View metadata, citation and similar papers at core.ac.uk

Hindawi Publishing Corporation

The Scientific World Journal

Volume 2013, Article ID 596724, 6 pages
http://dx.doi.org/10.1155/2013/596724

Research Article

brought to you by .{ CORE

provided by Crossref

Hindawi

A Two-Level Cache for Distributed Information Retrieval

in Search Engines

Weizhe Zhang, Hui He, and Jianwei Ye

School of Computer Science and Technology, Harbin Institute of Technology, P.O. Box 320, Harbin 150001, China

Correspondence should be addressed to Weizhe Zhang; wzzhang@hit.edu.cn

Received 30 July 2013; Accepted 14 November 2013

Academic Editors: J. Shuand F. Yu

Copyright © 2013 Weizhe Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based
on the queries of the users’ logs. We extract the highest rank queries of users from the static cache, in which the queries are the
most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution
strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache

have advantages compared with other structures of cache.

1. Introduction

With the rapid growth of the Internet users and the increasing
query requests, the centralized queries for the same search
engine will undermine searching abilities. In addition, it will
lead to the increase of the response time and overloading.
Caches in the distributed full-text searching have high theory
and application value to solve these problems [1]. This is a key
technology to improve response time, processing efficiency,
and system performance. Caches play an important role in
the process of distributed text retrieval.

Melnik et al. [2] design a pipeline to create inverted
indexes; it improves the efficiency of generating the indexes.
However, such measures just optimize dictionaries, indexes,
and other related factors. It has little improvement of the
architecture of distributed search engines. It cannot funda-
mentally solve the problems. However, caches can effectively
tackle these problems.

Caches are widely used in various fields of computers
and; they can effectively remove the system bottlenecks and
enhance the processing ability. Currently, caches have been
widely used to improve the performance of search engines.
They are a key to enhance the processing ability and shorten
the response time for search engines. In recent years, through
statistical analysis of user behaviors in search engines, it is
found that user queries follow a high degree of repeatability

and locality [3]. Lots of Internet users propose a large number
of repetitive queries, which are often concentrated in certain
local contents. These hot contents can maintain a large
number during a certain period. Thus, caches can be used to
ease the pressure of search engines, and it is also one of the
best ways to improve retrieval performance [4].

This paper proposes a two-level cache structure based
on query analysis of user logs, so that search engines can
improve the performance of distributed full-text retrieval.
Section 2 describes the related works. Section 3 proposes a
two-level cache structure and explains the design concept,
the concrete realization, and their characteristics. Section 4
shows a distribution strategy of cache data; the last section
introduces the theory analysis and experimental verification
for the two-level cache structure.

2. Related Works

The key techniques of distributed caches include cache topol-
ogy, data distribution, data synchronization, cache replace-
ment algorithms, cache structures, and stored contents [5].
Among them, the cache structure and stored contents
are extremely important in a distributed cache system. Their
performance is directly related to the performance of the
whole cache system [6]. In a distributed system, the cache

https://core.ac.uk/display/193415547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

replacement algorithms [7] are used when records are written
to caches but their storage is full. Then, some data need to
be removed from cache storage based on access frequencies,
the time intervals, and the last access time. Common cache
replacement algorithms include least recently used algorithm
(LRU), the minimum frequency of visits algorithm (least
frequently used), and recently used algorithm (most recently
used). In response to these limitations of the traditional cache
replacement algorithms, there are a lot of improved ones.
These replacement algorithms are based on the LFU and
LRU algorithms. They add some other criteria such as time
intervals and access frequencies. They are the deformation
of the traditional replacement algorithms. In addition, the
document size is introduced to distinguish the characteristics
of the replacement algorithms, such as the SIZE algorithm.

Load balancing strategies of distributed caching system
are mainly used to solve some cache problems. For example,
unbalanced tasks and network congestion will decrease the
process ability. Cache systems are mainly used to dynamically
balance the tasks in the different servers, so as to improve
system performance and speed, and to provide better access
quality. Now there are polling, minimum connection num-
ber, and process ability balance strategies [8].

3. Two-Level Cache Architecture

According to the analysis of hot words and repeatability of
queries, it has been found that previous hot spots will still
be repeated and maintained hot in current user queries.
Based on this phenomenon, if the hot words are initialized
in the caches, the entire cache hit rate can be improved. This
paper designs a two-level cache based on user query logs and
integrates it into a distributed caching system.

