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In this work, it is presented a new contribution to the design of a robust MPC with output feedback, input constraints, and
uncertain model. Multivariable predictive controllers have been used in industry to reduce the variability of the process output
and to allow the operation of the system near to the constraints, where it is usually located the optimum operating point. For this
reason, new controllers have been developed with the objective of achieving better performance, simpler control structure, and
robustness with respect to model uncertainty. In this work, it is proposed a model predictive controller based on a nonminimal
state space model where the state is perfectly known. It is an infinite prediction horizon controller, and it is assumed that there is
uncertainty in the stable part of the model, which may also include integrating modes that are frequently present in the process
plants. The method is illustrated with a simulation example of the process industry using linear models based on a real process.

1. Introduction

Model predictive control has achieved a remarkable popular-
ity in the process industry with thousands of practical appli-
cations [1]. One of the reasons for this industrial acceptance
is the ability of MPC to incorporate constraints in the control
problem. However, one additional desirable characteristic,
still not attended by commercial MPC packages, is closed-
loop stability in the presence of model uncertainty, which
is usually related to the nonlinearity of the real system.
When model uncertainty is considered in the synthesis
of the model predictive control, the majority of existing
robust algorithms usually demand a computer effort that
is prohibitive for practical implementation [2]. From the
application viewpoint, we could not find in the control
literature a satisfactory solution to the robust MPC problem
with output feedback and input constraints. In Rodrigues
and Odloak [3], it is presented a formulation to the robust
unconstrained MPC with output feedback where stability
is achieved through the explicit inclusion of a Lyapunov
inequality into the control optimization problem. Later, in
Rodrigues and Odloak [4] the method was extended to allow
the switching of active input constraints during transient
conditions. In Perez [5] the non-minimal state space model

(realigned model) proposed in Maciejowski [6] was extended
to the incremental form, and this model was used in the
controller proposed in Rodrigues and Odloak [4] to produce
a robust controller with reduced computational effort by
avoiding the use of a state observer, since the state of the
realigned model is directly read from the plant. In this
approach, the MPC solves the optimization problem that
produces the control law in two stages. The first stage is
solved offline and computes a family of linear controllers
in which the Lyapunov inequalities are added to the control
problem so as to ensure state contraction (stability). These
linear controllers match all possible configurations of satura-
tion of manipulated variables for a given set of variables that
need to be controlled. The second stage is solved online and
computes a convex combination of these linear controllers
through an optimization problem that includes all the input
bounds. These combinations span all possible control con-
figurations in terms of controlled outputs and manipulated
inputs. For each control configuration, the linear controller
is robust to all process models defining the multiplant
uncertainty. The main disadvantage of this approach is that
the number of possible control configurations corresponding
to the possible combinations of saturated inputs may become
very high in systems with large dimension. Then, the off-line
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step of the control problem may be computationally very
expensive or there may not be a feasible solution. The
realigned model was applied in González et al. [7] to the
development of an infinite horizon MPC nominally stable
to open-loop stable and integrating systems. The same non-
minimal model was applied in González and Odloak [8]
to the development of a robust MPC to uncertain stable
systems.

The main objective of this work is to extend the controller
proposed in González and Odloak [8] to consider systems
with stable and integrating outputs. The method proposed
here is based on the non-minimal state space model formu-
lation presented in Maciejowski [6], and the control problem
considers that one may have uncertainties in the stable part
of the model, while the model for the integrating part is
perfectly known. In Section 2, the non-minimal (realigned)
model in the incremental form is developed for systems with
stable and integrating outputs. The realigned model is split
in two parts, one related to the stable outputs and the other
related to the integrating outputs. Model uncertainty is only
related to the stable outputs, and it is characterized by a
family of possible linear time-invariant models. It is assumed
that the real model of the system is unknown, but at any
time instant the system can be represented by one of the
models of this family of models. In practice the models of the
integrating outputs are less affected by uncertainty, and here,
this uncertainty is neglected. In Section 3, the optimization
problem that produces the robust controller is presented.
Since the inputs affect both the stable and integrating
outputs, the cost function of the robust MPC proposed here
includes a combination of the weighted predicted errors in
all the outputs. Several results concerning the robustness
of the convergence and stability of the resulting closed-
loop system are provided. Next, in Section 4, a simulation
example, based on linear models of a process system from
the oil refining industry, is used to illustrate the application
of the new method and finally, in Section 5, the paper is
concluded.

