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The time fractional Schrodinger equation (TFSE) for a nonrelativistic particle is derived on the basis of the Feynman path integral
method by extending it initially to the case of a “free particle” obeying fractional dynamics, obtained by replacing the integer order
derivatives with respect to time by those of fractional order. The equations of motion contain quantities which have “fractional”
dimensions, chosen such that the “energy” has the correct dimension [𝑀𝐿

2
/𝑇
2
].The action 𝑆 is defined as a fractional time integral

of the Lagrangian, and a “fractional Planck constant” is introduced. The TFSE corresponds to a “subdiffusion” equation with an
imaginary fractional diffusion constant and reproduces the regular Schrodinger equation in the limit of integer order. The present
work corrects a number of errors in Naber’s work.The correct continuity equation for the probability density is derived and a Green
function solution for the case of a “free particle” is obtained. The total probability for a “free” particle is shown to go to zero in the
limit of infinite time, in contrast with Naber’s result of a total probability greater than unity. A generalization to the case of a particle
moving in a potential is also given.

1. Introduction

There has been an explosive research output in recent years
in the application of methods of fractional calculus [1–13]
to the study of quantum phenomena [14–42]. The well-
known Schrodinger equation with a first-order derivative in
time and second-order derivatives in space coordinates was
given by Schrodinger as an Ansatz.The Schrodinger equation
has been generalized to (i) a space fractional Schrodinger
equation involving noninteger order space derivatives but
retaining first-order time derivative [14–18], (ii) a time frac-
tional Schrodinger equation involving non-integer order time
derivative but retaining the second-order space derivatives
[19], or (iii) more general fractional Schrodinger equation
where both time and space derivatives are of non-integer
order [20–26]. The fractional Schrodinger equation has also
been obtained by using a fractional generalization of the
Laplacian operator [20] and by using a fractional variation
principle and a fractional Klein-Gordon equation [36]. In all
these cases the fractional derivatives employed have been the
regular fractional derivatives of the Riemann-Liouville type
or the Caputo type (generally used in physical applications
with initial conditions) which are both nonlocal in nature.

The fractional derivative which is nonlocal by definition can
be made “local” by a limiting process as shown by Kolwankar
and Gangal [41]. Highly irregular and nowhere differentiable
functions can be analyzed locally using these local fractional
derivatives.TheHeisenberg principle in the fractional context
has been investigated using local fractional Fourier analysis
[42].

The Schrodinger equation for a free particle has the
appearance of a diffusion equation with an imaginary dif-
fusion coefficient. This suggests a method of deriving the
Schrodinger equation as has been done using the Feynman
path integral technique [43–45] based on the Gaussian
probability distribution in the space of all possible paths.
In other words, the classical Brownian motion leads to
the Schrodinger equation in quantum mechanics. As far as
deriving the fractional Schrodinger equation is concerned,
the path integral approach for the Brownian-like paths
for the Levy stable processes which leads to the classical
space fractional diffusion equation has been extended to
the Levy-like quantum paths leading to the space fractional
Schrodinger equation (SFSE) in the seminal papers of Laskin
[14–18]. It may be noted that in this case, the time derivative is
still the integer first-order derivative; only the space part is of
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fractional order.The SFSE still retains the Markovian charac-
ter and other fundamental aspects such as the Hermiticity of
the Hamilton operator. Parity conservation and the current
density have been explored in the space fractional quan-
tum mechanics in terms of the Riesz fractional derivative.
Applications of SFSE cover the dynamics of a free particle,
particle in an infinite potential well, fractional Bohr atom, and
the quantum fractional oscillator. Thus the space fractional
Schrodinger equation appears to have been well established
[18].This theory has been further generalized recently within
the frame work of tempered ultradistributions [39]. Thus the
theory of SFSE can be considered fully established from the
point of view of the Feynman path integral technique.

The fractional time derivative was introduced into the
Schrodinger equation by Naber [19] by simply replacing the
first-order time derivative by a derivative of non-integer
order and retaining the second-order space derivatives intact.
The resulting equation is referred to as the time fractional
Schrodinger equation (TFSE). He did not derive the TFSE
using the path integral or any other method. Naber carried
out the time fractional modification to the Schrodinger equa-
tion in analogy with time fractional diffusion equation [19]
but included the imaginary number 𝑖 raised to a fractional
power (the fractional degree being the same as the fractional
order of the time derivative), implying a sort of the Wick
rotation. In Naber’s opinion [19], the TFSE is equivalent to
the usual Schrodinger equation, but with a time-dependent
Hamiltonian. He obtained the solutions for a free particle
and a particle in a potential well. A lot of subsequent
work has been done on the TFSE, mostly based on Naber’s
work [21–23, 28], including its generalization into space-
time fractional quantum dynamics by including non-integer
order derivatives in both time and space. Yet some basic
questions have not been addressed. It has been observed that
TFSE describes non-Markovian evolution and that the Green
function in the form of the Mittag-Leffler function does
not satisfy Stone’s theorem on one-parameter unitary groups
and the semiclassical approximation in terms of the classical
action is not defined [31]. There has been no derivation of
TFSE on a basis similar to that of SFSE and it is the purpose
of the present paper to rectify this lacuna. Since the path
integral method of deriving the space fractional part of the
Schrodinger equation is well established, the present paper
concentrates only onderiving the time fractional Schrodinger
equation from the Feynman path integral approach, leading
to the time fractional Schrodinger equation as given by
Naber. It may be pointed out that some results of Naber,
such as the total probability being greater than unity, are
difficult to understand physically. Moreover, several major
errors in Naber’s paper have gone unnoticed and in fact
have been repeated by workers who have followed his work.
Furthermore, some of these authors have introduced errors of
their own. Since many of the conclusions in Naber’s paper are
based on derivations which include these errors, it calls for a
reexamination ofNaber’s generalization to the time fractional
Schrodinger equation.

The present paper derives the time fractional Schrodinger
equation using the Feynman path integral technique. It
concentrates on the time fractional part only and not on

the space fractional part as the theory of the latter has been
well established in the works of Laskin [14–18]. Furthermore,
the paper considers only the Caputo-type nonlocal fractional
derivatives and not the local fractional derivatives discussed
earlier. The paper starts from a generalization of the classical
dynamics into fractional dynamics of a free particle and
then adapting the Feynman technique derives the correct
equations for TFSE. It is demonstrated that Naber’s result of
probability being greater than unity is spurious and is a result
of the ad hoc raising of the imaginary number 𝑖 to a fractional
power. The correct continuity equation for the probability
density is also derived. The paper concludes with some new
results.

2. Feynman Path Integral Method

The starting point for the Feynman method [43–46] is the
classical Lagrangian 𝐿 = 𝐿(𝑥, 𝑥̇, 𝑡) and the action 𝑆 =

∫ 𝐿(𝑥, 𝑥̇, 𝑡)𝑑𝑡 constructed from it. However, in view of the
generalization to fractional calculus methods to be carried
out later, the equations of motion of a classical particle in one
dimension in the usual notation are considered first:

𝑚
𝑑𝑥

𝑑𝑡
= 𝑝,

𝑑𝑝

𝑑𝑡
= 𝐹.