3.1. Cache Structure. The structure of the cache design is
as follows. In each cluster, each cache server adopts a two-
level cache structure. The caches consisted of a static cache
and a dynamic cache. The static and dynamic caches work
together to cache data and enhance the processing speed.
In entire cache structure, static cache will work at first and
then dynamic cache does. When each query arrives, our
system will look it up in the static cache. If it hits, the cached
data is returned; otherwise, it accesses dynamic cache to
see if it hits. According to different situation, cache system
uses different processes. The static cache stores the highest
frequency queries and retrieves the results. By analyzing the
query logs in the cluster, the hottest queries are extracted,
and the corresponding search results are in pairs stored in
the static cache. Data in static cache are relatively fixed.
The contents will change only when the static cache needs
to rebuild and replace some contents in the cache. The
dynamic cache changes according to user queries; it stores
high frequency user queries and retrieval results. The store is
dynamic. After a period of time, with the help of replacement
algorithm, the contents in dynamic storage are also relatively
hot.

The Scientific World Journal

i i
User 4 Static | Cache data
— cache i allocation
-
N x |
|

I
I
*\| Dynamic | Replacement
cache ! algorithm
S 1

—> Query deliver path
<-- Result deliver path

FIGURE 1: Collaborative mechanism of static and dynamic caches.

The two-level cache structure mainly consists of the
following four parts.

(a) Creating a Static Cache and Dynamic Cache with Memory
Buffer. To provide the high speed of the cache system, all
cache servers are using the memory as a buffer. Cache
operating module in each server will create a static cache and
a dynamic cache. The sizes of the static cache and dynamic
cache are based on the actual requirement; this work will
test with different cache capacity and give performances
evaluation. Specifically, operation of creating different caches
is completed by an open source software called Ehcache.

(b) Initializing Static and Dynamic Caches with the Data
Distribution Strategy. By analyzing the previous day query log
of the cluster, we can calculate the number of different query
requests, the last query time, query time interval, and the
survival of the query. According to the formula for calculating
the hot values, the system will count the hot values of each
query. Sorted by the hot values, the first few queries and their
corresponding results will be stored in the static cache. The
details will be introduced in the next section. The dynamical
cache is empty at first. There is no data in it. In the whole
cache system, each server not only will store the native hot
queries and corresponding results but also will store the data
from other servers in the same cluster. So the cache system
will communicate with cache systems in other servers.

(c) Designing Coordination Mechanism between Static and
Dynamic Caches. Static and dynamic caches constitute a
cache structure. The two kinds of caches work together
to enhance search engines performance. The collaborative
mechanism of the static and dynamic caches is shown in
Figure 1.

After the creation of static cache and dynamic cache, the
cache data allocation module will initialize the value in data
in the cache. When the initialization is completed, the cache
system can start to work to process user queries. With the
arrival of each query, our system will look it up in the static
cache. If the query is hit in the cached data, this data is
returned; otherwise, it accesses dynamic cache to see if the

The Scientific World Journal

query is hit. If the query is missing in both static and dynamic
caches, the query will be processed in the cluster. When
returning the results to the user, the static and dynamic caches
will exchange some records with the replacement algorithm.

(d) Updating the Static and Dynamic Caches. The system
uses synchronous buffer initialization strategy to update the
indexes. The system updates its indexes every 24 hours.
Before the update, the indexes in the cluster will not change.
When the index is updated, cache system will destroy the
static cache and dynamic cache. Then, it will initialize the
data of static cache and dynamic cache based on the allocation
strategy to ensure consistency of cache and index data.

3.2. Characteristics of Two-Level Cache. Two-level cache has
static and dynamic caches, which have the following charac-
teristics.

(a) The contents stored in the static cache are relatively
fixed, in addition to part of the replacement of cache
replacement algorithm; the majority of its content
does not change within 24 hours. The static cache is
updated daily and the update is based on the query
log generated every day in this cluster. After the index
updates, by analyzing the query log, we can extract the
hot query to allocate the data of the static cache.

(b) The data in static cache are from analyzing the
query logs, which provide the hot queries and cor-
responding results for the static cache. By the query
repeatability analysis, the popular content stored in
the static cache will still be popular in the next 24
hours. Thus, the static cache hit rate should be high; it
enhances the whole cache hit rate.

(c) For static cache, the content is nearly consistent in a
day, and it uses the synchronous buffer initialization
strategy with the update of index. It avoids the data
flow caused by keeping the data synchronization in
all the cache servers.

(d) The dynamic cache acts as an adjunct to static cache,
whose data change dynamically. We will record the
dynamic cache, check if the buffer is full, and write
caches. Otherwise, you will replace the adjustment in
accordance with the replacement strategy and static
cache and dynamic cache records.

4. Cache Data Distribution Strategy

The cache data distribution strategy refers to how the queries
and its corresponding results will be stored in the two-level
cache structure cache. The entire cache data distribution
strategy includes the following content: how to calculate
the hot value of every query from the query logs, during
the initialization of static cache and dynamic cache, how to
decide which queries and the corresponding results to be
stored in the static cache, and how to replace the data in static
cache and dynamic cache.