2. The Nonminimal State Space Model with
Measured State

Consider the following discrete time-invariant model:

y(k) +
na∑

i=1

Aiy(k − i) =
nb∑

i=1

Biu(k − i), (1)

where na and nb are the orders of the discrete model,
Ai ∈ �ny×ny and Bi ∈ �ny×nu are the coefficients that
correspond to the parameters of the model, y(k) ∈ �ny is
the system output, and u(k) ∈ �nu is the system input. Here,
it assumed that in the model represented above there are no
zero-pole cancellations. In Maciejowski [6], it is shown that
this model can be written in a state space form where the
state is built with the measurements of the plant inputs and
outputs at different time instants. In González et al. [7], it
is adopted the same model written in the input incremental
form:

⎡
⎣
xy(k + 1)

xΔu(k + 1)

⎤
⎦ =

⎡
⎣
Ay AΔu

0 I

⎤
⎦
⎡
⎣
xy(k)

xΔu(k)

⎤
⎦ +

⎡
⎣
BΔu

I

⎤
⎦Δu(k),

y(k) =
[
Cy CΔu

]
⎡
⎣
xy(k)

xΔu(k)

⎤
⎦,

(2)

where

xy(k)

=
[
y(k)T y(k−1)T · · · y(k−na+1)T y(k−na)T

]T

∈ R(na+1)ny ,

xΔu(k)

=
[
Δu(k − 1)T Δu(k − 2)T · · · Δu(k − nb + 1)T

]T

∈ R(nb−1)nu,
(3)

k is the present sampling instant, Δu (k) = u(k) − u(k − 1)
is the input increment, Δu ∈ �nu, y ∈ �ny is the output.
The matrices involved in this model are (see more details in
Maciejowski [6])

Ay =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I − A1 A1 − A2 A2 − A3 A3 − A4 · · · Ana−1 − Ana Ana

Iny×ny 0 0 0 · · · 0 0
0 Iny×ny 0 0 · · · 0 0
0 0 Iny×ny 0 · · · 0 0
0 0 0 Iny×ny · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Iny×ny 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ay ∈ R(na+1)ny×(na+1)ny ,
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AΔu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B2 · · · Bnb

0ny×nu
... 0ny×nu

0ny×nu
... 0ny×nu

...
. . .

...
0ny×nu · · · 0ny×nu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, AΔu ∈ R(na+1)·ny×(nb−1)·nu,

I =

⎡
⎢⎢⎢⎢⎣

0nu · · · 0nu
Inu · · · 0nu
...

. . .
...

0nu Inu 0nu

⎤
⎥⎥⎥⎥⎦

, I ∈ R(nb−1)nu×(nb−1)nu, 0 ∈ R(nb−1)nu×(na+1)ny ,

BΔu =
[
B1

0

]
=

⎡
⎢⎢⎢⎢⎣

B1

0ny×nu
...

0ny×nu

⎤
⎥⎥⎥⎥⎦

, B1 ∈ Rny×nu, BΔu ∈ R[(na+1)·ny]×nu,

I =

⎡
⎢⎢⎢⎢⎣

Inu
0nu

...
0nu

⎤
⎥⎥⎥⎥⎦

, I ∈ R[(nb−1)·nu]×nu, Cy =

⎡
⎢⎢⎣ Iny×ny 0ny×ny · · · 0ny×ny︸ ︷︷ ︸

na+1

⎤
⎥⎥⎦,

CΔu =

⎡
⎢⎢⎣ 0ny×nu 0ny×nu · · · 0ny×nu︸ ︷︷ ︸

nb−1

⎤
⎥⎥⎦.

(4)

In the system defined by (2), the input and output values read
from the plant are used to realign the model, which gives
a better disturbance rejection capability to the controller.
In González and Odloak [8], it is shown that the model
presented above is detectable and stabilizable. More detailed
discussions of minimal state space representations and the
resulting observability and controllability of time-delayed
systems can be found in De La Sen [9].

