending and receiv­
ing messages. The actual transmission time is 
overlapped with computation and does not need 
to be considered. The overhead for each com­
munication is about 450 microseconds. The gran­
ularity also affects communication overhead 
because the number of messages exchanged be­
tween PEs tends to increase when the grain size 
becomes smaller. Not all the messages between 
chares introduce communication overhead. Only 
those going to PEs other than the source PE have 
the result. Thus, the load-balancing strategies 
also influence the communication overhead, as 
different strategies have different effects on what 
fraction of the messages will be between local 
chares. Scheduling overhead can be divided into 
two parts: updating load information and chare 
placement. Time spent on chare placement is pro­
portional to the number of chares and is deter­
mined by granularity. System load information 
can be exchanged periodically. As shown in Fig­
ure 7 for the 10-Queen problem on 16 PEs, too 
short a period increases communication overhead 
and too long a period leads to inaccurate load in­
formation due to sluggish updates. With a long 
exchanging period, the system acts unstably. We 
give both worst and best time from many repeti­
tions of experiments for periods after 256 millisec­
onds. In Figure 7, two curves are shown, with and 
without piggybacking for different exchanging pe­
riods. Piggybacking load information on the regu-
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FIGURE 7 Comparison of different periods to ex­
change load information. 

lar outgoing messages can reduce the number of 
load information messages exchanged. One with 
piggybacking behaves better than one without pig­
gybacking because with every message we update 
load information with a negligible additional cost. 
Figure 8 selects one instance with piggybacking to 
show the sum of overhead and sum of idle time at 
all 16 PEs. A short exchanging period makes the 
frequently updated load information unnecessary. 
However, if the period is too long, load is highly 
unbalanced with long idle time. From the curves, 
it can be seen that the best period is between 50 
and 150 milliseconds. In the rest of the experi­
ments, piggybacking is applied to both the ACWN 
and the gradient model algorithms. The period of 
load information exchanging is set to be 100 milli­
seconds for ACWN and the best value of exchang­
ing interval is also selected for the gradient model. 

The influence of sch~duling strategies will now 
be discussed. A good scheduling algorithm must 
be able to balance load for different application 
problems. At the same time, it has to keep sched­
uling overhead small. Furthermore, it must keep 
good locality so that most chares can be executed 
locally to reduce communication overhead. Three 
scheduling algorithms are compared, randomized 
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FIGURE 8 Total overhead and idle time at all16 PEs. 
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FIGURE 9 Distribution of chares over PEs 

allocation, gradient model, and AG\V~. Figure 9 
lists chare distribution at each PE with different 
scheduling algorithms for Fibonacci 32 on 8 PEs. 
Each chare processed at PE k is either generated 
by PE k itself or from other PEs. The ACW~ has 
the most locally generated chares and a few from 
other PEs. At the other extreme, the randomized 
allocation has a few local chares (about 1 IN) and 
most chares from other PEs. 

The only scheduling overhead for the random­
ized allocation is to generate random numbers 
whenever a chare is created. However, communi­
cation overhead is high because most chares are 
sent to other PEs irrespective of whether the sys­
tem is heavily or lightly loaded. For the same 
problem shown in Figure 9, Figure 10 illustrates 
percentage of computation time, overhead, and 
idle time. To compare the algorithms, the over­
head time can be subdivided further into three 
subcategories: the bookkeeping overhead (T8 ), 

communication overhead (Tc), and load-balanc­
ing overhead (TL). Figure 11 extracts the overhead 
parts from Figure 10 and illustrates each kind of 
overhead for different algorithms. The random-

D Computation ~ Overhead I Idle 

FIGURE 10 Timing analysis for different scheduling 
algorithms. 
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FIGURE 11 Three parts of overhead. 

ized allocation has large overhead spent on com­
munication although its scheduling overhead is 
negligible. The gradient model utilizes the system 
status information to make loads balanced among 
PEs so that the idle time is reduced. More impor­
tantly, the gradient model sends chares away only 
when necessary. Due to this locality property, the 
gradient model does not incur high communica­
tion overhead compared to the randomized allo­
cation case. However, the gradient model must 
exchange load information more frequently to 
balance the load, resulting in large load balancing 
overhead. The ACWI\" exhibits better localitv than 
the gradient model. Therefore, it has less. com­
munication overhead. Its scheduling overhead is 
also small due to a low frequency of load informa­
tion exchange. 

