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This paper proposes three numerical algorithms based on Karmarkar’s interior point technique for solving nonlinear convex
programming problems subject to linear constraints. The first algorithm uses the Karmarkar idea and linearization of the objective
function.The second and third algorithms are modification of the first algorithm using the Schrijver andMalek-Naseri approaches,
respectively. These three novel schemes are tested against the algorithm of Kebiche-Keraghel-Yassine (KKY). It is shown that these
three novel algorithms are more efficient and converge to the correct optimal solution, while the KKY algorithm fails in some cases.
Numerical results are given to illustrate the performance of the proposed algorithms.

1. Introduction

The simplex method has never had any serious competition
until 1984 when Karmarkar proposed a new-polynomial-
time algorithm in order to solve linear programming prob-
lems, especially for solving large scale problems [1, 2]. Polyno-
mial complexity of Karmarkar’s algorithm has an advantage
in comparison with exponential complexity of the simplex
algorithm [3–5]. The improvement of the Karmarkar’s algo-
rithm by Schrijver [6, 7] resulted in less number of iterations
compared to Karmarkar’s method. In 2004,Malek andNaseri
[8] proposed a modified technique based on the interior
point algorithm to solve linear programming problems more
efficiently.

After the appearance of Karmarkar’s algorithm for solving
linear programming problems, the researchers developed
the algorithm to solve the convex quadratic programming
problem (e.g., see [9]). Considering the success of the interior
methods for solving linear programming problems [10, 11],
the researchers used the linearization methods to solve
convex nonlinear programming problems. In 2007, Kebbiche
et al. [12] introduced a projective interior point method to
solve more general problems with nonlinear convex objective
function.The objective of this paper is to propose an optimal

step length in each iteration in combinationwith Karmarkar’s
algorithm in order to decrease the nonlinear objective func-
tion as fast as possible.

In Section 2, extension of Karmarkar’s algorithm for non-
linear programming problem is considered. In Section 3, by
considering the technique associated with KKY’s algorithm,
a modified algorithm is presented. In Section 4, the conver-
gency of modified algorithm in Section 3 is proved.Then this
algorithm is combined with Schrijver’s and Malek-Naseri’s
algorithms successfully. In Section 5, numerical results are
illustrated for KKY algorithm and the three suggested modi-
fied algorithms are compared to each other.

2. Extension of Karmarkar’s Algorithm for
Nonlinear Problems

Consider the following nonlinear optimization problem:

min 𝑓 (𝑥)

s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,

(1)
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where 𝑓 : 𝑅𝑛 → 𝑅 is a nonlinear, convex, and differentiable
function. 𝐴 is 𝑚 × 𝑛 matrix of rank 𝑚 and 𝑏 is 𝑚 × 1. The
starting point 𝑥0 > 0 is chosen to be feasible. 𝐼 is the identity
matrix with order (𝑛+1) and 𝑒𝑇

𝑛+1
is a row vector of 𝑛+1 ones.

Assume 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛+1
)𝑇 = (𝑦[𝑛], 𝑦

𝑛+1
)𝑇, the

simplex 𝑆 = {𝑦 ∈ 𝑅𝑛+1 | 𝑒𝑇
𝑛+1

𝑦 = 1, 𝑦 ≥ 0}, and the projective
transformation of Karmarkar T

𝑘
defined by T

𝑘
: 𝑅𝑛 → 𝑆

such that T
𝑘
(𝑥) = 𝑦. Consider 𝑔(𝑦) = 𝑦

𝑛+1
[𝑓(T−1
𝑘+1

(𝑦)) −

𝑓(T−1
𝑘

(𝑦))], where 𝑔 : 𝑅𝑛+1 → 𝑅 is a nonlinear, convex,
and differentiable function and the optimal value of 𝑔 is
zero. Using the linearization process to the function 𝑔 in
neighborhood of the ball of center 𝑦0 as 𝑔(𝑦) = 𝑔(𝑦0) +

∇𝑔(𝑦0)(𝑦 − 𝑦0) for 𝑦 ∈ {𝑦 ∈ 𝑅𝑛+1 | ‖𝑦 − 𝑦0‖ ≤ 𝛽} along
with Karmarkar projective transformation [12], we conclude
that Problem (1) is equivalent to

min ∇𝑔 (𝑦0)
𝑇

𝑦

s.t. 𝐴
𝑘
𝑦 = 0,

𝑒𝑇
𝑛+1

𝑦 = 1,

𝑦 − 𝑦0
 ≤ 𝛽.