(1)

Integrating with respect to time yields

𝑥 = 𝑥
0
+

1

𝑚
∫
𝑡

0

𝑝 (𝜏) 𝑑𝜏, (2)

𝑝 = 𝑝
0
+ ∫
𝑡

0

𝐹 (𝜏) 𝑑𝜏. (3)

In the usual notation the Lagrangian is given by

𝐿 (𝑥, 𝑥̇, 𝑡) = 𝑇 − 𝑉 (4)

and the action is given by

𝑆 = ∫
𝑡

0

𝐿 (𝑥, 𝑥̇, 𝜏) 𝑑𝜏. (5)

An outline of the Feynman path integral method is pre-
sented following very closely the account given by Feynman
and Hibbs [43]. The essence of the Feynman path integral
approach to quantum mechanics is in the probability ampli-
tude (also known as the propagator or the Green function)
𝐾(𝑥
𝑏
, 𝑡
𝑏
; 𝑥
𝑎
, 𝑡
𝑎
) for a particle starting from a position 𝑥

𝑎
at

time 𝑡
𝑎
to reach a position 𝑥

𝑏
at a later time 𝑡

𝑏
, which arises

from the contributions from all trajectories from 𝑥
𝑎
to 𝑥
𝑏
:

𝐾(𝑥
𝑏
, 𝑡
𝑏
; 𝑥
𝑎
, 𝑡
𝑎
) = ∑

all paths
𝜙 [𝑥 (𝑡)] , (6)

where the contribution from each of the paths has the form

𝜙 [𝑥 (𝑡)] = const. exp [
𝑖𝑆

ℎ
] . (7)
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Here 𝑆 is the action defined in (5) and ℎ is Planck’s constant,
the quantum of action. The time integral of the Lagrangian
is to be taken along the path in question. Restricting to one
dimension, the probability amplitude can be written as

𝐾(𝑥
𝑏
, 𝑡
𝑏
; 𝑥
𝑎
, 𝑡
𝑎
) = ∫
𝑏

𝑎

exp [
𝑖

ℎ
∫
𝑡𝑏

𝑡𝑎

𝐿𝑑𝑡]D𝑥 (𝑡) . (8)

The symbol D indicates the fact that the operation of
integration is carried over all paths from 𝑎 to 𝑏.

The wave function 𝜓(𝑥
𝑏
, 𝑡
𝑏
) gives the total probability

amplitude to arrive at 𝑥
𝑏
at 𝑡
𝑏
satisfying (9), where the integral

is taken over all possible values of 𝑥
𝑎

𝜓 (𝑥
𝑏
, 𝑡
𝑏
) = ∫
∞

−∞

𝐾(𝑥
𝑏
, 𝑡
𝑏
; 𝑥
𝑎
, 𝑡
𝑎
) 𝜓 (𝑥

𝑎
, 𝑡
𝑎
) 𝑑𝑥
𝑎
. (9)

The kernel 𝐾 can be computed by first carrying out a “time
slicing” operation by dividing the time interval from 𝑡

𝑎
to 𝑡
𝑏

into𝑁 segments of duration

𝜀 =
𝑡
𝑏
− 𝑡
𝑎

𝑁
, (10)

where

𝑡
𝑎
= 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑁−1
< 𝑡
𝑁

= 𝑡
𝑏
; (11)

𝐾(𝑥
𝑏
, 𝑡
𝑏
; 𝑥
𝑎
, 𝑡
𝑎
)

= lim
𝜀→0

1

𝐴
∭⋅ ⋅ ⋅ ∫ exp [

𝑖𝑆 [𝑏, 𝑎]

ℎ
]

×
𝑑𝑥
1

𝐴

𝑑𝑥
2

𝐴

𝑑𝑥
3

𝐴
⋅ ⋅ ⋅

𝑑𝑥
𝑁−1

𝐴
,

(12)

where

𝑆 [𝑏, 𝑎] = ∫
𝑡𝑏

𝑡𝑎

𝐿 (𝑥, 𝑥̇, 𝑡) 𝑑𝑡 (13)

is a line integral taken over the trajectory passing through the
point 𝑥(𝑡). The constant 𝐴 is a normalizing factor.

The Schrodinger equation for a free particle in one
dimension is derived by considering a special case of (9),
which describes the evolution of the wave function from a
time 𝑡

𝑎
to a time 𝑡

𝑏
, when 𝑡

𝑏
differs from 𝑡

𝑎
by an infinitesimal

amount 𝜀 and applied to the case of a free particle. This step
is based on the fact that the semiclassical approximation is
valid not only in the limit of ℎ → 0 but also in the limit
of small time interval [45]. The Kernel is proportional to
the exponential of (𝑖/ℎ) times the classical action for the
infinitesimal time interval 𝜀 = 𝑡

𝑏
−𝑡
𝑎
.With an obvious change

of notation 𝑥
𝑏
= 𝑥, 𝑥

𝑎
= 𝑥
0
, 𝑡
𝑎
= 𝑡, 𝑡
𝑏
= 𝑡 + 𝜀 and using the

fact that the particle is free, (2) yields

𝑝
0
=

𝑚 (𝑥 − 𝑥
0
)

𝜀
(14)

and (4) yields

𝐿 = 𝑇 =
𝑚(𝑥 − 𝑥

0
)
2

2𝜀2
(15)

and (5) yields for the action

𝑆 = 𝜀𝐿 =
𝑚(𝑥 − 𝑥

0
)
2

2𝜀
. (16)

As a consequence, (9) becomes

𝜓 (𝑥, 𝑡 + 𝜀) = ∫
∞

−∞

1

𝐴
exp[

𝑖𝑚(𝑥 − 𝑥
0
)
2

2𝜀
]𝜓 (𝑥

0
, 𝑡) 𝑑𝑥

0
.

(17)

If 𝑥 differs appreciably from 𝑥
0
, the exponential in (17)

oscillates very rapidly and the integral over 𝑥
0
contributes a

very small value and only those paths which are very close to
𝑥 give significant contributions. Changing the variable in the
integral from 𝑥

0
to 𝜂 = 𝑥 − 𝑥

0
makes it 𝜓(𝑥

0
, 𝑡) = 𝜓(𝑥 + 𝜂, 𝑡).

Since both 𝜀 and 𝜂 are small quantities, 𝜓(𝑥, 𝑡 + 𝜀) may be
expanded in Taylor’s series and only up to terms of order
𝜀 are retained. On the right-hand side, 𝜓(𝑥 + 𝜂, 𝑡) may be
expanded in Taylor’s series in powers of 𝜂, retaining terms
up to second order in 𝜂 (the integral involving the first-order
term vanishes). Then (17) becomes

𝜓 (𝑥, 𝑡) + 𝜀
𝜕𝜓

𝜕𝑡

= ∫
∞

−∞

1

𝐴
exp[−

𝑚𝜂
2

2𝑖ℎ𝜀
]

× (𝜓 (𝑥, 𝑡) + 𝜂
𝜕𝜓

𝜕𝑥
+

𝜂
2

2

𝜕
2
𝜓

𝜕𝑥2
)𝑑𝜂.