In Table 3 and Figures 12-15, we give the per­
formance comparison of the randomized alloca­
tion, the gradient model, and the ACWN algo­
rithms. Here, one instance of each program has 
been chosen for execution, i.e., 10 Queens, Fi­
bonacci 32, one configuration of 15-puzzle, and 
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FIGURE 12 Comparison for the 10-Queen problem. 

the Romberg integration with 14 integrations. 
Characteristic features for different problems are 
shown in Table 4. The granularity is between 1 to 
100 milliseconds, resulting from the medium­
grained partitioning. Coarse granularity causes 
serious load imbalance and fine granularity leads 
to large overhead. The Fibonacci problem is a reg­
ular tree-structured computation. The grain sizes 
of leaf chares are roughly the same. In the Queen 
problem, the grain size is not even because when­
ever a new queen is placed, the search either suc­
cessfully continues to the next row or fails. The 
15-puzzle is a good example of an AI search prob­
lem. Here the iterative deepening A* algorithm is 
used [23 J. The grain size may vary substantially 
because it dynamically depends on the current es­
timate cost. Also, synchronization at each itera-

Table 3. Performance on Intel iPSC/2 Hypercube: Execution Time (seconds) 

l\umber of PEs 

Seq. 1 2 4 8 16 32 

Queen 10 
Random 29.5 29.9 15.5 8.41 4.72 2.56 1.69 
Gradient 29.5 29.9 15.4 7.98 4.74 3.53 3.54 
ACWN 29.5 29.9 15.2 7.74 4.07 2.24 1.24 

Fibonacci 32 
Random 30.0 36.2 21.2 11.4 5.99 3.21 1.73 
Gradient 30.0 36.4 18.6 9.68 5.65 3.51 1.99 
ACWN 30.0 36.4 18.4 9.51 4.89 2.52 1.36 

15-puzzle/IDA * 
Random 50.2 50.9 29.3 16.2 10.8 8.17 5.17 
Gradient 50.2 51.0 26.6 15.0 9.94 8.50 8.48 
ACWN 50.2 50.9 27.2 14.9 8.55 5.52 4.11 

Romberg integration 14 
Random 24.8 26.1 15.2 8.50 4.77 2.99 1.97 
Gradient 24.8 26.1 14.5 8.46 5.76 4.55 4.51 
ACWN 24.8 2~.1 14.0 7.30 4.02 2.41 1.64 
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FIGURE 13 Comparison for the Fibonacci problem. 

tion reduces the effective parallelism. Perfor­
mance of this problem is therefore not as good as 
others. In the Romberg integration, the evaluation 
of function points at each iteration is performed in 
parallel. As we can see, AG\n'' is better than both 
the randomized allocation and the gradient model 
in all the cases. 

6 DISCUSSION 

The ACWN algorithm outperforms the random­
ized allocation and the gradient model partly due 
to its two-phase scheduling strategy and partly 
due to its adaptive locality. Its good locality re­
duces communication overhead whereas the ran­
domized allocation does not. Besides the standing 
phase strategy, the allocating phase strategy of 
ACWN allows load to spread out faster than the 
gradient model. The ACWl\" can adapt to different 
chare sizes too. Assume at a time both PE i and 
PE j have m messages waiting for processing, re­
spectively. It happens that PE i gets a message 
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FIGURE 14 Comparison for 15-puzzle/IDA* prob­
lem. 
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FIGURE 15 Comparison for Romberg Integration. 

with a large amount of computation. After a while, 
PE i still holds m- 1 messages and PEj may have 
no messages left. At this time, A.CWl\" is able to 
schedule messages from PE i to PE j to balance 
the load. In contrast, the randomized allocation 
cannot adapt to such a case. 

For a small number of PEs, the gradient model 
can make better load balance than the random­
ized allocation. However, because the gradient 
model was designed based on good locality to re­
duce communication overhead, it does not spread 
the load very fast. For a large number of PEs, the 
gradient model leads to more load imbalance than 
the randomized allocation does. As shown in Fig­
ure 16 for the 1 0-Queen problem, the idle time of 
the gradient model at 16 and 32 PEs is longer 
than the randomized allocation. A similar conclu­
sion is also made by Grunwald [24]. ACWJ\ 
reaches the most even load distribution among the 
three scheduling algorithms. 