(2)

As a result, the optimal solution of the preceding problem
lies along the negative projection of the gradient 𝐶

𝑝
and is

given as 𝑦𝑘+1 = 𝑦0 − 𝛽(𝐶
𝑝
/‖𝐶
𝑝
‖), where 𝑦0 = (1/(𝑛 +

1), . . . , 1/(𝑛 + 1))𝑇 is the center of the simplex 𝑆. 𝐶
𝑝
is the

projected gradient which can be shown to be 𝐶
𝑝

= [𝐼 −

𝑃𝑇(𝑃𝑃𝑇)−1𝑃]∇𝑔(𝑦0), where 𝑃 = (
𝐴𝑘

𝑒
𝑇

𝑛+1

), 𝐴
𝑘

= [𝐴𝐷
𝑘
, −𝑏],

𝐷
𝑘

= diag{𝑥𝑘}, and 𝑘 is the number of iterations. The
selection of 𝛽 as a step length is crucial to enhance the
efficiency of the algorithm.

The function 𝑔 on 𝑌 = {𝑦 ∈ 𝑅𝑛+1 | 𝐴
𝑘
𝑦 = 0, 𝑦 ∈ 𝑆} is

convex, since the function 𝑓 on 𝑋 = {𝑥 ∈ 𝑅𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥
0} is convex. The optimal solution of Problem (2) is given by
𝑦𝑘+1 = 𝑦0 − 𝛽(𝐶

𝑝
/‖𝐶
𝑝
‖) [12].

Consider the algorithm of Kebiche-Keraghel-Yassine
(KKY) for solving Problem (2).

KKY Algorithm. Let 𝜖 > 0 be a given tolerance and let 𝑥0 > 0.

Step 1. Compute 𝑦0 = (1/(𝑛 + 1), . . . , 1/(𝑛 + 1))𝑇 and 𝛽 =
(𝑛 + 1)/3(𝑛 + 2). Put 𝑘 = 0.

Step 2. Build 𝐷
𝑘

= diag{𝑥𝑘}, 𝐴
𝑘

= [𝐴𝐷
𝑘
, −𝑏] and 𝑃 =

(
𝐴𝑘

𝑒
𝑇

𝑛+1

).
Compute 𝐶

𝑝
= [𝐼 − 𝑃𝑇(𝑃𝑃𝑇)−1𝑃]∇𝑔(𝑦0), 𝑦𝑘+1 = 𝑦0 −

𝛽(𝐶
𝑝
/‖𝐶
𝑝
‖), and 𝑥𝑘+1 = 𝐷

𝑘
𝑦𝑘+1[𝑛]/𝑦𝐾

𝑛+1
.

Step 3. While 𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘) > 𝜖, let 𝑘 = 𝑘 + 1, and go to
Step 2.

However, as we can see in the following two examples, the
KKY algorithm does not work for every nonlinear problem.

Example 1. Consider the quadratic convex problem:

min 𝑓 (𝑥) = 𝑥2
1
+ 𝑥2
2
− 2𝑥
1
− 4𝑥
2

s.t. 𝑥
1
+ 4𝑥
2
+ 𝑥
3
= 5,

2𝑥
1
+ 3𝑥
2
+ 𝑥
4
= 6,

𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
≥ 0.

(3)

For tolerance 𝜖 = 10−8, after 𝑘 = 161 iterations for KKY
algorithm we have

𝑥161 = [0.00000000, 2.00005934, −3.00008255,
−0.00000000]𝑇 and 𝑓(𝑥161) = −3.9999999964. Since
the condition 𝑓(𝑥162) − 𝑓(𝑥161) = 4.47 × 10−9 < 10−8

holds, the algorithm stopped, whereas this solution is
not feasible.

Example 2. Consider the nonlinear convex problem:

min 𝑓 (𝑥)

=
3

2
(𝑥2
1
+ 𝑥2
2
) + 2 (𝑥2

3
+ 𝑥2
4
) − ln (𝑥

1
𝑥
4
)

− 3𝑥
1
𝑥
2
+ 4𝑥
3
𝑥
4
− 2𝑥
1
− 3𝑥
4

s.t. 𝑥
1
+

1

4
𝑥
4
− 8𝑥
5
− 𝑥
6
+ 9𝑥
7
= 0,

𝑥
2
+

1

2
𝑥
4
− 12𝑥

5
−

1

2
𝑥
6
+ 3𝑥
7
= 0,

𝑥
3
+ 𝑥
6
= 1,

𝑥
1
, 𝑥
2
, . . . , 𝑥

7
≥ 0.