For control implementation, in order to better locate the
uncertainties along the process model, it is adequate to divide
the model in two separated parts. The first part of the model
is related to the pure integrating outputs, and the second
part is related to the stable outputs. Here, it is assumed
that the process has no outputs related simultaneously
with stable and integrating modes. Then, suppose that
the model defined by (2) is written for the integrating
outputs:

⎡
⎣
xiy(k + 1)

xiΔu(k + 1)

⎤
⎦

︸ ︷︷ ︸
xi(k+1)

=
⎡
⎣
Ai

y Ai
Δu

0 I

⎤
⎦

︸ ︷︷ ︸
Ai

⎡
⎣
xiy(k)

xiΔu(k)

⎤
⎦

︸ ︷︷ ︸
xi(k)

+

⎡
⎣
Bi
Δu

I

⎤
⎦

︸ ︷︷ ︸
Bi

Δu(k),

(5)

yi(k) =
[
Ci
y Ci

Δu

]
⎡
⎣
xiy(k)

xiΔu(k)

⎤
⎦. (6)

Analogously, a similar model can be written for the stable
outputs:
⎡
⎣
xsy,θp(k + 1)

xsΔu(k + 1)

⎤
⎦

︸ ︷︷ ︸
xsθp (k+1)

=
⎡
⎣A

s
y

(
θp
)

As
Δu

(
θp
)

0 I

⎤
⎦

︸ ︷︷ ︸
As(θp)

⎡
⎣
xsy,θp(k)

xsΔu(k)

⎤
⎦

︸ ︷︷ ︸
xsθp (k)

+

⎡
⎣B

s
Δu

(
θp
)

I

⎤
⎦

︸ ︷︷ ︸
Bs(θp)

Δu(k),

(7)

ysθp(k) =
[
Cs
y Cs

Δu

]
⎡
⎣
xsy,θp(k)

xsΔu(k)

⎤
⎦. (8)

Observe that some of the components of the model defined
in (7) and (8) depend on θp, that is, the vector of parameters
that define the model (θp = [Ap,Bp]). These parameters are
unknown, which characterizes the uncertainty in the model
related to the stable outputs. The simplest form to consider
uncertainty is through the multimodel uncertainty where θp
belongs to a finite set θp ∈ Ω = {θ1, . . . , θL}. This means that
the true model of the process is unknown, but it is one of the
L models of a finite set of known models.

Within the conventional MPC formulation, the control
horizon m is such that Δu (k + j) = 0, j = m,m + 1, . . .,
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then, with the model representation defined in (2) and (3), it
is easy to show that xΔu(k + n + j) = 0, j = 1, 2, . . ., where
n = m+ nb− 1 and xy(k + n+ j) = Ayxy(k + n+ j − 1), j =
1, 2, . . ..

Then, after time step k + n, it is possible to apply the
Jordan matrix decomposition of Ay as follows:

AyV = VAd, (9)

where Ad is a block diagonal matrix where the eigenvalues of
Ay appear in its main diagonal. If Ay is a full-rank square
matrix, then V is invertible and it is possible to make a
change of variables such that the integrating states related
to the incremental form of the model are separated from
the remaining states of the system. For instance, for the
integrating system defined in (5) and (6), one can define

xiy(k) = Viz
i(k),

xiy(k) =
[
VΔ
i V i

i

]
⎡
⎣
zΔi (k)

zii(k)

⎤
⎦,

(10)

where zΔi corresponds to the integrating states related to the
incremental form of the model and zii is the state associated
with the real integrating states of the system. Vi is obtained
from the Jordan decomposition of matrix Ai

y as follows:

Ai
yVi = ViA

i
d. (11)

It can be shown that Ai
d =

[
Inyi Inyi
0 Inyi

]
where nyi is the number

of integrating outputs.
It should be noted that, after time step k + n, the

transformed state of the integrating system will evolve
according to the equation

⎡
⎣
zΔi (k + n + 1)

zii(k + n + 1)

⎤
⎦ =

⎡
⎣
Iny Iny

0 Iny

⎤
⎦
⎡
⎣
zΔi (k + n)

zii(k + n)

⎤
⎦. (12)

Analogously, for the system represented through (7) and (8),
the following state transformation can be defined:

xsy,θp(k) = Vs,θp z
s
θp

(k) =
[
VΔ
s,θp Vs

s,θp

]
⎡
⎣
zΔs,θp(k)

zss,θp(k)