(18)

On the right-hand side the middle term vanishes on integra-
tion. It follows by equating the leading terms on both sides

𝜓 (𝑥, 𝑡) = ∫
∞

−∞

1

𝐴
exp[−

𝑚𝜂
2

2𝑖ℎ𝜀
]𝜓 (𝑥, 𝑡) 𝑑𝜂 (19)

Hence

𝐴 = ∫
∞

−∞

exp[−
𝑚𝜂
2

2𝑖ℎ𝜀
] 𝑑𝜂 = √

2𝜋𝑖ℎ𝜀

𝑚
, (20a)

∫
∞

−∞

1

𝐴
exp[−

𝑚𝜂
2

2𝑖ℎ𝜀
](

𝜂
2

2

𝜕
2
𝜓

𝜕𝑥2
)𝑑𝜂 = 𝜀

𝑖ℎ

2𝑚

𝜕
2
𝜓

𝜕𝑥2
. (20b)

Equating the remaining terms results in

𝜕𝜓

𝜕𝑡
=

𝑖ℎ

2𝑚

𝜕
2
𝜓

𝜕𝑥2
. (21)

This can be recognized as the diffusion equation with an
imaginary diffusion coefficient or the Schrodinger equation
for a free particle in quantum mechanics.

These considerations can be easily extended to the case
of a particle moving in a potential field by incorporating a
potential term 𝑉(𝑥, 𝑡) in the Lagrangian 𝐿 = 𝑇 − 𝑉 in (15).
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This will necessitate [43] incorporating an additional factor
{1 − (𝑖𝜀/ℎ)𝑉(𝑥, 𝑡)} in (18), which becomes

𝜓 (𝑥, 𝑡) + 𝜀
𝜕𝜓

𝜕𝑡
= ∫
∞

−∞

1

𝐴
exp[−

𝑚𝜂
2

2𝑖ℎ𝜀
] {1 −

𝑖𝜀

ℎ
𝑉 (𝑥, 𝑡)}

× (𝜓 (𝑥, 𝑡) + 𝜂
𝜕𝜓

𝜕𝑥
+

𝜂
2

2

𝜕
2
𝜓

𝜕𝑥2
)𝑑𝜂.

(22)

Then (21) becomes

𝜕𝜓

𝜕𝑡
=

𝑖ℎ

2𝑚

𝜕
2
𝜓

𝜕𝑥2
−

𝑖

ℎ
𝑉𝜓. (23)

Multiplying both sides by −ℎ/𝑖 results in the standard
Schrodinger equation of quantum mechanics:

𝑖ℎ
𝜕𝜓

𝜕𝑡
= −

ℎ
2

2𝑚

𝜕
2
𝜓

𝜕𝑥2
+ 𝑉𝜓. (24)

It is to be noted that the imaginary number 𝑖 on the left-
hand side is not arbitrary; it arises from the coefficient of the
potential term 𝑉 in (23) but ultimately from the coefficient
of 𝑆/ℎ in (7). This minor detail becomes important as will be
discussed later in Section 8.

These considerations will be generalized for a particle
obeying fractional dynamics. It can then be extended to the
case of a particle in a potential field by including the potential
term and making appropriate changes as will be described
later.

3. Fractional Dynamics of a Free Particle

The first step is to generalize the equations of motion, (1)–
(3), by replacing the integrals and derivatives by appropriate
fractional integrals and derivatives. For physical problems
with well-definable initial conditions the accepted practice is
to employ the Caputo fractional derivatives [5]. The Caputo
derivative of order 𝛽 is defined by [3]:

𝐶

0
𝐷
𝛽

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛽)
∫
𝑡

0

𝑓
𝑛
(𝜏) 𝑑𝜏

(𝑡 − 𝜏)
𝛽+1−𝑛

(𝑛 − 1 < 𝛽 < 𝑛) .

(25)

In the limit 𝛽 → 𝑛, the Caputo derivative becomes the
ordinary 𝑛th derivative of the function.

The fractional integral of order 𝛽 is defined by

0
𝐼
𝛽

𝑡
𝑓 (𝑡) =

1

Γ (𝛽)
∫
𝑡

0

𝑓 (𝜏) (𝑡 − 𝜏)
𝛽−1

𝑑𝜏. (26)

In generalizing the equations of motion, the second-order
time derivative in Newton’s law is replaced by a Caputo
derivative of order 𝛼, and the first-order derivative is replaced
by a Caputo derivative of order (𝛼/2) [47]. Then (2) and (3)
become

𝑥 = 𝑥
0
+

1

𝑚
𝑓
Γ (𝛼/2)

∫
𝑡

0

𝑝
𝑓
(𝜏) (𝑡 − 𝜏)

𝛼/2−1
𝑑𝜏,

𝑝
𝑓
= 𝑝
𝑓0

+
1

Γ (𝛼/2)
∫
𝑡

0

𝐹 (𝜏) (𝑡 − 𝜏)
𝛼/2−1

𝑑𝜏,

(27)

where as usual 𝑥
0
, 𝑝
𝑓0

refer to the initial position and initial
value of the “fractional momentum” 𝑝

𝑓
, respectively. It is

to be noted that the variables 𝑥, 𝑡 are still the space and
time variables and have the dimensions of length and time
[𝐿] and [𝑇], respectively. However, the dynamical quantities
obtained by the operation of fractional derivation have
different dimensions; for example, “fractional velocity” with
the notation 𝐶

0
𝐷
𝑡

𝛼/2
𝑥 = 𝑥̇

𝛼/2 would have the units [𝐿/𝑇
𝛼/2

].
The dimension for the parameter “𝑚

𝑓
” in the fractional

momentum, 𝑝
𝑓
= 𝑚
𝑓
𝑥̇
𝛼/2, is no longer just [𝑀] but has to be

chosen [47] so that the fractional quantity 𝑝
𝑓

2
/2𝑚
𝑓
has the

dimensions of energy [𝑀𝐿
2
/𝑇
2
]. Thus the dimension of the

parameter “𝑚
𝑓
” is [𝑀𝑇

2−𝛼
] and the fractional momentum

has the dimensions [𝑀𝐿/𝑇
2−𝛼/2

].The Lagrangian in (4) when
generalized has the dimensions of energy. Of course, all
quantities regain the standard dimensions in the limit 𝛼 →

2.