(4)

For 𝜖 = 10−8, 𝛽 = 8/27 ∈ [0.27, 0.36], and
𝑘 = 1 iteration using KKY algorithm the solution 𝑥1 =

[−5.2199, −1.8871, 0.4463, 0.3791, −0.0087, 0.5536, 0.6232]𝑇

is calculated. This solution is not feasible.

Here, two difficulties arise. First, 𝑥𝑘 must stay feasible
in each iteration. Second, in the moderate time the required
tolerance must be satisfied. To overcome these difficulties we
modify the KKY algorithm in the next section.

3. Modified Algorithm

3.1.Modifications. In theKKY [12] algorithm𝛽 ∈ [0.27, 0.36].
As it is observed in Examples 1 and 2, for these values of 𝛽,
the KKY algorithm may produce infeasible solution. In the
standard Karmarkar [1, 3, 4] instead of 𝛽, 𝛼𝑟 = ((𝑛 + 1)/

3(𝑛 + 2))(1/√(𝑛 + 1)(𝑛 + 2)) is used. Hence the solution
in each iteration remains feasible. In this case, the optimal
solution for Problem (2) is given by 𝑦𝑘+1 = 𝑦0 − 𝛽(𝐶

𝑝
/‖𝐶
𝑝
‖),

where 𝛽 = 𝛼𝑟. Applying KKY algorithm with 𝛽 = 𝛼𝑟 to the
problem in Example 2, it gives the feasible solution 𝑥80 =
[0.7517262, 0.0000174, 0.0000056, 1.0209196, 0.0008742,
0.9999943, 0.0000035]𝑇, 𝑓(𝑥80) = −1.3692774913, and
𝑓(𝑥81) = −1.3692882373. The algorithm stops after 𝑘 = 80
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iterations since 𝑓(𝑥81) − 𝑓(𝑥80) = −1.0746 × 10−5, while the
suitable accuracy 𝜖 = 10−8 is not reached. In each iteration,
linear search method is used to find 0 < 𝜆 ≤ 1 such that
𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘), where the suitable tolerance satisfies. Thus
one may write Problem (2) in the following form:

min ∇𝑔 (𝑦0)
𝑇

𝑦

s.t. 𝐴
𝑘
𝑦 = 0,

𝑒𝑇
𝑛+1

𝑦 = 1,

𝑦 − 𝑦0
 ≤ 𝜆𝛼𝑟.

(5)

Lemma 3. The optimal solution for Problem (5) is given by
𝑦𝑘+1 = 𝑦0 − 𝜆𝛼𝑟(𝐶

𝑝
/‖𝐶
𝑝
‖).

Proof. We put 𝑥 = 𝑦−𝑦0, and then we have 𝑃𝑥 = (
𝐴𝑘

𝑒
𝑇

𝑛+1

) (𝑦 −

𝑦0) = 0 and Problem (5) is equivalent to

min ∇𝑔 (𝑦0)
𝑇

𝑥

s.t. 𝑃𝑥 = 0,

‖𝑥‖
2 ≤ 𝜆2𝛼2𝑟2.

(6)

𝑥∗ is a solution of Problem (6) if and only if there exist 𝜔 ∈

𝑅𝑚+1 and 𝜇 ≥ 0 such that

∇𝑔 (𝑦0) + 𝑃𝑇𝜔 + 𝜇𝑥∗ = 0. (7)

Multiplying both sides of (7) by 𝑃 and since 𝑃𝑥∗ = 0, we
get 𝑃∇𝑔(𝑦0) + 𝑃𝑃𝑇𝜔 = 0. Then 𝜔 = −(𝑃𝑃𝑇)−1(𝑃∇𝑔(𝑦0));
by substituting 𝜔 in (7) we find

𝑥∗ = −
1

𝜇
[𝐼 − 𝑃𝑇 (𝑃𝑃𝑇)

−1

𝑃]∇𝑔 (𝑦0) . (8)

By assuming 𝐶
𝑃
= [𝐼 − 𝑃𝑇(𝑃𝑃𝑇)−1𝑃]∇𝑔(𝑦0), we have

𝑥
∗ =

1

𝜇

𝐶𝑃
 = 𝜆𝛼𝑟

⇒
1

𝜇
=

𝜆𝛼𝑟
𝐶𝑃


,

⇒ 𝑥∗ = −𝜆𝛼𝑟
𝐶
𝑃

𝐶𝑃

.

