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Nakagami distribution is considered. The classical maximum likelihood estimator has been obtained. Bayesian method of
estimation is employed in order to estimate the scale parameter of Nakagami distribution by using Jeffreys’, Extension of Jeffreys’,
and Quasi priors under three different loss functions. Also the simulation study is conducted in R software.

1. Introduction

Nakagami distribution can be considered as a flexible lifetime
distribution. It has been used tomodel attenuation of wireless
signals traversing multiple paths (for details see Hoffman
[1]), fading of radio signals, data regarding communicational
engineering, and so forth. The distribution may also be
employed to model failure times of a variety of products
(and electrical components) such as ball bearing, vacuum
tubes, and electrical insulation. It is also widely considered
in biomedical fields, such as to model the time to the
occurrence of tumors and appearance of lung cancer. It
has the applications in medical imaging studies to model
the ultrasounds especially in Echo (heart efficiency test).
Shanker et al. [2] and Tsui et al. [3] use the Nakagami
distribution to model ultrasound data in medical imaging
studies. This distribution is extensively used in reliability
theory and reliability engineering and to model the constant
hazard rate portion because of its memory less property. Yang
and Lin [4] investigated and derived the statistical model of
spatial-chromatic distribution of images. Through extensive
evaluation of large image databases, they discovered that a
two-parameter Nakagami distribution well suits the purpose.
Kim and Latchman [5] used the Nakagami distribution in
their analysis of multimedia.

The probability density function (pdf) of the Nakagami
distribution is given as mentioned in Figure 1:

𝑓 (𝑦; 𝜃, 𝑘) =
2𝑘𝑘

Γ (𝑘) 𝜃𝑘
𝑦2𝑘−1 exp(

−𝑘𝑦2

𝜃
)

for 𝑦 > 0, 𝑘, 𝜃 > 0,

(1)

where 𝜃 and 𝑘 are the scale and the shape parameters,
respectively.

2. Materials and Methods

There are twomain philosophical approaches to statistics.The
first is called the classical approach which was founded by
Professor R. A. Fisher in a series of fundamental papers round
about 1930. In classical approach we use the same method as
obtained by Ahmad et al. [6].

The alternative approach is the Bayesian approach
which was first discovered by Reverend Thomas Bayes. In
this approach, parameters are treated as random variables
and data is treated as fixed. Recently Bayesian estimation
approach has received great attention by most researchers
among them are Al-Aboud [7] who studied Bayesian estima-
tion for the extreme value distribution using progressive cen-
sored data and asymmetric loss. Ahmed et al. [8] considered
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Figure 1: The pdf ’s of Nakagami distribution under various values
of 𝑘 and theta.

Bayesian Survival Estimator for Weibull distribution with
censored data. An important prerequisite in this approach is
the appropriate choice of prior(s) for the parameters. Very
often, priors are chosen according to one’s subjective knowl-
edge and beliefs.The other integral part of Bayesian inference
is the choice of loss function. A number of symmetric and
asymmetric loss functions have been shown to be functional;
see Pandey et al. [9], Al-Athari [10], S. P. Ahmad and K.
Ahmad [11], Ahmad et al. [12, 13], and so forth.

Theorem 1. Let (𝑦1, 𝑦2, . . . , 𝑦𝑛) be a random sample of size n
having pdf (1); then the maximum likelihood estimator of scale
parameter 𝜃, when the shape parameter 𝑘 is known, is given by

𝜃 =
∑
𝑛

𝑖=1
𝑦𝑖
2

𝑛
. (2)

Proof. The likelihood function of the pdf (1) is given by

𝐿 (𝑦; 𝜃, 𝑘) =
(2𝑘𝑘)

𝑛

(Γ𝑘)𝑛 𝜃𝑛𝑘

𝑛

∏
𝑖=1

𝑦𝑖
2𝑘−1 exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2) . (3)

The log likelihood function is given by

log 𝐿 (𝑦; 𝜃, 𝑘) = 𝑛 log (2𝑘𝑘) − 𝑛 log Γ𝑘 − 𝑛𝑘 log 𝜃

+ (2𝑘 − 1)
𝑛

∑
𝑖=1

log𝑦𝑖 −
𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2.