⎤
⎦, (13)

where zΔs,θp corresponds to the integrating states related to
the incremental form of the model and zss,θp is the state
associated with the stable states of the system corresponding
to the parameters represented as θp. Vs,θp is obtained from
the Jordan decomposition of matrix As

y(θp) as follows:

As
y

(
θp
)
Vs,θp = Vs,θpA

s
d,θp . (14)

It can be shown that

As
d,θp =

⎡
⎣
Inys 0

0 Fs
θp

⎤
⎦ (15)

where nys is the number of stable outputs of the system. If the
stable poles of the system are nonrepeated, Fs

θp
is a diagonal

matrix containing the eigenvalues of As
y(θp).

After time step k + n, the transformed state correspond-
ing to the stable outputs will evolve according to the equation

⎡
⎣
zΔs,θp(k + n + 1)

zss,θp(k + n + 1)

⎤
⎦ =

⎡
⎣
Inys 0

0 Fs
θp

⎤
⎦
⎡
⎣
zΔs,θp(k + n)

zss,θp(k + n)

⎤
⎦. (16)

3. The Robust MPC with Output Feedback

The system outputs need to be controlled through the
manipulation of the nu inputs. Then, the robust MPC
proposed here is based on the following objective function:

Jk
(
θp
)
=

n∑

j=1

[
yi
(
k + j | k)− y

sp
i − δiΔ,k − jδii,k

]T

×Qi

[
yi
(
k + j | k)− y

sp
i − δiΔ,k − jδii,k

]

+
∞∑

j=n+1

[
yi
(
k + j | k)− y

sp
i − δiΔ,k − jδii,k

]T

×Qi

[
yi
(
k + j | k)− y

sp
i − δiΔ,k − jδii,k

]

+
n∑

j=1

[
ysθp
(
k + j | k)− y

sp
s − δsΔ,k

(
θp
)]T

×Qs

[
ysθp
(
k + j | k)− y

sp
s − δsΔ,k

(
θp
)]

+
∞∑

j=n+1

[
ysθp
(
k + j | k)− y

sp
s − δsΔ,k

(
θp
)]T

×Qs

[
ysθp
(
k + j | k)− y

sp
s − δsΔ,k

(
θp
)]

+
m−1∑

j=0

Δu
(
k + j | k)TRΔu(k + j | k)

+
(
δiΔ,k

)T
SiΔδ

i
Δ,k +

(
δsΔ,k

(
θp
))T

SsΔδ
s
Δ,k

(
θp
)

+
(
δii,k
)T
Siiδ

i
i,k,

(17)

where yi(k+ j | k) is prediction of integrating output at time
k + j computed at time k and ysθp(k + j | k) is the prediction

of the stable output corresponding to model θp; δiΔ,k, δsΔ,k,
and δii,k are slack variables that are included in the control
problem to guarantee that Jk(θp) is bounded. Qi, Qs, R, SiΔ, SsΔ
and Sii are positive weighting matrices. In the second term on
the right-hand side of (17), the prediction of the integrating
output can be written as follows:

yi
(
k + n + j | k) = Ci

yx
i
y

(
k + n + j | k)

+ Ci
Δux

i
Δu

(
k + n + j | k).

(18)
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But, since xiΔu(k + n + j | k) = 0, (18) becomes

yi
(
k + n + j | k) = Ci

yx
i
y

(
k + n + j | k). (19)

Then, using (10) and (12), (19) can be written as follows:

yi
(
k + n + j | k) = Ci

yV
Δ
i

[
zΔi (k + n | k) + jzii(k + n | k)

]

+ Ci
yV

i
i z

i
i(k + n | k).

(20)

If (20) is substituted into the infinite sum represented by the
second term on the right-hand side of (17), it is easy to see
that the objective function defined in (17) will be bounded
only if the following constraints are satisfied:

Ci
yV

Δ
i z

Δ
i (k + n | k) + Ci

yV
i
i z

i
i(k + n | k)

− y
sp
i − δiΔ,k − nδii,k = 0,

(21)

Ci
yV

Δ
i z

i
i(k + n | k)− δii,k = 0. (22)

Analogously, in the infinite sum represented by the fourth
term on the right-hand side of (17), the prediction of the
stable output can be written as follows:

ysθp
(
k + n + j | k) = Cs

yx
s
y,θp

(
k + n + j | k). (23)

Now, using (13) and (16), equation (23) can be written as
follows:

ysθp
(
k + n + j | k) = Cs

yV
Δ
s,θp z

Δ
y,θp(k + n | k)

+ Cs
yV

s
s,θp

(
Fs
θp

) j
zsy,θp(k + n | k).