(9)

And we have 𝑦𝑘+1 = 𝑦∗ = 𝑦0 +𝑥∗ = 𝑦0 −𝜆𝛼𝑟(𝐶
𝑃
/‖𝐶
𝑃
‖).

Note that here we have proposed the algorithm similar
to KKY, where 𝛽 = 𝜆𝛼𝑟. This modified algorithm has the
advantage that can find the feasible approximate solution in
the suitable tolerance.

3.2. Modified KKY Algorithm (MKKY). Let 𝜖 > 0 be a given
tolerance and 𝑥0 is a strictly feasible point.

Step 1. Compute 𝑦0 = (1/(𝑛 + 1), . . . , 1/(𝑛 + 1))𝑇, 𝑟 =

1/√(𝑛 + 1)(𝑛 + 2), and 𝛼 = (𝑛 + 1)/3(𝑛 + 2). Put 𝜆 = 1 and
𝑘 = 0.

Step 2. Build 𝐷
𝑘

= diag{𝑥𝑘}, 𝐴
𝑘

= [𝐴𝐷
𝑘
, −𝑏], and 𝑃 =

(
𝐴𝑘

𝑒
𝑇

𝑛+1

).
Compute 𝐶

𝑝
= [𝐼 − 𝑃𝑇(𝑃𝑃𝑇)−1𝑃]∇𝑔(𝑦0), 𝑦𝑘+1 = 𝑦0 −

𝜆𝛼𝑟(𝐶
𝑝
/‖𝐶
𝑝
‖), and 𝑥𝑘+1 = 𝐷

𝑘
𝑦𝑘+1[𝑛]/𝑦𝐾

𝑛+1
.

Step 3. While 𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘) > 𝜖, put 𝑘 = 𝑘 + 1.
Build𝐷

𝑘
= diag{𝑥𝑘}, 𝐴

𝑘
= [𝐴𝐷

𝑘
, −𝑏], and 𝑃 = (

𝐴𝑘

𝑒
𝑇

𝑛+1

).
Compute 𝐶

𝑝
= [𝐼 −𝑃𝑇(𝑃𝑃𝑇)−1𝑃]∇𝑔(𝑦0) and 𝑦𝑘+1 = 𝑦0 −

𝜆𝛼𝑟(𝐶
𝑝
/‖𝐶
𝑝
‖).

Then 𝑥𝑘+1 = 𝑇−1
𝑘

(𝑦𝑘+1) = 𝐷
𝑘
𝑦𝑘+1[𝑛]/𝑦𝐾

𝑛+1
.

Let 𝑘 = 𝑘 + 1, and go to Step 3.

Step 4. While 𝑓(𝑥𝑘+1) > 𝑓(𝑥𝑘), compute 𝜆 = (1/2)𝜆, 𝑦𝑘+1 =
𝑦0 − 𝜆𝛼𝑟(𝐶

𝑝
/‖𝐶
𝑝
‖), and 𝑥𝑘+1 = 𝐷

𝑘
𝑦𝑘+1[𝑛]/𝑦𝐾

𝑛+1
.

Step 5. Let 𝑘 = 𝑘 + 1, and go to Step 3.

4. Convergence for Modified
Algorithm (MKKY)

In order to establish the convergence of the modified algo-
rithm, we introduce a potential function associated with
Problem (1) defined by

𝜙 (𝑥) = (𝑛 + 1) ln (𝑓 (𝑥) − 𝑧∗) −
𝑛

∑
𝑖=1

ln (𝑥
𝑖
) , (10)

where 𝑧∗ is the optimal value of the objective function.

Lemma 4. If 𝑦𝑘+1 is the optimal solution of Problem (5), then
𝑔(𝑦𝑘+1) < 𝑔(𝑦0).