4. Time Fractional Schrodinger Equation for a
Free Particle

There are two possible generalizations of the action integral
in (5) used in fractional dynamics [11]:

𝑆I = ∫
𝑡

0

𝐿 (𝑥, 𝑥̇
𝛼/2

, 𝑡) 𝑑𝑡, (28)

𝑆II =
1

Γ (𝛼/2)
∫
𝑡

0

𝐿 (𝑥, 𝑥̇
𝛼/2

, 𝜏) (𝑡 − 𝜏)
𝛼/2−1

𝑑𝜏. (29)

Since the Lagrangian has the dimensions of energy, the
dimensions of action defined in (28) and (29), 𝑆I and 𝑆II, are
different.

The dimensions of 𝑆I are the same as that of the regular
action, namely, [𝑀𝐿

2
/𝑇], but that of 𝑆II is [𝑀𝐿

2
/𝑇
2−𝛼/2

].
In the Newtonian limit 𝛼 → 2, 𝑆II → regular action.
These dimensional considerations have to be kept in mind in
generalizing the Feynmanmethod. In particular, if the choice
from (29) is made, then a “fractional Planck constant” ℎ

𝑓

with appropriate dimensions must be introduced in order to
render the argument of the exponential in (7) dimensionless.

For a “free particle” (27) yields

𝑥 = 𝑥
0
+

𝑝
𝑓0

𝑡
𝛼/2

𝑚
𝑓
Γ (1 + 𝛼/2)

, (30)

𝑝
𝑓
= 𝑝
𝑓0

. (31)

After carrying out the time slicing operation as in (11) and
making the same approximation the evolution of the wave
function in an infinitesimal interval of time 𝜀 can now be
obtained. Equation (30) yields

𝑝
𝑓0

=
(𝑥 − 𝑥

0
)𝑚
𝑓
Γ (1 + 𝛼/2)

𝜀𝛼/2
(32)

and hence

𝐿 =
𝑚
𝑓
Γ (1 + 𝛼/2) (𝑥 − 𝑥

0
)
2

2𝜀𝛼
. (33)
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But for action, there are two choices:

𝑆I =
𝑚
𝑓
Γ
2
(1 + 𝛼/2) (𝑥 − 𝑥

0
)
2

2𝜀𝛼−1
, (34)

𝑆II =
𝑚
𝑓
Γ (1 + 𝛼/2) (𝑥 − 𝑥

0
)
2

2𝜀𝛼/2
. (35)

Making the appropriate changes, the equations for the
evolution of the wave function in the two cases are

𝜓I (𝑥, 𝑡 + 𝜀)

= ∫
∞

−∞

1

𝐴 I
exp[

[

𝑖𝑚
𝑓
Γ
2
(1 + 𝛼/2) (𝑥 − 𝑥

0
)
2

2ℎ𝜀𝛼−1
]

]

× 𝜓I (𝑥0, 𝑡) 𝑑𝑥0,

(36)

𝜓II (𝑥, 𝑡 + 𝜀)

= ∫
∞

−∞

1

𝐴 II
exp[

𝑖𝑚
𝑓
Γ (1 + 𝛼/2) (𝑥 − 𝑥

0
)
2

2ℎ
𝑓
𝜀𝛼/2

]

× 𝜓II (𝑥0, 𝑡) 𝑑𝑥0.

(37)

Changing the variable in the integrals from 𝑥
0
to 𝜂 = 𝑥 − 𝑥

0

as before and introducing two constants

𝑎I =
𝑚
𝑓
Γ
2
(1 + 𝛼/2)

2𝑖ℎ
, 𝑎II =

𝑚
𝑓
Γ (1 + 𝛼/2)

2𝑖ℎ
𝑓

. (38)

Equations (36) and (37) can be written as

𝜓I (𝑥, 𝑡 + 𝜀)

= ∫
∞

−∞

1

𝐴 I
exp[−

𝑎I𝜂
2

𝜀𝛼−1
]𝜓I (𝑥 + 𝜂, 𝑡) 𝑑𝜂,

(39)

𝜓II (𝑥, 𝑡 + 𝜀)

= ∫
∞

−∞

1

𝐴 II
exp[−

𝑎II𝜂
2

𝜀𝛼/2
]𝜓II (𝑥 + 𝜂, 𝑡) 𝑑𝜂.

(40)

The left-hand sides of (39) and (40) can be expanded
in fractional Taylor’s series [48] in time, with fractional
derivative of order 𝛾, and keeping only the lowest-order term
in 𝛾 yields

𝜓I,II (𝑥, 𝑡 + 𝜀) = 𝜓I,II (𝑥, 𝑡)

+
𝐶

0
𝐷
𝛾

𝑡
𝜓I,II (𝑥, 𝑡)

𝜀
𝛾

Γ (𝛾 + 1)
+ ⋅ ⋅ ⋅ .

(41)

In the right-hand side a Taylor expansion with terms up to
second order in 𝜂with respect to space can be carried out and

the two caseswill be considered separately.Thus, the equation
for 𝜓I(𝑥, 𝑡) becomes

𝜓I (𝑥, 𝑡) +
𝐶

0
𝐷
𝛾

𝑡
𝜓I (𝑥, 𝑡)

𝜀
𝛾

Γ (𝛾 + 1)

= ∫
∞

−∞

1

𝐴 I
exp[−

𝑎I𝜂
2

𝜀𝛼−1
]

× {𝜓I (𝑥, 𝑡) + 𝜂
𝜕𝜓I
𝜕𝑥

+
𝜂
2

2

𝜕
2
𝜓I

𝜕𝑥2
}𝑑𝜂.

(42)

On evaluating the integrals on the right-hand side of (42), the
middle term with the first power of 𝜂 vanishes. Equating the
leading terms on both sides of (42) yields

𝜓I(𝑥, 𝑡) = (1/𝐴 I)√𝜋𝜀𝛼−1/𝑎I𝜓I(𝑥, 𝑡), requiring that 𝐴 I =

√𝜋𝜀𝛼−1/𝑎I. Equation (42) reduces to

𝜓I (𝑥, 𝑡) +
𝐶

0
𝐷
𝛾

𝑡
𝜓I (𝑥, 𝑡)

𝜀
𝛾

Γ (𝛾 + 1)

= {𝜓I (𝑥, 𝑡) +
1

4

𝜀
𝛼−1

𝑎I

𝜕
2
𝜓I (𝑥, 𝑡)

𝜕𝑥2
} .

(43)

Equating the remaining terms requires that the powers of 𝜀
must be the same on both sides; that is, 𝛾 = 𝛼 − 1. Inserting
the value of 𝑎I and simplifying (43) yield

𝐶

0
𝐷
𝛼−1

𝑡
𝜓I (𝑥, 𝑡) =

𝑖ℎ

2𝑚
𝑓

Γ (𝛼)

Γ2 (1 + 𝛼/2)

𝜕
2
𝜓I (𝑥, 𝑡)

𝜕𝑥2
. (44)

Similarly, by expanding (40) the equation for 𝜓II(𝑥, 𝑡)
becomes

𝜓II (𝑥, 𝑡) +
𝐶

0
𝐷
𝛾

𝑡
𝜓II (𝑥, 𝑡)

𝜀
𝛾

Γ (𝛾 + 1)

= ∫
∞

−∞

1

𝐴 II
exp[−

𝑎II𝜂
2

𝜀𝛼/2
]

× {𝜓II (𝑥, 𝑡) + 𝜂
𝜕𝜓II
𝜕𝑥

+
𝜂
2

2

𝜕
2
𝜓II

𝜕𝑥2
}𝑑𝜂.