(24)

If the expression for the output prediction obtained in (24)
is substituted into the infinite sum represented by the fourth
term on the right-hand side of (17), it is easy to see that the
cost function will be bounded only if the following constraint
is satisfied:

Cs
yV

Δ
s,θp z

Δ
y,θp(k + n | k)− y

sp
s − δsΔ,k

(
θp
)
= 0. (25)

Consequently, the optimization problem that produces the
control law proposed here will have to include the constraints
defined in (21), (22), and (25).

Equation (21) can be developed in terms of the available
states at time k and the vector of the future control moves as
follows:

[
Ci
yV

Δ
i N

i
1 + Ci

yV
i
i N

i
2

]
V−1
i Nixi(k + n | k)

− y
sp
i − δiΔ,k − nδii,k = 0,

(26)

where Ni
1 is a matrix of ones and zeros that collects

component zΔi from zi and matrix Ni
2 collects component zii

from zi. The model defined in (5) can be used to represent
(26) in terms of the integrating state that at time k, is
measured as follows:
[
Ci
yV

Δ
i N

i
1 + Ci

yV
i
i N

i
2

]
V−1
i Ni

((
Ai
)n−m

xi(k) + Bi
mΔuk

)

− y
sp
i − δiΔ,k − nδii,k = 0,

(27)

where Δuk = [Δu(k | k)T · · · Δu(k + m− 1 | k)T]
T

and
Bi
m = [(Ai)

n−1
Bi · · · (Ai)

n−m
Bi].

The constraint (22) can also be represented in terms of
the present state and the vector of future control moves:

Ci
yV

Δ
i N

i
1V

−1
i Ni

((
Ai
)n−m

xi(k) + Bi
mΔuk

)
− δii,k = 0.

(28)

Analogously, (25) can be written as follows:

Cs
yV

Δ
s,θpN

s
1V

−1
s,θpN

s
2

(
As
(
θp
)n−m

xsθp(k) + Bs
m

(
θp
)
Δuk

)

− y
sp
s − δsΔ,k

(
θp
)
= 0,

(29)

where Ns
1 captures the state component zΔs,θp of state zsθp

and Ns
2 captures the component xsy,θp of state xsθp . With

the constraints discussed above, the control cost function
defined in (17) can be written as follows:

Jk
(
θp
)
=

n∑

j=1

[
yi
(
k + j | k)− y

sp
i − δiΔ,k − jδii,k

]T

×Qi

[
yi
(
k + j | k)− y

sp
i − δiΔ,k − jδii,k

]

+
n∑

j=1

[
ysθp
(
k + j | k)− y

sp
s − δsΔ,k

(
θp
)]T

×Qs

[
ysθp
(
k + j | k)− y

sp
s − δsΔ,k

(
θp
)]

+ xsθp(k + n | k)T(Ns)T
(
V−1
s,θp

)T(
Ns

3

)T

×Qs N
s
3 V−1

s,θpN
sxsθp(k + n | k)

+
m−1∑

j=0

Δu
(
k + j | k)TRΔu(k + j | k)

+
(
δiΔ,k

)T
SiΔδ

i
Δ,k +

(
δsΔ,k

(
θp
))T

SsΔδ
s
Δ,k

(
θp
)

+
(
δii,k
)T
Siiδ

i
i,k,

(30)

where Qs is obtained from the solution to the following
equation:

Qs −
(
Fs
θp

)T
QsF

s
θp
=
(
Fs
θp

)T(
Vs
s,θp

)T(
Cs
y

)T
QsC

s
yV

s
s,θpF

s
θp
.

(31)

Observe that (30) is a finite horizon cost function with a
terminal weight computed through (31).