Proof. Since 𝑔(𝑦𝑘+1) = 𝑔(𝑦0)+∇𝑔(𝑦0)𝑇(𝑦𝑘+1−𝑦0) and𝑦𝑘+1 =

𝑦0 − 𝜆𝛼𝑟(𝐶
𝑃
/‖𝐶
𝑃
‖), then

𝑔 (𝑦𝑘+1) − 𝑔 (𝑦0) = ∇𝑔 (𝑦0)
𝑇

(−𝜆𝛼𝑟
𝐶
𝑃

𝐶𝑃

)

= −
𝜆𝛼𝑟
𝐶𝑃


(∇𝑔 (𝑦0) 𝐶

𝑃
)

= −
𝜆𝛼𝑟
𝐶𝑃



𝐶𝑃

2

= −𝜆𝛼𝑟
𝐶𝑃

 < 0.

(11)

Thus 𝑔(𝑦𝑘+1) < 𝑔(𝑦0) and a reduction is obtained in each
iteration.

Lemma 5. If 𝑦𝑘+1 is the optimal solution of Problem (5), then

𝑔 (𝑦𝑘+1) ≤ (1 −
𝜆𝛼

𝑛 + 1
)𝑔 (𝑦0) . (12)

Proof. Let 𝑥∗ be the optimal solution of Problem (1); we can
write 𝑥∗ = T−1

𝑘
(𝑦∗). 𝐵(𝑦0, 𝜆𝛼𝑟) is a ball of center 𝑦0 with

radius 𝜆𝛼𝑟. There are two cases:
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(i) If 𝑦∗ ∈ 𝑌 ∩ 𝐵(𝑦0, 𝜆𝛼𝑟), then

0 ≤ 𝑔 (𝑦𝑘+1) ≤ 𝑔 (𝑦∗) = 0 < (1 −
𝜆𝛼

𝑛 + 1
)𝑔 (𝑦0) , (13)

and Lemma 5 holds.
(ii) If 𝑦∗ ∉ 𝑌∩𝐵(𝑦0, 𝜆𝛼𝑟), since 𝑌 is convex, intersection

point of the boundary of 𝑌 ∩ 𝐵(𝑦0, 𝜆𝛼𝑟) and the line
segment between 𝑦0 and 𝑦∗ should be feasible for
Problem (5). Let 𝑦𝑘+1 be the intersection point; then
𝑦𝑘+1 satisfies 𝑦𝑘+1 = 𝜃𝑦∗ + (1−𝜃)𝑦0 for 𝜃 ∈ (0, 1), and
‖𝑦𝑘+1 − 𝑦0‖ = 𝜆𝛼𝑟. Thus,

𝑦
𝑘+1 − 𝑦0

 =
𝜃 (𝑦∗ − 𝑦0)

 = 𝜆𝛼𝑟 ⇒

(𝑦
∗ − 𝑦0)

 =
𝜆𝛼𝑟

𝜃
.

(14)

Hence,
𝑦
∗ − 𝑦0


2

=
𝑦
∗
2

+
𝑦
0

2

− 2𝑦0
𝑇

𝑦∗, (15)

and we have

𝑦
∗ =
𝑛+1

∑
𝑖=1

(𝑦∗
𝑖
)
2

≤ (
𝑛+1

∑
𝑖=1

𝑦
𝑖

∗)

2

= (𝑒𝑇
𝑛+1

𝑦∗)
2

= 1,

𝑦
0

2

=


1

𝑛 + 1
𝑒
𝑛+1



2

=
1

𝑛 + 1
,

𝑦0
𝑇

𝑦∗ =
1

𝑛 + 1
𝑒𝑇
𝑛+1

𝑦∗ =
1

𝑛 + 1
.

(16)

Thus,

𝑦
∗ − 𝑦0


2

≤ 1 +
1

𝑛 + 1
−

2

𝑛 + 1
=

𝑛

𝑛 + 1
≤

𝑛 + 1

𝑛 + 2
. (17)

From (14) we also have ‖𝑦∗ − 𝑦0‖2 = (𝜆𝛼𝑟/𝜃)2; therefore

(
𝜆𝛼𝑟

𝜃
)
2

≤
𝑛 + 1

𝑛 + 2
or

𝜆𝛼𝑟

𝜃
≤

√𝑛 + 1

√𝑛 + 2
.