(4)

Differentiating (4) with respect to 𝜃 and equating to zero, we
get

𝜃 =
∑
𝑛

𝑖=1
𝑦𝑖
2

𝑛
. (5)

2.1. Loss Functions Used in This Paper. (i) The quadratic loss
function which is given by

𝐿qd (𝜃, 𝜃) = (
(𝜃 − 𝜃)

𝜃
)

2

; 𝜃 > 0, (6)

which is a symmetric loss function; 𝜃 and 𝜃 represent the true
and estimated values of the parameter.

(ii) The Al-Bayyati new loss function is of the form

𝐿nl (𝜃, 𝜃) = 𝜃
𝑐
1 (𝜃 − 𝜃)

2

; 𝑐1𝜀𝑅, (7)

which is an asymmetric loss function; 𝜃 and 𝜃 represent the
true and estimated values of the parameter.

(iii) The entropy loss function is given by

𝐿ef (𝜃, 𝜃) = (
𝜃

𝜃
− log(𝜃

𝜃
) − 1) ; 𝜃 > 0, (8)

where 𝜃 and 𝜃 represent the true and estimated values of the
parameter.

3. Bayesian Method of Estimation

In this section Bayesian estimation of the scale parameter of
Nakagami distribution is obtained by using various priors
under different symmetric and asymmetric loss functions.

3.1. Posterior Density under Jeffreys’ Prior. Let (𝑦1, 𝑦2, . . . , 𝑦𝑛)
be a random sample of size 𝑛 having the probability density
function (1) and the likelihood function (2).

Jeffreys’ prior for 𝜃 is given by

𝑔 (𝜃) =
1

𝜃
; 𝜃 > 0. (9)

By using the Bayes theorem, we have

𝜋1 (𝜃 | 𝑦) ∝ 𝐿 (𝑦 | 𝜃) 𝑔 (𝜃) . (10)

Using (2) and (9) in (10),

𝜋1 (𝜃 | 𝑦)

∝
(2𝑘𝑘)

𝑛

Γ (𝑘)𝑛 𝜃𝑛𝑘+1

𝑛

∏
𝑖=1

𝑦𝑖
2𝑘−1 exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2) ,

𝜋1 (𝜃 | 𝑦) = 𝜌
1

𝜃𝑛𝑘+1
exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2) ,

(11)

where 𝜌 is independent of 𝜃 and

𝜌 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘

Γ𝑛𝑘
. (12)

Using the value of 𝜌 in (11),

𝜋1 (𝜃 | 𝑦)

= (
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+1
exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2)) .

(13)
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3.2. Posterior Density under Extension of Jeffreys’ Prior. Let
(𝑦1, 𝑦2, . . . , 𝑦𝑛) be a random sample of size 𝑛 having the
probability density function (1) and the likelihood function
(2).

The extension of Jeffreys’ for 𝜃 is given by

𝑔1 (𝜃) =
1

𝜃2𝑐
; 𝜃 > 0. (14)

By using the Bayes theorem, we have

𝜋2 (𝜃 | 𝑦) ∝ 𝐿 (𝑦 | 𝜃) 𝑔1 (𝜃) . (15)

Using (2) and (14) in (15),

𝜋2 (𝜃 | 𝑦)

∝
(2𝑘𝑘)

𝑛

Γ (𝑘)𝑛 𝜃𝑛𝑘+2𝑐

𝑛

∏
𝑖=1

𝑦𝑖
2𝑘−1 exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2) .

(16)

Thus

𝜋2 (𝜃 | 𝑦) = 𝜌
1

𝜃𝑛𝑘+2𝑐
exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2) , (17)

𝜌 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖)
𝑛𝑘+2𝑐−1

Γ (𝑛𝑘 + 2𝑐 − 1)
. (18)

By using the value of 𝜌 in (17), we have

𝜋2 (𝜃 | 𝑦) = (
((−𝑘/𝜃)∑

𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘+2𝑐−1

Γ (𝑛𝑘 + 2𝑐 − 1)

1

𝜃𝑛𝑘+2𝑐

⋅ exp(−𝑘
𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2)) .

(19)

3.3. Posterior Density under Quasi Prior. Let (𝑦1, 𝑦2, . . . , 𝑦𝑛)
be a random sample of size 𝑛 having the probability density
function (1) and the likelihood function (2).