One can now define the robust MPC with output
feedback for systems with integrating and stable outputs. The
controller is robust in a sense that it maintains stability even
in the presence of uncertainty in the model related to the
stable outputs. Assuming that θN corresponds to the nominal
or most probable model, the proposed controller is based on
the solution to the following problem.
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Problem 1. Consider the following objective function:

min
Δuk ,δii,k ,δiΔ,k ,δsΔ,k(θp)

p=1,...,L

Jk(θN )
(32)

subject to (26), (28) and

Cs
yV

Δ
s,θpN

s
1V

−1
s,θpN

s
2

(
As
(
θp
)n−m

xsθp(k) + Bs
m

(
θp
)
Δuk

)

−ysps − δsΔ,k

(
θp
)
= 0, p = 1, . . . ,L

−Δumax ≤ Δu
(
k + j | k) ≤ Δumax, j = 0, . . . ,m− 1

umin ≤ u
(
k + j | k) ≤ umax, j = 0, . . . ,m− 1

Jk
(
θp
)
≤ J̃k

(
θp
)

, p = 1, . . . ,L,

(33)
∥∥∥δii,k

∥∥∥ ≤
∥∥∥δ̃ii,k

∥∥∥, (34)

where J̃k(θp) is computed with

Δũk = [Δu∗(k | k − 1) Δu∗(k + 1 | k − 1) · · · Δu∗(k + m− 2 | k − 1) 0], (35)

where Δu∗(k+ j | k−1) corresponds to the optimal solution

to Problem 1 at time step k − 1 and δ̃ii,k, δ̃iΔ,k, δ̃sΔ,k(θp), p =
1, . . . ,L, which are obtained from the solution to the
following equations:

Cs
yV

Δ
s,θpN

s
1V

−1
s,θpN

s
2

(
As
(
θp
)n−m

xsθp(k) + Bs
m

(
θp
)
Δũk

)

− y
sp
s − δ̃sΔ,k

(
θp
)
= 0, p = 1, . . . ,L,

[
Ci
yV

Δ
i N

i
1 + Ci

yV
i
i N

i
2

]
V−1
i Ni

((
Ai
)n−m

xi(k) + Bi
mΔũk

)

− y
sp
i − δ̃iΔ,k − nδ̃ii,k = 0,

Ci
yV

Δ
i N

i
1V

−1
i Ni

((
Ai
)n−m

xi(k) + Bi
mΔũk

)
− δ̃ii,k = 0.

(36)

Remark 2. The constraint defined in (33) corresponds to
the conventional cost contracting constraint first proposed
in Badgwell [10] in the development of a robust MPC for
the regulator problem and extended in Odloak [11] for the
output tracking problem. In these works, it is shown that,
for open-loop stable systems with multiplant uncertainty,
the inclusion of constraint (33) forces the cost function of
the true plant to be a Lyapunov function for the closed-loop
system.

Remark 3. The constraint defined in (34) is intended to
force slack δii,k to converge to zero. It will be shown latter
that if Problem 1 is feasible with this slack kept equal to
zero, the control cost function of the true plant becomes
a Lyapunov function for the uncertain system and the

controller resulting from the solution to Problem 1. However,
if there is uncertainty on the model related to the integrating
part of the system, which means that there is uncertainty
in matrices Ai and/or Bi, then, it is easy to show that it is
not possible to find a solution to Problem 1 that satisfies
constraint (28) for the different matrices Ai and Bi with
δii,k(θp) = 0, p = 1, . . . ,L. This means that the approach
followed here cannot be applied for systems with uncertainty
in the gains of the integrating outputs. In the next theorems
we prove the robust stability of the controller obtained
through the solution to Problem 1.

The proof of the stability of an MPC usually involves
two ingredients: recursive feasibility of the control problem
and the existence of a Lyapnvov function for the closed-loop
system. The theorem below shows the recursive feasibility of
Problem 1, and the other two theorems show that the cost
function can be interpreted as a Lyapunov function for the
system.

Theorem 4. If Problem 1 has a feasible solution at time step k,
it will remain feasible at any subsequent time step k + j.