(45)

On evaluating the integrals on the right-hand side of (45)
the middle term vanishes. Equating the leading terms on
both sides of (45) as before yields for the normalizing factor
𝐴 II = √𝜋𝜀𝛼/2/𝑎II. Equation (45) reduces to

𝜓II (𝑥, 𝑡) +
𝐶

0
𝐷
𝛾

𝑡
𝜓II (𝑥, 𝑡)

𝜀
𝛾

Γ (𝛾 + 1)

= {𝜓II (𝑥, 𝑡) +
1

4

𝜀
𝛼/2

𝑎II

𝜕
2
𝜓II (𝑥, 𝑡)

𝜕𝑥2
} .

(46)

In the remaining terms, the powers of 𝜀must be the same.This
requires 𝛾 = 𝛼/2. Inserting the value of 𝑎II and simplifying
(46) yield the equation for the wave function 𝜓II(𝑥, 𝑡):

𝐶

0
𝐷
𝛼/2

𝑡
𝜓II (𝑥, 𝑡) =

𝑖ℎ
𝑓

2𝑚
𝑓

𝜕
2
𝜓II (𝑥, 𝑡)

𝜕𝑥2
. (47)
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This completes the derivation based on the Feynman path
integral method and (44) and (47) constitute the time frac-
tional Schrodinger equations for a free particle corresponding
to two ways of defining the action integral for a fractional
dynamical system. In the limit 𝛼 → 2, the fractional
dynamical system goes over to the regular Newtonian system
and in this case both (44) and (47) reduce to

𝜕𝜓 (𝑥, 𝑡)

𝜕𝑡
=

𝑖ℎ

2𝑚

𝜕
2
𝜓 (𝑥, 𝑡)

𝜕𝑥2
(48)

given earlier, thus recovering the standard Schrodinger equa-
tion for a free quantum particle [49].

It should be noted that since 𝛼 ≤ 2, with 𝛼 = 2 being
the limiting case, the order of the time fractional derivative
is ≤ 1 in both (44) and (47) and cannot exceed 1. This
means the time fractional Schrodinger equation as derived
from the path integral method always corresponds to the
“subdiffusion” case in contrast to the case where the TFSE
is obtained by a simple replacement of the first-order time
derivative by a fractional order derivative [19]. Furthermore,
the order 𝛼/2 of the fractional derivative corresponds to
the first-order regular derivative as has been used above in
Section 3.Thus it appears that the secondmethod of defining
the action leading to (47) is the natural way to generalize
to TFSE. In appearance also it is as if the equation has
been obtained by replacing all quantities in the Schrodinger
equation by an equivalent fractional quantity, except the
space derivative. Furthermore, (44) becomes a fractional
order integro-differential equation when 𝛼 < 1 and no longer
just a fractional order differential equation. Because of these
reasons, it is considered the method of choice to use (47)
as the TFSE derived from the path integral method and no
further reference will be made to (44).

The coefficient of the space derivative term in (47) has
the dimension [𝐿

2
/𝑇
𝛼/2

], corresponding to the fractional
diffusion coefficient. Thus (47) can be considered a time
fractional diffusion equation with an imaginary fractional
diffusion coefficient, just as (48), the regular Schrodinger
equation, can be considered to be a diffusion equation with
an imaginary diffusion coefficient. Thus all the mathematical
machinery of time fractional diffusion theory [5, 50–59] can
be imported advantageously.

Although it is possible to introduce additional parameters
and cast (47) in a dimensionless form, it has not been done
here. However, for convenience, the subscript II is dropped
from the wave function; a simplified notation for the Caputo
derivative, 𝜕𝛽

𝑡
𝜓, with 𝛽 = 𝛼/2 will be used. Naturally, 0 < 𝛽 ≤

1, and 𝛽 → 1 yields the regular first-order time derivative,
denoted by 𝜕

𝑡
. After incorporating these changes and defining

a new constant𝐷
𝑓
= ℎ
𝑓
/2𝑚
𝑓
, (47) becomes

𝜕
𝛽

𝑡
𝜓 (𝑥, 𝑡) = 𝑖𝐷

𝑓

𝜕
2
𝜓 (𝑥, 𝑡)

𝜕𝑥2
(0 < 𝛽 ≤ 1) . (49)

Equation (49) can be solved by a combination of the
Fourier and Laplace transform methods [52–54].

5. Probability Current and
the Continuity Equation

The probability density 𝜌 is defined by 𝜌 = 𝜓
∗
𝜓 = 𝜓𝜓

∗. The
complex conjugate wave function satisfies

𝜕
𝛽

𝑡
𝜓
∗
(𝑥, 𝑡) = −𝑖𝐷

𝑓

𝜕
2
𝜓
∗
(𝑥, 𝑡)

𝜕𝑥2
. (50)

There is an identity satisfied by the Caputo derivative [5]

𝜕
1−𝛽

𝑡
𝜕
𝛽

𝑡
𝑓 (𝑡) = 𝜕

𝑡
𝑓 (𝑡) , (51)

where the right-hand side represents the regular first-order
derivative. This identity can be used in studying the time
derivative of the probability density, given by

𝜕
𝑡
𝜌 = 𝜕
𝑡
(𝜓𝜓
∗
) = (𝜕

𝑡
𝜓)𝜓
∗
+ 𝜓 (𝜕

𝑡
𝜓
∗
) . (52)

Inserting from (51) gives

𝜕
𝑡
𝜌 = (𝜕

1−𝛽

𝑡
𝜕
𝛽

𝑡
𝜓)𝜓
∗
+ 𝜓 (𝜕

1−𝛽

𝑡
𝜕
𝛽

𝑡
𝜓
∗
) . (53)

Substituting from (49) and (50), (53) yields

𝜕
𝑡
𝜌 = (𝜕

1−𝛽

𝑡
(𝑖𝐷
𝑓

𝜕
2
𝜓 (𝑥, 𝑡)

𝜕𝑥2
))𝜓
∗

+ 𝜓(𝜕
1−𝛽

𝑡
(−𝑖𝐷

𝑓

𝜕
2
𝜓
∗
(𝑥, 𝑡)

𝜕𝑥2
)) .