Quasi prior for 𝜃 is given by

𝑔2 (𝜃) =
1

𝜃𝑑
; 𝜃 > 0, 𝑑 > 0. (20)

By using the Bayes theorem, we have

𝜋3 (𝜃 | 𝑦) ∝ 𝐿 (𝑦 | 𝜃) 𝑔2 (𝜃) . (21)

Using (2) and (20) in (21),

𝜋3 (𝜃 | 𝑦) ∝
(2𝑘𝑘)

𝑛

Γ (𝑘)𝑛 𝜃𝑛𝑘+𝑑

𝑛

∏
𝑖=1

𝑦𝑖
2𝑘−1 exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2)

𝜋3 (𝜃 | 𝑦) = 𝜌
1

𝜃𝑛𝑘+𝑑
exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2) ,

(22)

where 𝜌 is independent of 𝜃 and

𝜌 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘+𝑑−1

Γ (𝑛𝑘 + 𝑑 − 1)
. (23)

Using the value of 𝜌 in (22),

𝜋3 (𝜃 | 𝑦)

= (
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘+𝑑−1

Γ (𝑛𝑘 + 𝑑 − 1)

1

𝜃𝑛𝑘+𝑑
exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2)) .

(24)

4. Bayesian Estimation by Using Jeffreys’ Prior
under Different Loss Functions

Theorem 2. Assuming the loss function 𝐿𝑞𝑑(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑞𝑑 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 1)
. (25)

Proof. The risk function of the estimator 𝜃 under the
quadratic loss function 𝐿qd(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

(
(𝜃 − 𝜃)

𝜃
)

2

𝜋1 (𝜃 | 𝑦) 𝑑𝜃. (26)

Using (13) in (26), we get

𝑅 (𝜃) = ∫
∞

0

(
(𝜃 − 𝜃)

𝜃
)

2

⋅
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+1
exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2)𝑑𝜃.

(27)

On solving (27), we get

𝑅 (𝜃) =
𝜃2Γ (𝑛𝑘 + 2)

Γ𝑛𝑘 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
2
−

2𝜃Γ (𝑛𝑘 + 1)

Γ𝑛𝑘 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
+ 1. (28)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃qd =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 1)
. (29)

Theorem 3. Assuming the loss function 𝐿𝑛𝑙(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑛𝑙 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 − 𝑐1 − 1)
. (30)
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Proof. The risk function of the estimator 𝜃 under the Al-
Bayyati loss function 𝐿nl(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

𝜃𝑐1 (𝜃 − 𝜃)
2

𝜋1 (𝜃 | 𝑦) 𝑑𝜃. (31)

On substituting (13) in (31), we have

𝑅 (𝜃) = ∫
∞

0

𝜃𝑐1 (𝜃 − 𝜃)
2

(
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+1

⋅ exp(−𝑘
𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2))𝑑𝜃.

(32)

Solving (32), we get

𝑅 (𝜃) = [

[

𝜃2 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1

Γ (𝑛𝑘 − 𝑐1)

Γ𝑛𝑘

+
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1
+2

Γ (𝑛𝑘 − 𝑐1 − 2)

Γ𝑛𝑘

−
2𝜃 (𝑘∑

𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1
+1

Γ (𝑛𝑘 − 𝑐1 − 1)

Γ𝑛𝑘
]

]

.

(33)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃nl =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 − 𝑐1 − 1)
. (34)

Theorem 4. Assuming the loss function 𝐿𝑒𝑓(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑒𝑓 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

𝑛𝑘
. (35)

Proof. The risk function of the estimator 𝜃 under entropy loss
function 𝐿ef(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)𝜋1 (𝜃 | 𝑦) 𝑑𝜃. (36)

Using (13) in (36), we get

𝑅 (𝜃) = ∫
∞

0

(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)

⋅
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+1
exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2)𝑑𝜃.

(37)

On solving (37), we get

𝑅 (𝜃) = 𝜃
Γ (𝑛𝑘 + 1)

Γ (𝑛𝑘) (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
− log (𝜃) + ℎ (𝜃) − 1. (38)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃ef =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

𝑛𝑘
. (39)

5. Bayesian Estimation by
Using Extension Jeffreys’ Prior under
Different Loss Functions

Theorem 5. Assuming the loss function 𝐿𝑞𝑑(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑞𝑑 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 2𝑐)
. (40)

Proof. The risk function of the estimator 𝜃 under the
quadratic loss function 𝐿qd(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

(
(𝜃 − 𝜃)

𝜃
)

2

𝜋2 (𝜃 | 𝑦) 𝑑𝜃. (41)

Using (19) in (41), we get

𝑅 (𝜃) = ∫
∞

0

(
(𝜃 − 𝜃)

𝜃
)

2

(
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘+2𝑐−1

Γ (𝑛𝑘 + 2𝑐 − 1)

1

𝜃𝑛𝑘+2𝑐

⋅ exp(−𝑘
𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2))𝑑𝜃.