Proof. Suppose that at time k the optimum solution is
represented as follows:

Δu∗k , δ∗ii,k , δ∗iΔ,k, δ∗sΔ,k

(
θp
)

, p = 1, . . . ,L. (37)

Then, it is easy to show that, at time step k + 1, the following
solution, inherited from the optimum solution at time k, will
be feasible:

Δuk+1 = [Δu∗(k + 1 | k) Δu∗(k + 2 | k1) · · · Δu∗(k + m− 1 | k) 0], δii,k+1 = δ̃ii,k+1,

δiΔ,k+1 = δ̃iΔ,k, δsΔ,k+1

(
θp
)
= δ̃sΔ,k

(
θp
)

, p = 1, . . . ,L,
(38)

where δ̃ii,k+1, δ̃iΔ,k+1, δ̃sΔ,k+1(θp), p = 1, ...,L are com-
puted as defined in the enunciate of the theorem

and consequently, one can always find a solution to
Problem 1.
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Figure 1: Process diagram for alkylation system.

Since Problem 1 has recursive feasibility, the next the-
orem shows that the consideration of constraint (34) in
the control problem guarantees that, if the system is not
disturbed, δii,k that is the slack related to the integrating
outputs will converge to zero.

Theorem 5. If the system defined in (5), (7), (6), and (8) is
stabilizable, the solution to Problem 1 at successive time steps
drives the slacks δii,k related to the integrating outputs to zero.

Proof. Suppose that, at time step k, Problem 1 is solved
and the solution defined in (37) is obtained. Then, since
it is assumed that there is no uncertainty in the model
related to the integrating outputs, it is easy to see that for

the undisturbed system δ̃iΔ,k+1 = δ∗iΔ,k, and consequently,
‖δ∗iΔ,k+1‖ ≤ ‖δ∗iΔ,k‖. Then, if the system is stabilizable, δiΔ,k will
be driven to zero.

Theorem 6. Consider the system represented in (5), (6), (7),
and (8). If the conditions defined in Theorems 4 and 5 are
satisfied and the desired steady state is reachable, then, the
solution of Problem 1 at successive time steps will produce a
sequence of control moves that will drive the system outputs to
the desired targets.

Proof. Suppose that the convergence of δii,k to zero has
already been achieved and Problem 1 is solved at time step
k. Let us designate the resulting optimum solution as

Δu∗k , δ∗ii,k = 0, δ∗iΔ,k, δ∗sΔ,k

(
θp
)

, p = 1, . . . ,L. (39)

Let us now define the set of parameters corresponding
to the true model as θT . The resulting optimum control
move Δu∗(k | k) is implemented in the true system
and we move to time instant k + 1 where Problem 1 is
solved again. At this time step, as shown in Theorem 4,

Δũk+1, δ̃ii,k+1, δ̃iΔ,k+1, δ̃sΔ,k+1(θp), p = 1, . . . ,L is a feasible

solution to Problem 1. Also, since δ̃ii,k+1 = δ∗ii,k = 0, it is easy

to show that δ̃iΔ,k+1 = δ∗iΔ,k, δ̃sΔ,k+1(θT) = δ∗sΔ,k(θT). Thus,

it is easy to see that J̃k+1(θT) = J∗k (θT), and consequently,
J∗k+1(θT) ≤ J∗k (θT). Now, since Jk(θT) is positive and bounded
below by zero, it can be interpreted as a Lyapunov function
for the closed-loop system with the proposed controller. This
means that yi(k + j | k) − y

sp
i − δiΔ,k and ysθT (k + j | k) −

y
sp
s − δsΔ,k(θT) will converge to zero as j → ∞. Following

the same steps as in González et al. [12], it can be shown
that if weights SiΔ and SsΔ are large enough in comparison
to R and the desired set point is reachable, slacks δiΔ,k and
δsΔ,k(θT) will converge to zero and the outputs will converge
to the set points. If the targets are not reachable, the distance
to the targets will be minimized according to the norm

(δiΔ,k)
T
SiΔδ

i
Δ,k + (δsΔ,k(θT))TSsΔδ

s
Δ,k(θT).

4. Simulation Example: The Distillation
Column System

The proposed control strategy was tested with a small
dimension system of the process industry. The system is part
of a distillation column where isobutene is separated from n-
butane in the alkylation unit of an oil refinery. This system
was studied in Carrapiço et al. [13] that implemented an
infinite horizon MPC to control the industrial distillation
column. The controlled outputs are the level of liquid in the
overhead drum (y1%) and the temperature at tray number
68 (y2, ◦C). The manipulated variables are the steam flow
rate to the reboiler (u1, t/h), the distillate flow rate (u2, m3/d),
and feed temperature deviation (u3, ◦C). Figure 1 shows
schematically the structure of the existing regulatory loops
of the distillation column.
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Figure 2: Outputs of the distillation system. Nominal case.
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Figure 3: Inputs of the distillation system. Nominal case.