(18)

Substituting 𝑟 = 1/√(𝑛 + 1)(𝑛 + 2) in the above inequality, we
have 𝜃 ≥ 𝜆𝛼/(𝑛 + 1). Since 𝑔 is convex and 𝑔(𝑦∗) = 0, then

𝑔 (𝑦𝑘+1) ≤ 𝜃𝑔 (𝑦∗) + (1 − 𝜃) 𝑔 (𝑦0)

≤ (1 −
𝜆𝛼

𝑛 + 1
)𝑔 (𝑦0) .

(19)

Furthermore, 𝑔(𝑦𝑘+1) ≤ 𝑔(𝑦∗); then 𝑔(𝑦𝑘+1) ≤ (1 − 𝜆𝛼/(𝑛 +

1))𝑔(𝑦0).

Theorem 6. In every iteration of the algorithmMKKY, poten-
tial function is reduced by a constant value 𝛿 such that
𝜙(𝑥𝑘+1) ≤ 𝜙(𝑥𝑘) − 𝛿.

Proof. Consider

𝜙 (𝑥𝑘+1) − 𝜙 (𝑥𝑘) = (𝑛 + 1) ln(
𝑓(𝑥𝑘+1) − 𝑧∗

𝑓 (𝑥𝑘) − 𝑧∗
)

−
𝑛

∑
𝑖=1

ln(
𝑥𝑘+1
𝑖

𝑥𝑘
𝑖

)

= (𝑛 + 1) ln(
𝑔 (𝑦𝑘+1)

𝑔 (𝑦0)
)

−
𝑛+1

∑
𝑖=1

ln (𝑦𝑘+1
𝑖

)

≤ (𝑛 + 1) ln(1 −
𝜆𝛼

𝑛 + 1
)

−
𝑛+1

∑
𝑖=1

ln (𝑦𝑘+1
𝑖

)

≤ −𝜆𝛼 +
𝜆2𝛼2

2 (1 − 𝜆𝛼)2
.

(20)

We used the result demonstrated by Karmarkar [1]:

−
𝑛+1

∑
𝑖=1

ln (𝑦𝑘+1
𝑖

) ≤
𝜆2𝛼2

2 (1 − 𝜆𝛼)2
. (21)

Then 𝜙(𝑥𝑘+1) ≤ 𝜙(𝑥𝑘) − 𝛿, where 𝛿 = −𝜆𝛼 + 𝜆2𝛼2/2(1 − 𝜆𝛼)2.
If 𝛼 = (𝑛 + 1)/3(𝑛 + 2), then 𝜙(𝑥𝑘+1) ≤ 𝜙(𝑥𝑘) − 0.2.
Therefore 𝜙(𝑥𝑘+1) ≤ 𝜙(𝑥0) − 0.2(𝑘 + 1).

Theorem 7. If 𝑥0 is the feasible solution of Problem (1) and
𝑥∗ is the optimal solution with optimal value 𝑧∗, then one has
following assumptions:

(1) 𝑥0 ≥ 2−𝐿𝑒
𝑛
.

(2) 𝑥∗ ≤ 2𝐿𝑒
𝑛
; for any feasible solution 𝑥 one has −23𝐿 ≤

𝑧∗ ≤ 𝑓(𝑥) ≤ 23𝐿.
The algorithm MKKY finds an optimal solution after 𝑂(𝑛𝐿)
iteration. 𝐿 is the number of bytes.

Proof. Consider

𝑓 (𝑥𝑘) − 𝑧∗

𝑓 (𝑥0) − 𝑧∗
= 𝛾 (𝑥𝑘) exp(

𝜙 (𝑥𝑘) − 𝜙 (𝑥0)

𝑛 + 1
) , (22)

where

𝛾 (𝑥𝑘) = exp(
∑
𝑛

𝑖=1
ln (𝑥𝑘
𝑖
) − ∑
𝑛

𝑖=1
ln (𝑥0
𝑖
)

𝑛 + 1
) . (23)

By assumptions (1) and (2) we have 𝛾(𝑥𝑘) ≤ 22𝐿 in the feasible
region; then

𝑓 (𝑥𝑘) − 𝑧∗

≤ 22𝑙 (𝑓 (𝑥0) − 𝑧∗) exp(
𝜙 (𝑥𝑘) − 𝜙 (𝑥0)

𝑛 + 1
) .