(42)

On solving (42), we get

𝑅 (𝜃) =
𝜃2Γ (𝑛𝑘 + 2𝑐 + 1)

Γ𝑛𝑘 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
2
−

2𝜃Γ (𝑛𝑘 + 2𝑐)

Γ𝑛𝑘 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
+ 1. (43)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃qd =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 2𝑐)
. (44)

Remark 6. By replacing 𝑐 = 1/2 in (44), the same Bayes
estimate is obtained as in (29).

Theorem 7. Assuming the loss function 𝐿𝑛𝑙(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑛𝑙 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 2𝑐 − 𝑐1 − 2)
. (45)

Proof. The risk function of the estimator 𝜃 under the Al-
Bayyati loss function 𝐿nl(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

𝜃𝑐1 (𝜃 − 𝜃)
2

𝜋2 (𝜃 | 𝑦) 𝑑𝜃. (46)
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On substituting (19) in (46), we have

𝑅 (𝜃) = ∫
∞

0

𝜃𝑐1 (𝜃 − 𝜃)
2

(
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+2𝑐

⋅ exp(−𝑘
𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2))𝑑𝜃.

(47)

Solving (47), we get

𝑅 (𝜃) = [

[

𝜃2 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1

Γ (𝑛𝑘 + 2𝑐 − 𝑐1 − 1)

Γ (𝑛𝑘 + 2𝑐 − 1)

+
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1
+2

Γ (𝑛𝑘 + 2𝑐 − 𝑐1 − 3)

Γ (𝑛𝑘 + 2𝑐 − 1)

−
2𝜃 (𝑘∑

𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1
+1

Γ (𝑛𝑘 + 2𝑐 − 𝑐1 − 2)

Γ (𝑛𝑘 + 2𝑐 − 1)
]

]

.

(48)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃nl =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 2𝑐 − 𝑐1 − 2)
. (49)

Remark 8. By replacing 𝑐 = 1/2 in (49), the same Bayes
estimate is obtained as in (34).

Theorem 9. Assuming the loss function 𝐿𝑒𝑓(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑒𝑓 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 2𝑐 − 1)
. (50)

Proof. The risk function of the estimator 𝜃 under entropy loss
function 𝐿ef(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)𝜋2 (𝜃 | 𝑦) 𝑑𝜃. (51)

Using (19) in (51), we get

𝑅 (𝜃) = ∫
∞

0

(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)

⋅
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘+2𝑐−1

Γ (𝑛𝑘 + 2𝑐 − 1)

1

𝜃𝑛𝑘+2𝑐
exp(−𝑘

𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2)𝑑𝜃.

(52)

On solving (52), we get

𝑅 (𝜃) = 𝜃
Γ (𝑛𝑘 + 2𝑐)

Γ (𝑛𝑘 + 2𝑐 − 1) (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
− log (𝜃)

+ ℎ (𝜃) − 1.

(53)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃ef =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 2𝑐 − 1)
. (54)

Remark 10. By replacing 𝑐 = 1/2 in (54), the same Bayes
estimate is obtained as in (39).

6. Bayesian Estimation by Using Quasi Prior
under Different Loss Functions

Theorem 11. Assuming the loss function 𝐿𝑞𝑑(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑞𝑑 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 𝑑)
. (55)

Proof. The risk function of the estimator 𝜃 under the
quadratic loss function 𝐿qd(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

(
(𝜃 − 𝜃)

𝜃
)

2

𝜋3 (𝜃 | 𝑦) 𝑑𝜃. (56)

Using (24) in (56), we get

𝑅 (𝜃) = ∫
∞

0

(
(𝜃 − 𝜃)

𝜃
)

2

(
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘+𝑑

Γ (𝑛𝑘 + 𝑑 − 1)

1

𝜃𝑛𝑘+𝑑

⋅ exp(−𝑘
𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2))𝑑𝜃.