(54)

Equation (54) can be rewritten after factoring out the constant
and interchanging the order of space and time derivatives as

𝜕
𝑡
𝜌 = 𝑖𝐷

𝑓
{(

𝜕
2

𝜕𝑥2
𝜕
1−𝛽

𝑡
𝜓)𝜓
∗
− 𝜓(

𝜕
2

𝜕𝑥2
𝜕
1−𝛽

𝑡
𝜓
∗
)} . (55)

Introducing a new function 𝜓̃ = 𝜕
1−𝛽

𝑡
𝜓, (55) can be written as

𝜕
𝑡
𝜌 = 𝑖𝐷

𝑓
{(

𝜕
2

𝜕𝑥2
𝜓̃)𝜓
∗
− 𝜓(

𝜕
2

𝜕𝑥2
𝜓̃
∗
)} . (56)

Defining a probability current density given by

𝐽
𝑥
= −𝑖𝐷

𝑓
[𝜓̃ ∗

𝜕𝜓

𝜕𝑥
− 𝜓

𝜕𝜓̃
∗

𝜕𝑥
] , (57)

equation (56) can be written as

𝜕
𝑡
𝜌 +

𝜕𝐽
𝑥

𝜕𝑥
= 0. (58)

This is the time fractional version of the continuity equation.
In the limit 𝛽 → 1, 𝜓̃ → 𝜓 𝜓̃

∗
→ 𝜓
∗ and (58) reproduce

the continuity equation of standard quantummechanics [49].
It may be noted that (58) differs from Naber’s result ((24) in
[19]) and will be discussed later.
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6. Solution for TFSE for a Free Particle

The solution for the TFSE for a free particle under the
conditions

𝜓(𝑥, 0) = 𝜓
0
(𝑥);𝜓(𝑥, 𝑡) → 0, |𝑥| → ∞, 𝑡 > 0 is available

in the literature but considered here for purposes of obtaining
the Green function for the TFSE.

By applying the combined Fourier and Laplace trans-
forms defined by

̂̃𝜓 (𝑘, 𝑠) =
1

√2𝜋
∫
∞

−∞

𝑒
−𝑖𝑘𝑥

[∫
∞

0

𝑒
−𝑠𝑡

𝜓 (𝑥, 𝑡) 𝑑𝑡] 𝑑𝑥 (59)

equation (49) reduces to

𝑠
𝛽 ̂̃𝜓 (𝑘, 𝑠) − 𝑠

𝛽−1
𝜓̃ (𝑘, 0) = −𝑖𝐷

𝑓
𝑘
2 ̂̃𝜓 (𝑘, 𝑠) (60)

resulting in

̂̃𝜓 (𝑘, 𝑠) =
𝜓̃ (𝑘, 0) 𝑠

𝛽−1

𝑠𝛽 + 𝑖𝐷
𝑓
𝑘2

. (61)

Applying the inverse Laplace transform, (61) yields

𝜓̃ (𝑘, 𝑡) = 𝜓̃ (𝑘, 0) 𝐸
𝛽,1

(−𝑖𝐷
𝑓
𝑘
2
𝑡
𝛽
) (62)

in terms of the Mittag-Leffler function defined by a series or
by the inverse Lapalce transform [3]:

𝐸
𝛼,𝛽

(𝑧) =

∞

∑
𝑛=0

𝑧
𝑛

Γ (𝛼𝑛 + 𝛽)
= 𝐿
−1

{
𝑠
𝛼−𝛽

𝑠𝛼 − 𝑧
} . (63)

The Green function solution can be written as

𝜓 (𝑥, 𝑡) = ∫
∞

−∞

𝜓 (𝑥 − 𝜉) 𝐺
𝛽
(𝜉, 𝑡) 𝑑𝜉, (64)

where the Green function is given by the inverse Fourier
transform of the Mittag-Leffler function

𝐺
𝛽
(𝑥, 𝑡) =

1

√2𝜋
∫
∞

−∞

𝑒
𝑖𝑘𝑥

𝐸
𝛽,1

(−𝑖𝐷
𝑓
𝑘
2
𝑡
𝛽
) 𝑑𝑘, (65)

where theMittag-Leffler function has been defined [3] before
in (63).

The Fourier inversion in (65) can be carried out [52–54]
using the property that the Mittag-Leffler function is related
through the Laplace integral to another special function of
the Wright type denoted by

𝑀
𝛽
(𝑧) = 𝑊(−𝑧; −𝛽, 1 − 𝛽)

=

∞

∑
𝑛=0

(−𝑧)
𝑛

𝑛!Γ (−𝛽𝑛 + 1 − 𝛽)
0 < 𝛽 < 1,

(66)

where the Wright function is defined by [54]

𝑊(𝑧; 𝜆, 𝜇) =

∞

∑
𝑛=0

𝑧
𝑛

𝑛!Γ (𝜆𝑛 + 𝜇)
𝜆 > −1, 𝜇 ∈ 𝐶. (67)
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Figure 1: Reduced probability density function.

The Green function in (65) is then given by

𝐺
𝛽
(𝑥, 𝑡) =

1

2

1

√𝑖𝐷
𝑓
𝑡𝛽/2

𝑀
𝛽/2

(
|𝑥|

√𝑖𝐷
𝑓
𝑡𝛽/2

). (68)

In the context of fractional diffusion, the function 𝑀
𝛽/2

(𝑧)

belongs to the Wright type of probability densities character-
ized by the similarity variable 𝑧 = |𝑥|/√𝐷

𝑓
𝑡
𝛽/2, where 𝐷

𝑓
is

the fractional diffusion coefficient, with ∫
∞

0
𝑀
𝛽/2

(𝑧)𝑑𝑧 = 1.
Furthermore, the probability densities are non-Markovian
and exhibit a variance consistent with slow anomalous dif-
fusion [49–51], 𝜎2

𝛽
(𝑡) = (2/Γ(𝛽 + 1))𝐷

𝑓
𝑡
𝛽.

In the limit of 𝛽 → 1, the probability density function
goes over to the Gaussian

𝑀
1/2

(𝑧) =
1

√𝜋
𝑒
−𝑧
2
/4 (69)

corresponding to regular diffusion. A plot of the reduced
probability density function is given in Figure 1.

TheGreen function for regular diffusion describes a prob-
ability density, whereas the correspondingGreen function for
the Schrodinger equation is the propagator, which describes
the probability amplitude for the particle to propagate from
𝑥
𝑎
at 𝑡
𝑎
to 𝑥
𝑏
at 𝑡
𝑏
. In exactly the same way, the Green

function for time fractional diffusion describes a probability
density, whereas the Green function in (68) is the fractional
propagator and gives the probability amplitude. Of particular
interest is the Fourier component of the wave function in
(62) in connection with the total probability as 𝑡 → ∞; the
case discussed by Naber [19] and will be discussed in the next
section.
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7. Comments about Some Results in
Naber’s Work [19]

This section draws attention to some errors in Naber’s
paper which have gone unnoticed and have been reproduced
repeatedly. Naber’s equations will be referred to by their
number and a prefix N. Naber explicitly states that he uses
the Caputo derivative, which has been defined earlier in (25)
in this paper. Although Naber does not give the explicit
definition of theCaputo fractional derivative in his paper [19],
it can be inferred from (NA.3) given in the appendix to his
paper.