(24)
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Table 1: Computed solutions using four different algorithms for Examples 8, 9, 10, and 11.

Examples 𝑥 KKY MKKY Sch-MKKY MN-MKKY

Example 8

𝑥
1

1.1176285677 0.7993104755 0.7992885091 0.7984677572
𝑥
2

0.8925922545 1.2006283419 1.2006478942 1.2013756245
𝑥
3

−0.0102208222 0.0000611826 0.0000635969 0.0001566183
𝑥
4

1.3324440588 0.3980537916 0.3979927208 0.395765081

Example 9

𝑥
1

−5.2199797446 0.7514629509 0.7514297188 0.7514274997
𝑥
2

−1.8871925195 0.0000032699 0.0000065967 0.0000068198
𝑥
3

0.4463304312 0.0000010511 0.0000021234 0.0000022020
𝑥
4

0.3791651531 1.0175937272 1.0172339995 1.0172101531
𝑥
5

−0.0087312913 0.0007335551 0.0007190583 0.0007180983
𝑥
6

0.5536695688 0.9999989489 0.9999978766 0.9999977980
𝑥
7

0.6232230772 0.0000006675 0.0000013472 0.0000013940

Example 10
𝑥
1

0.0000000025 0.0000000156 0.0000000055 0.0000000080
𝑥
2

1.9999999829 1.9999999858 1.9999999749 1.9999999586
𝑥
3

0.0000000025 0.0000000156 0.0000000055 0.0000000080

Example 11

𝑥
1

0.3124560511 0.7142857707 0.7142857350 0.7142857453
𝑥
2

0.3438507936 0.1428572168 0.1428571684 0.1428571600
𝑥
3

0.0001576431 0.0000002101 0.0000000702 0.0000000498
𝑥
4

−1.4064826279 0.0000001087 0.0000000363 0.0000000258

Table 2: Comparison between four different algorithms for Examples 8, 9, 10, and 11.

Examples Algorithm 𝑘 ‖𝑥∗‖ 𝑓(𝑥∗) Error CPU time (sec)

Example 8

KKY (infeasible) — — — — —
MKKY 549 1.4962795449 −7.1998265727 1.7344 × 10−4 182.8281

Sch-MKKY 515 1.4962672544 −7.1998196616 1.8034 × 10−4 153.4063
MN-MKKY 187 1.4958093895 −7.1995511207 4.4888 × 10−4 83.5313

Example 9

KKY (infeasible) — — — — —
MKKY 181 1.6125110840 −1.3693639744 1.6216 × 10−5 213.1250

Sch-MKKY 87 1.6122679375 −1.3693475555 3.2635 × 10−5 122.4229
MN-MKKY 67 1.6122518087 −1.3693463904 3.3800 × 10−5 79.1875

Example 10

KKY 17 1.9999999829 −3.9999999317 6.8305 × 10−8 11.4844
MKKY 80 1.9999999858 −3.9999999433 5.6661 × 10−8 46.5469

Sch-MKKY 37 1.9999999749 −3.9999998994 1.0058 × 10−7 22.5625
MN-MKKY 15 1.9999999586 −3.9999998343 1.6570 × 10−7 10.7031

Example 11

KKY (infeasible) — — — — —
MKKY 61 0.7284314289 −0.2039626101 3.2040 × 10−8 35.7188

Sch-MKKY 30 0.7284313844 −0.2039626256 8.9867 × 10−9 18.4531
MN-MKKY 12 0.7284313929 −0.2039626212 1.3372 × 10−8 9.0781

According to Theorem 6, after 𝑘 iterations, we have 𝜙(𝑥𝑘) −

𝜙(𝑥0) ≤ −𝑘𝛿. Thus,

𝑓 (𝑥𝑘) − 𝑧∗ ≤ 22𝑙 (𝑓 (𝑥0) − 𝑧∗) exp(−
𝑘𝛿

𝑛 + 1
)

≤ 25𝐿 exp(−
𝑘𝛿

𝑛 + 1
) ≤ 2−4𝐿.

(25)

Therefore, 𝑓(𝑥𝑘) − 𝑧∗ ≤ 2−4𝐿 for 𝑘 ≥ 45𝐿(𝑛 + 1).