(57)

On solving (57), we get

𝑅 (𝜃) =
𝜃2Γ (𝑛𝑘 + 𝑑 + 1)

Γ𝑛𝑘 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
2
−

2𝜃Γ (𝑛𝑘 + 𝑑)

Γ𝑛𝑘 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
+ 1. (58)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃qd =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 𝑑)
. (59)

Remark 12. By replacing 𝑑 = 1 in (59), the same Bayes
estimate is obtained as in (29).

Theorem 13. Assuming the loss function 𝐿𝑛𝑙(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑛𝑙 =
(∑
𝑛

𝑖=1
𝑦𝑖)

(𝑛𝑘 + 𝑑 − 𝑐1 − 2)
. (60)
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Proof. The risk function of the estimator 𝜃 under the Al-
Bayyati loss function 𝐿nl(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

𝜃𝑐1 (𝜃 − 𝜃)
2

𝜋3 (𝜃 | 𝑦) 𝑑𝜃. (61)

On substituting (24) in (61), we have

𝑅 (𝜃) = ∫
∞

0

𝜃𝑐1 (𝜃 − 𝜃)
2

(
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘+𝑑−1

Γ (𝑛𝑘 + 𝑑 − 1)

1

𝜃𝑛𝑘+𝑑

⋅ exp(−𝑘
𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2))𝑑𝜃.

(62)

Solving (62), we get

𝑅 (𝜃) = [

[

𝜃2 (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1

Γ (𝑛𝑘 + 𝑑 − 𝑐1 − 1)

Γ (𝑛𝑘 + 𝑑 − 1)

+
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1
+2

Γ (𝑛𝑘 + 𝑑 − 𝑐1 − 3)

Γ (𝑛𝑘 + 𝑑 − 1)

−
2𝜃 (𝑘∑

𝑛

𝑖=1
𝑦𝑖
2)
𝑐
1
+1

Γ (𝑛𝑘 + 𝑑 − 𝑐1 − 2)

Γ (𝑛𝑘 + 𝑑 − 1)
]

]

.

(63)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃nl =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 𝑑 − 𝑐1 − 2)
. (64)

Remark 14. By replacing 𝑑 = 1 in (64), the same Bayes
estimate is obtained as in (34).

Theorem 15. Assuming the loss function 𝐿𝑒𝑓(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑒𝑓 =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 𝑑 − 1)
. (65)

Proof. The risk function of the estimator 𝜃 under the entropy
loss function 𝐿ef(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫
∞

0

(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)𝜋3 (𝜃 | 𝑦) 𝑑𝜃. (66)

Using (24) in (66), we get

𝑅 (𝜃) = ∫
∞

0

(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)

⋅ (
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
𝑛𝑘+𝑑−1

Γ (𝑛𝑘 + 𝑑 − 1)

1

𝜃𝑛𝑘+𝑑

⋅ exp(−𝑘
𝜃

𝑛

∑
𝑖=1

𝑦𝑖
2))𝑑𝜃.

(67)

On solving (67), we get

𝑅 (𝜃) = 𝜃
Γ (𝑛𝑘 + 𝑑)

Γ (𝑛𝑘 + 𝑑 − 1) (𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)
− log (𝜃)

+ ℎ (𝜃) − 1.

(68)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃ef =
(𝑘∑
𝑛

𝑖=1
𝑦𝑖
2)

(𝑛𝑘 + 𝑑 − 1)
. (69)

Remark 16. By replacing 𝑑 = 1 in (69), the same Bayes
estimate is obtained as in (39).

7. Results and Discussion

We primarily studied the classical maximum likelihood esti-
mation and Bayesian estimation for Nakagami distribution
using Jeffreys’, extension of Jeffreys’, and Quasi priors under
three different symmetric and asymmetric loss functions.
Here our main focus was to find out the estimate of scale
parameter for Nakagami distribution. The mathematical
derivations were checked by using the different data sets and
the estimate was obtained.

For descriptive manner, we generate different random
samples of size 25, 50, and 100 to represent small, medium,
and large data set for the Nakagami distribution in R
Software; a simulation study was carried out 3,000 times for
each pairs of (𝜃, 𝑘) where (𝑘 = 0.5, 1.0) and (𝜃 = 1.0, 1.5).
The values of extension were (𝐶 = 0.5, 1.0) and (𝑑 = 1.0, 1.5).
The value for the loss parameter was (𝐶1 = −1 and 1). This
was iterated 2000 times and the estimates of scale parameter
for each method were calculated.The results are presented in
(Tables 1, 2, and 3), respectively.