(a) However, Naber writes in (N16) for a Caputo deriva-
tive of order (1− ]), reproduced here for convenience in (70):

𝐷
1−]
𝑡

𝜓 (𝑡, 𝑥) =
1

Γ (1 − ])

× ∫
𝑡

0

𝑑𝜓 (𝜏, 𝑥)

𝑑𝜏

𝑑𝜏

(𝑡 − 𝜏)
] (0 < ] < 1) .

(70)

This is incorrect, as can be checked easily by taking the limit
] → 1.The left-hand side → 𝜓(𝑡, 𝑥) as the derivative of zero
order, but the right-hand side → 0 because of the Γ function
in the denominator. The correct form of equation is

𝐷
1−]
𝑡

𝜓 (𝑡, 𝑥) =
1

Γ (])
∫
𝑡

0

𝑑𝜓 (𝜏, 𝑥)

𝑑𝜏

𝑑𝜏

(𝑡 − 𝜏)
1−] . (71)

As a consequence, the weight factor in (N18) should be (𝑡 −

𝜏)
1−] and not (𝑡 − 𝜏)

−], which Naber uses to give a physical
significance to the entity he has introduced. The correct
weight factor in (N18) would → 1 in the limit ] → 1.

(b) In (N11), Naber gives an identity satisfied supposedly
by fractional Caputo derivatives of order less than 1, repro-
duced here for convenience in (72).

𝐷
1−]
𝑡

𝐷
]
𝑡
𝑦 (𝑡) =

𝑑𝑦

𝑑𝑡
−

[𝐷
]
𝑡
𝑦 (𝑡)]
𝑡=0

𝑡1−]Γ (])
. (72)

This identity is not correct and cannot be found anywhere.
The identity satisfied by the Caputo derivatives is given in [5]
and reproduced later in the current notation for ] < 1

𝐷
−]
𝑡
𝐷

]
𝑡
𝑦 (𝑡) = 𝑦 (𝑡) − 𝑦 (0) . (73)

This yields 𝐷1−]
𝑡

𝐷
]
𝑡
𝑦(𝑡) = 𝑑𝑦/𝑑𝑡 = 𝜕

𝑡
𝑦(𝑡) and has been used

earlier in (52) in this paper.
The incorrect identity has been used by Naber to derive

an equation for the probability current, which is obviously
incorrect. Unfortunately, the incorrect identity, as given by
Naber, in (72) has been repeatedly used in the literature.
The correct equation for the probability current has been
given in this paper in (59), which reduces to the standard
continuity equation for the probability current in regular
quantum mechanics [49].

(c) This point concerns the separation of the Mittag-
Leffler function with an imaginary argument into an oscilla-
tory part and a part which decays exponentially with time.
There is nothing wrong with the derivation itself as given

by Naber, and the function under discussion is the Fourier
component of the free particle wave function, in his notation

Ψ = Ψ
0
𝐸] (𝜔(−𝑖𝑡)

]
) , (74)

where 𝐸](𝑧) in Naber’s notation corresponds to the Mittag-
Leffler function 𝐸],1(𝑧) defined in (63).

The Mittag-Leffler function with the complex argument
has been separated into an oscillatory part and a part based
on the evaluation of the inverse Laplace transform

𝐴 (𝑡) =
1

2𝜋𝑖
∫
𝛾+𝑖∞

𝛾−𝑖∞

𝑒
𝑠𝑡
𝑠
]−1

𝐴
0
𝑑𝑠

𝑠] − 𝜎𝑖]
(75)

along a Hankel contour and considering the contribution
from the residue of the pole 𝑠

0
= 𝜎
1/]

𝑖 together with the
contribution from the integral along the two strips on either
side of the branch cut, which is a standard procedure. Naber
finally gives the solution as

Ψ = Ψ
0
{

𝑒
−𝑖𝜔
1/]
𝑡

]
− 𝐹] (𝜔(−𝑖)

]
, 𝑡)} . (76)

He argues that in the limit of 𝑡 → ∞ the total probability
arises basically from the first term and is equal to 1/]2,
assuming that the wave function was initially normalized.
Since ] < 1, the total probability is >1, a result difficult to
understand physically. However, it is shown later that the
solution derived in this paper yields a probability that → 0
in the limit 𝑡 → ∞.

The solution corresponding to (74) is given by (62) in
this paper. The separation into two parts corresponding to
(76) can be carried out by considering the inverse Laplace
transform of (61):

𝜓̃ (𝑘, 𝑡) =
1

2𝜋𝑖
∫
𝛾+𝑖∞

𝛾−𝑖∞

𝑒
𝑠𝑡
𝑠
𝛽−1

𝜓̃ (𝑘, 0) 𝑑𝑠

𝑠𝛽 + 𝑖𝐷
𝑓
𝑘2

. (77)

As usual, the Bromwich contour is replaced by the Hankel
contour. The two contributions arise from (i) the residue at
the pole at 𝑠

0
= (𝐷
𝑓
𝑘
2
)
1/𝛽

(−𝑖)
1/𝛽 and (ii) the integral along

the two strips from 0 to −∞ introduced along the branch cut.
The latter yields a contribution which decays in time just as
the second term in Naber’s equation (76). The contribution
from the residue is given by

Residue
𝜓̃ (𝑘, 0)

=
𝑒
(−𝑖)
1/𝛽
(𝐷𝑓𝑘
2
)
1/𝛽

𝑡

𝛽
(78)

and corresponds to the first term on the right-hand side in
(76). However,

(−𝑖)
1/𝛽

= (𝑒
−𝑖𝜋/2

)
1/𝛽

= (𝑒
−𝑖𝜋/2𝛽

) = (cos 𝜋

2𝛽
− 𝑖 sin 𝜋

2𝛽
) .

(79)
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Therefore, (78) yields

𝜓̃ (𝑘, 𝑡)

𝜓̃ (𝑘, 0)
=
Residue
𝜓̃ (𝑘, 0)

= 𝑒
𝑡(𝐷𝑓𝑘

2
)
1/𝛽 cos(𝜋/2𝛽)

𝑒
−𝑖𝑡(𝐷𝑓𝑘

2
)
1/𝛽 sin(𝜋/2𝛽).

(80)

The right-hand side of (80) has an amplitude term and an
oscillatory factor. Because 𝛽 < 1, cos(𝜋/2𝛽) is negative, the
amplitude factor decays in time exponentially and → 0 in the
limit 𝑡 → ∞. Thus the contribution from the residue due to
the pole also → 0. Thus the entire wave function → 0 in the
limit of 𝑡 → ∞, so does the probability density. Hence the
total probability also → 0, in contrast to Naber’s result.