From experiments, the overhead for a local 
chare that does not involve communication over-
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FIGURE 16 Comparison of PE idle rime for different 
scheduling algorithms (10-Queen). 



ADAPTI\.E DY~A~IIC PROCESS SCHEDULIJ."G 351 

Table 4. Characteristics of Different Problems 

!\"umber of Execution Time !\"umber of Execution Time 
Problems Chares per Chan~ (milliseconds) Messages per msg (milliseconds) 

Queen 10 593 
Fibonacci 32 8:361 
15-puzzle/ IDA* 1172 
Romberg Integration 1 't 2026 

head is about 0.3 to OA milliseconds and for a 
remote chare that involves communication over­
head it is about 1.2 to 1.3 milliseconds. Thus, 
performance may not suffer much from book­
keeping and communication overhead if the grain 
size of a chare is much larger than that. A few 10-
milliseconds can therefore be counted as a rea­
sonable grain size. Due to a large number of re­
mote chares, the communication overhead for the 
randomized allocation is large, which in turn im­
plies a large grain size. 

Does overhead of a complicated scheduling al­
gorithm always overwhelm the benefit it achieves? 
Certainly, a complex algorithm (as an extreme ex­
ample, one that looks for the least loaded proces­
sor across the entire system at every scheduling 
decision) loses its uniform distribution advantage 
to its high overhead. The randomized allocation 
algorithm bears negligible overhead for load-bal­
ancing decisions but the communication overhead 
is high and the suspension is large. ·we have 
shown that a good load balance can be obtained 
by a simple algorithm with low scheduling over­
head. Even though ACWl\' pays more scheduling 
overhead compared to the randomized allocation, 
it still can achieve better performance in most 
cases. 

Overhead can be reduced by using coproces­
sors. A coprocessor can be attached to the main 
processor in each PE, which handles all book­
keeping, load-balancing, and communication ac­
tivities. In the iPCS/2 hypercube, each PE has a 
communication coprocessor that shares part of 
the communication overhead. Because we are not 
able to program coprocessors, overhead of book­
keeping, load balancing, and part of communica­
tion must be handled by the main processor. If the 
AC\VN scheduling can be applied to a system with 
coprocessors, the frequency of load information 
exchange can be increased and more communica­
tion activities may take place to improve load bal­
ance, as long as the load of the coprocessor does 
not exceed the load of the main processor. The 

't9.7 1186 24.9 
3.59 16722 1.79 

42.8 
12.2 

2344 21.4 
40.52 6.1 

randomized allocation and the gradient model 
may benefit more from the coprocessor than 
ACWN does because the randomized allocation 
has more communication overhead and the gradi­
ent model has more scheduling overhead. 

7 CONCLUSION 

We described a scheme for dynamic scheduling of 
medium-grained processes on multicomputers. 
The scheme, called ACWN employs two sub­
strategies: an allocating phase strategy and a 
standing phase strategy. The allocating phase 
strategy moves a new piece of work along the 
steepest load gradient to a local minimum within a 
neighborhood. It estimates the system state and 
ensures that pieces of work are moved only when 
the system requires it. The standing phase strat­
egy corrects load imbalance by redistributing 
pieces of work that were initially allocated by the 
allocating phase strategy. Every processor main­
tains load information about their neighbors only, 
and such information is often exchanged by pig­
gybacking it on regular messages. Thus, the 
scheme incurs low load balancing overhead. As it 
manages to retain many pieces of work on the pro­
cessor that produced them, it has low communi­
cation overhead. 

ACWN was compared with two other schemes, 
the randomized allocation and the gradient 
model. The randomized allocation incurs negligi­
ble load balancing overhead and achieves reason­
ably uniform distribution of work. However, it 
incurs much communication overhead. The gra­
dient model, on the other hand, enforces locality 
at the expense of agility in spreading work out 
quickly to processors. All these schemes were im­
plemented in a system called the chare kernel run­
ning on the Intel iPSC/2 hypercube. The experi­
mental results demonstrate that AGWN performs 
better than the other two algorithms for many 
computation patterns. 
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