In the next section MKKY algorithm is combined with
the algorithmof Schrijver [6, 7] andMalek-Naseri’s algorithm
[8] to propose novel hybrid algorithms called Sch-MKKY

(Schrijver-Modified Kebiche-Keraghel-Yassine) and MN-
MKKY (Malek-Naseri-Modified Kebiche-Keraghel-Yassine).
These algorithms are different from MKKY in the use of
optimal length in each iteration.

4.1. Hybrid Algorithms. Let us assume that 𝑟 and 𝑦0 in
the modified algorithm are expressed as follows: 𝑟 =
√(𝑛 + 2)/(𝑛 + 1) and 𝑦0 = (1, 1, . . . , 1)𝑇. In the Sch-MKKY
and MN-MKKY algorithms, choose 𝛼 = 1/(1 + 𝑟) and 𝛼 =

1−1/(𝑛+2)4(1+√𝑛(𝑛 + 1)), respectively. It is easy to prove that
the theorems in Section 4 satisfy Sch-MKKYandMN-MKKY
algorithms.Thus with the recent step length the convergence
is guaranteed.
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(d) Example 11

Figure 1: The tolerances against number of iterations are compared for MKKY, Sch-MKKY, and MN-MKKY algorithms for Examples 8, 9,
10, and 11.

5. Numerical Results

It is observed that the approximate solution from KKY
algorithm is not feasible in some instances (see Examples 8,
9, and 11 in Table 1). All programs have been written with
MATLAB 7.0.4 for 𝜖 = 10−8 as tolerance. The computed
solution for KKY, Sch-MKKY, and MN-MKKY is given in
Table 1.

Example 8. Consider the quadratic convex problem:

min 𝑓 (𝑥) = −2𝑥
1
− 6𝑥
2
+ 𝑥2
1
− 2𝑥
1
𝑥
2
+ 2𝑥2
2

s.t. 𝑥
1
+ 𝑥
2
+ 𝑥
3
= 2,

− 𝑥
1
+ 2𝑥
2
+ 𝑥
4
= 2,

𝑥
1
, . . . , 𝑥

4
≥ 0.

(26)

As it is shown, the KKY algorithm does not converge to
the correct solution, while the computed solution of MKKY
and two hybrid algorithms is feasible. Example 8 is solved
by using Fmincon from MATLAB 7.0.4 and the absolute
difference of the objective functions stated as Error. In Table 2
number of iterations, solution norms, optimal values of the
objective function, Error, and the elapsed time for each
algorithm have been given.

In Table 2 we show that MN-MKKY algorithm is more
efficient than the other algorithms comparing the number of
iterations and elapsed time.

In Figure 1, for various tolerances, the number of itera-
tions is compared for different algorithms. It is observed that
the MN-MKKY algorithm has better performance for each
required tolerance.

Example 9. Consider Example 2. Table 2 shows the com-
puted solution for four different algorithms. From Figure 1,
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it is obvious that MN-MKKY algorithm is the best for this
example.

Example 10. Consider the quadratic convex problem:

min 𝑓 (𝑥) = 𝑥2
1
+ 𝑥2
2
− 8𝑥
2
+ 8

s.t. 𝑥
1
+ 2𝑥
2
+ 𝑥
3
= 4,

𝑥
1
, 𝑥
2
, 𝑥
3
≥ 0.

(27)

Example 11. Consider the nonlinear convex problem:

min 𝑓 (𝑥) = 𝑥2
1
+ 2𝑥5
2
− 𝑥
1

s.t. 𝑥
1
+ 2𝑥
2
− 𝑥
3
= 1,

− 3𝑥
1
+ 𝑥
2
+ 𝑥
4
= −2,

𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
≥ 0.

(28)

6. Conclusion

Having two ideas in our mind, (i) calculation of feasible
solution in each iteration and (ii) the fact that the objective
function value must decrease in each iteration with the
fixed desired tolerance, this paper proposed three hybrid
algorithms for solving nonlinear convex programming prob-
lem based on the interior point idea using various 𝛽’s of
Karmarkar, Schrijver, and Malek-Naseri techniques. These
methods have better performance than the standard Kar-
markar algorithm, since in the latter algorithm one may not
check the feasibility of solution in each iteration.

Our numerical simulation shows that the MN-MKKY
algorithm has the best performance among the other algo-
rithms. This algorithm uses less number of iterations to
solve the general nonlinear optimization problemswith linear
constraints, since it uses the step length 𝛽 of Malek-Naseri
type.
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