The question naturally arises why there is this difference
in the two results, both of which are concerned with the
Mittag-Leffler functionswith complex arguments.The reason
appears to be that in Naber’s case, the pole occurs at 𝑠

0
=

𝜎
1/]

𝑖, whereas in the present paper, the pole occurs (using
the same notation as Naber) at 𝑠

0
= 𝜎
1/]

(−𝑖)
1/]. The simple

𝑖 in Naber’s case leads to the purely oscillatory solution and
hence to the result of the probability being greater than unity.
In our paper the imaginary number raised to the fractional
power leads to the exponentially decaying solution and hence
leads to the correct limit when 𝑡 → ∞, namely, zero total
probability.Naber’s result is a direct consequence of his choice
to raise the power of the imaginary number 𝑖 to the fractional
power, so as to incorporate a Wick rotation. However, as
had been indicated earlier, this imaginary number cannot
be arbitrarily altered as it is connected with the phase factor
𝑖𝑆/ℎ in the Feynman propagator. If it is necessary to include
a Wick rotation, the power of 𝑖 should be changed to ] + 1

in Naber’s equation (N9) instead of just ]. If this is done,
the total probability would properly → 0 in the limit 𝑡 →

∞. If this is done, then the TFSE can be interpreted as the
analytic continuation of the fractional diffusion equation, just
as the regular Schrodinger equation can be considered as the
analytic continuation of the regular diffusion equation.

8. TFSE for a Particle in a Potential Field

So far attention has been focused on a free particle. These
considerations can be easily extended to the case of a particle
moving in a potential field by incorporating a potential term
𝑉(𝑥, 𝑡) in the Lagrangian 𝐿 = 𝑇 − 𝑉. This will necessitate
incorporating an additional term −𝑉(𝑥, 𝑡)𝜀

𝛼/2
/Γ(1 + 𝛼/2)

in the right-hand side of (35) and an additional factor
−(𝑖/ℎ
𝑓
)(𝑉(𝑥, 𝑡)𝜀

𝛼/2
/Γ(1+𝛼/2)) in the exponential in (37).This

results in changing (45) into

𝜓II (𝑥, 𝑡) +
𝐶

0
𝐷
𝛽

𝑡
𝜓II (𝑥, 𝑡)

𝜀
𝛽

Γ (𝛽 + 1)

= ∫
∞

−∞

1

𝐴 II
exp[−

𝑎II𝜂
2

𝜀𝛼/2
]{1 −

𝑖

ℎ
𝑓

𝑉 (𝑥, 𝑡) 𝜀
𝛼/2

Γ (1 + 𝛼/2)
}

× {𝜓II (𝑥, 𝑡) + 𝜂
𝜕𝜓II
𝜕𝑥

+
𝜂
2

2

𝜕
2
𝜓II

𝜕𝑥2
}𝑑𝜂.

(81)

Equation (47) then becomes

𝐶

0
𝐷
𝛼/2

𝑡
𝜓II (𝑥, 𝑡) =

𝑖ℎ
𝑓

2𝑚
𝑓

𝜕
2
𝜓II (𝑥, 𝑡)

𝜕𝑥2

−
𝑖

ℎ
𝑓

𝑉 (𝑥, 𝑡) 𝜓 (𝑥, 𝑡) .

(82)

Multiplying both sides by −ℎ
𝑓
/𝑖 results in the FTSE for a

particle in a potential field as

𝑖ℎ
𝑓
𝜕
𝛽

𝑡
𝜓 (𝑥, 𝑡) = −

ℎ
2

𝑓

2𝑚
𝑓

𝜕
2
𝜓 (𝑥, 𝑡)

𝜕𝑥2
− 𝑉 (𝑥, 𝑡) 𝜓 (𝑥, 𝑡) (83)

which reduces to the standard Schrodinger equation of
quantum mechanics:

𝑖ℎ
𝜕𝜓

𝜕𝑡
= −

ℎ
2

2𝑚

𝜕
2
𝜓

𝜕𝑥2
+ 𝑉𝜓. (84)

One final remark needs to be made concerning the use of the
Planck units for casting the TFSE in terms of dimensionless
quantities. After the derivation, the FTSE in (83) can be cast in
dimensionless quantities; however, the appropriate fractional
Planck units must be defined to take care of the fractional
quantities involved in (83).

9. Discussion and Conclusions

The TFSE has been derived using the Feynman path integral
technique for a nonrelativistic particle. As expected the TFSE
looks like a time fractional diffusion equation with an imagi-
nary fractional diffusion constant but pertains to the realm
of subdiffusion only, in contrast to Naber’s generalization
which includes superdiffusion as well. This is understandable
because the case considered in this paper pertains to the
nonrelativistic case. Relativistic considerations would have to
be included for the superdiffusion case, which would lead
to the Klein-Gordon equation in the integer order limit. In
adapting the Feynmanmethod, it is shown that it is preferable
to introduce the action 𝑆 as a fractional time integral of the
Lagrangian and that it is necessary to introduce a “fractional
Planck constant.” In the limit of integer order, the regular
action 𝑆, the regular Schrodinger equation, and the regular
Planck constant are all recovered. It may be of interest to note
that there is a fractional Planck constant implied in Naber’s
work also, although it is not explicitly so stated. His equations
are rendered nondimensional by using the Planck units of
mass, length, and time and then generalized to fractional
derivatives after including a Wick rotation. This implies a
change of variable of time 𝑡 → 𝑖𝑡 so that the imaginary
number is raised to the same power as the order of the
fractional time derivative involved.However, the Planck units
may not be the appropriate quantities as the equations involve
quantities of fractional dimension and the equations must be
made nondimensional after the generalization to fractional
derivatives and not before. A fractional Planck constant does
show up in Naber’s treatment as well, as the ratio of masses
𝑚/𝑀
𝑝
[31, 32].
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A number of errors in Naber’s work have been corrected.
The correct continuity equation for the probability current is
derived and the Green function solution for a free particle is
given.TheGreen function is given in terms of a special type of
function, theM-Wright function, which is used extensively in
studies of time fractional subdiffusion studies. In the context
of time fractional diffusion, the M-Wright function is a
probability density function in time, which is non-Markovian
and goes over to the Gaussian in the nonfractional limiting
case. In the context of TFSE, the M-Wright function gives
the propagator, which is a probability amplitude. Probability
considerations are accounted for by the usual process of
squaring of the amplitude. In particular, it is shown that
Naber’s result that the total probability is greater than unity
in the long-time limit is a spurious result arising out of the
operation of arbitrarily raising of the imaginary number 𝑖 to
the power of the same degree as the fractional time derivative
invoking a Wick rotation. It is shown that such arbitrary
change of the imaginary number cannot be carried out as
the imaginary number 𝑖 is connected with the phase of the
action 𝑆 in the path integral contribution. However, if we
desired to consider a Wick rotation, it should be included
as an additional increase of the index of the power of the
imaginary number. The TFSE for a particle moving in a
potential field is also derived. Furthermore, it is suggested
that even in studies of fractional classical mechanics, such
as those using variational methods, the action integral be
expressed as a time fractional integral of the Lagrangian.
Further extensions including the solutions to particle subject
to different potentials are underway.
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