8. Conclusion

In this paper we have generated three types of data sets with
different sample sizes for Nakagami distribution. These data
sets were simulated with the help of programs and the behav-
ior of the datawas checked in case of parameter estimation for
Nakagami distribution in R Software. With these data sets we
have obtained the estimate of scale parameter for Nakagami
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Table 1: Estimates by using Jeffreys’ prior under three different loss functions.

𝑛 𝑘 𝜃 𝜃ML 𝜃qd 𝜃ef
𝜃nl

𝐶1 = −1 𝐶1 = 1

25 0.5 1.0 221.9361 205.4964 221.9361 221.9361 264.2096
1.0 1.5 20.05983 19.2883 20.05983 20.05983 21.80416

50 0.5 1.0 354.8246 341.1775 354.8246 354.8246 385.6789
1.0 1.5 49.986 49.00588 49.986 49.986 52.06875

100 0.5 1.0 863.8767 846.938 863.8767 863.8767 899.8716
1.0 1.5 122.1739 120.9643 122.1739 122.1739 124.6672

ML: maximum likelihood, qd: quadratic loss function, ef: entropy loss function, and nl: Al-Bayyati’s new loss function.

Table 2: Estimates by using Extension Jeffreys’ prior under three different loss functions.

𝑛 𝑘 𝜃 𝐶 𝜃ML 𝜃qd 𝜃ef
𝜃nl

𝐶1 = −1.0 𝐶1 = 1.0

25
0.5 1.0 0.5

1.0
221.9361
221.9361

205.4964
191.3242

221.9361
205.4964

221.931
205.494

264.2096
241.2349

1.0 1.5 0.5
1.0

20.05983
20.05983

19.2883
18.57392

20.05983
19.2883

20.05983
19.2883

21.80416
20.89565

50
0.5 1.0 0.5

1.0
354.8246
354.8246

341.1775
328.5413

354.8246
341.1775

354.8246
341.1775

385.6789
369.6089

1.0 1.5 0.5
1.0

49.986
49.986

49.00588
48.06346

49.986
49.00588

49.986
49.00588

52.06875
51.00612

100
0.5 1.0 0.5

1.0
863.8767
863.8767

846.938
830.6507

863.8767
846.938

863.8767
846.938

899.8716
881.5069

1.0 1.5 0.5
1.0

122.1739
122.1739

120.9643
119.7783

122.1739
120.9643

122.1739
120.9643

124.6672
123.408

ML: maximum likelihood, qd: quadratic loss function, ef: entropy loss function, and nl: Al-Bayyati’s new loss function.

Table 3: Estimates by using Quasi prior under three different loss functions.

𝑛 𝑘 𝜃 𝑑 𝜃ML 𝜃qd 𝜃ef
𝜃nl

𝐶1 = −1 𝐶1 = 1.0

25
0.5 1.0 1.0

1.5
221.9361
221.9361

205.4964
198.1572

221.9361
213.4001

221.9361
213.4001

264.2096
252.2001

1.0 1.5 1.0
1.5

20.05983
20.05983

19.2883
18.92437

20.05983
19.6665

20.05983
19.6665

21.80416
21.34024

50
0.5 1.0 1.0

1.5
354.8246
354.8246

341.1775
334.7401

354.8246
347.8672

354.8246
347.8672

385.6789
377.4729

1.0 1.5 1.0
1.5

49.986
49.986

49.00588
48.5301

49.986
49.49109

49.986
49.49109

52.06875
51.53196

100
0.5 1.0 1.0

1.5
863.8767
863.8767

846.938
838.7153

863.8767
855.3235

863.8767
855.3235

899.8716
890.5946

1.0 1.5 1.0
1.5

122.1739
122.1739

120.9643
120.3684

122.1739
121.5661

122.1739
121.5661

124.6672
124.0344

ML: maximum likelihood, qd: quadratic loss function, ef: entropy loss function, and nl: Al-Bayyati’s new loss function.

distribution under three different symmetric and asymmetric
loss functions by using three different priors. With the help
of these results we can also do comparison between loss
functions and the priors.
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