From practical tests, for a sampling periodT = 1 min, the
following two models were obtained at different operating
conditions:

G1(z)

=

⎡
⎢⎢⎢⎣

2.3z−4

1− z−1

−0.7× 10−3z−3

1− z−1

0.2z−5

1− z−1

0.4604z−8

1− 0.902z−1

0.1915× 10−3z−3

1− 0.8632z−1

0.03304z−4

1− 0.9174z−1

⎤
⎥⎥⎥⎦

(40)

G2(z)

=

⎡
⎢⎢⎢⎣

2.3z−4

1− z−1

−0.7× 10−3z−3

1− z−1

0.2z−5

1− z−1

0.1965z−4

1− 0.9146z−1

0.3215× 10−3z−2

1− 0.8852z−1

0.03332z−6

1− 0.9306z−1

⎤
⎥⎥⎥⎦

(41)

We observe that y1 is integrating with respect to all the
inputs while y2 is stable. We should notice that there is
uncertainty of about 20% in time constants and uncertainty
of about 50% in process gains of the stable part of the model.
Uncertainty in the dead times is also present in the model.

In the set point tracking problem simulated here, the
desired value of the liquid level in the overhead drum
(y1) was reduced by 1% and the desired value of the
temperature at stage #68 (y2) was increased by 1◦C. The
tuning parameters of the controller that were used in the
simulations included here are the following: m = 2, Qi = 1,
Qs = 1, R = diag ([0.1 0.1 10]), SiΔ = 1× 103, SsΔ = 1× 103,
and Sii = 1× 103. Related to the values of the variables at the
initial steady state, the input limits are umax = [10 400 10],
umin = [−10 − 400 − 10], and Δumax = [0.1 50 0.01].
The nominal model is represented by model G1(s) defined in
(40), and the true plant can be either G1(s) or G2(s) defined
in (41). In this work, IHMPC represents the same controller
as the one presented in Carrapiço et al. [13], which does
not consider the uncertainty in the process model. In the
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Figure 4: Outputs of the distillation system. Uncertain case.
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Figure 5: Inputs of the distillation system. Uncertain case.

first simulation, it is considered the case in which the true
plant has the same model as the nominal plant. Figures 2
and 3 show the system responses for the nominally stable
IHMPC proposed in Carrapiço et al. [13] and for the robust
controller resulting from the solution to Problem 1 and
designated here as IHRMPC. The two controllers have the
same tuning parameters. One can see from Figures 2 and 3
that the nominal IHMPC and the robust IHRMPC perform
similarly. This is quite surprising because it is widespread
in the literature that the robust MPC should have a more
conservative behavior than the controller based on the true
model as this controller also takes into account the output
predictions of model G2(s) that is quite different from the
true model of the plant. This conservative behavior would
produce a slower response, which is not observed in the
simulation results obtained here. In the second simulation
case, model G2(s) represents the true plant. The IHMPC
is still based on model G1(s) while the proposed IHRMPC
contains models G1(s) and G2(s). Figures 4 and 5 show
the responses of the distillation system with each controller.

We can see that the robust controller stabilizes the true
model and the performance of the controller is acceptable.
However, the IHMPC based only on the nominal model
becomes unstable, which indicates that the controller based
only on modelG1(s) cannot be used to control the distillation
column at the operating point where model G2(s) represents
the true process.

5. Conclusion

In this paper, it was presented a new version of the robust
infinitive horizon MPC with output feedback for systems
with stable and integrating outputs. The adopted model
formulation precludes the need to include a state observer,
and the computer burden to run the controller may be
reduced. To accommodate uncertainty in the process model,
the state space model was built in two separate parts: one
part is related to the integrating outputs and the other is
related to the stable outputs. With this approach, it was
possible to include the multiplant uncertainty in the model
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of stable outputs. The resulting optimization problem is a
convex nonlinear program that can be easily solved with the
available NLP packages. A simulation example shows that the
implementation of the developed approach at real industrial
systems may be achieved at least for systems of small to
medium dimension.
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