The idea of the strategy is very simple. By analyzing the
cache queries log, the cache system will calculate the hot

value of every query. Then, the cache system will choose
the top N queries sorted by their hot values. Finally, the
system will put these queries and their corresponding results
in the static cache. At the same time, in order to achieve
further optimization expansion, the cache will also store the
hot queries and their corresponding results in other clusters.
This needs communication among the cache servers. During
the work of the caching system, the data in the static cache
and dynamic cache are updated with the cache replacement
algorithm.

Cache data allocation strategies can be divided into the
following parts: calculating of the query log, cache data
initialization, the communication between different cache
servers about hot queries, and data exchange between static
and dynamic caches. The cache data distribution strategy is
shown in Figure 2.

Implementation of cache data distribution strategy is as
follows.

(a) Analyzing the Query Log and Calculating the Hot Value
of Every Query. Analyzing the query log is the first step.
Then, we calculate the hot value of every query. The next
step is to open the query log file, read the query log contents,
and extract every query item. We calculate the total times of
queries, the first time of query, and the last time of query.
We know that the query with high frequency has greater hot
value. However, getting hot spot just based on query times
and query frequency may get a past hot spot; the users are
less likely to query the requests. Thus, two characteristics
are introduced into the paper; they are Query Life-Cycle
and Query Inactive Time. Query Inactive Time is the current
system time minus the last query appearing in the query log.

First, we calculate the query frequency; the query with
higher frequency is more likely to be hot content. Putting
these queries in the cache will increase the hit rate. Because
the cache structure based on log is built on web collection
system, the log will be generated every day. When calculating
the query frequency, the system will run 24 hours; therefore,
the query frequency is calculated as follows:

ueryNum
Freg = Q# (1)
24 * 3600
In the formula, QueryNum is the number of queries
times.
The interval time is calculated as follows:

IntervalTime = —. (2)
Freq

Query Life-Cycle is the time between the first occurrence
of a query and the last occurrence, which is calculated as

follows:
LiveTime = LastTime — FirstTime. (3)

In the formula, LastTime is the time of its last occurrence
and FirstTime is the time of its first occurrence.

To ensure the accuracy of hot content after statistical
calculating, the system introduces a characteristic called
NotActiveTime. NotActiveTime is the current system time

Statistical calculations of the query log

The Scientific World Journal

I

i

I

'| Read yesterday’s
| query log
I

1

Calculate number of queries,
query time interval, live | —>|query and get the first # queries
time, and last query time

Calculate hot value of every

and its corresponding results

Initialization
data of
cache

Communication
mechanism

system

Cache replacement

algorithm

Work results

Hottest queries and their corresponding

of cache

1
1
1
1
1
1
:
| status
1
1
1
1
1
1
1
1

FIGURE 2: Distribution strategy of static cache and dynamic cache data.

minus the last query in the query log. NotActiveTime is
calculated as follows:

NotActiveTime = CurrentTime — LastTime. (4)

In the formula, CurrentTime is current time and Last-
Time is the last time of the query.

After statistical calculating, for each query, we can get its
query frequency Freg, its live time LiveTime, and its not active
time NotActiveTime. The hot value of a query is proportional
to Freg and LiveTime, and it is inversely proportional to
NotActiveTime. The system calculates the hot value based on
these three variables. And HotValue is calculated as follows:

1

— (5
NotActiveTime

HotValue = Freq * LiveTime *

With the above formula of HotValue, the system will

calculate the hot value of every query and then sort the
queries by HotValue in descending order.

(b) Initialization of Static Cache and Dynamic Cache Ache.
Data initialization can be divided into two parts: one is
static cache data initialization and the other is dynamic cache
data initialization. Dynamic cache data initialization is very
simple. The system just needs dynamic cache area. It has no
data in the dynamic cache, and then its data keep changing
with the user query behavior. Static cache initialization is
relatively harder, which includes the following two parts.

(1) Put the native hot queries and their corresponding
results into the cache

(2) Put the hot queries and their results from other
clusters into the cache.

In the native cluster, after the statistical calculating, the
cache system will get hot value of each query and then sort
these queries by hot value in descending order. Then, choose
the first N queries and search their corresponding results
from the system. Then, put these queries and the results into
the static cache. After that, the initialization of native static
cache is finished.

After native initialization, the system is going to initialize
data from other clusters; the system will collect hot queries
and their corresponding results from off-site clusters and
then put them in its static cache. It is mainly completed with
communication and read-write mechanism between clusters.
Off-site clusters get their hot queries with the same method
mentioned above, and then each off-site cluster will share its
first M queries with highest hot value and their corresponding
results with other clusters. Finally, the system will get first
M queries from all the other clusters by communication.
Assume that there are X clusters in the cache system in total.
Then finally there are N + M * (X — 1) records in static cache
of a cluster.

(c) Communication between Static Cache and Dynamic Cache.
After the initialization of static cache, one cluster has N + M =
(X —1) records in its static communication. This initialization
data is based on the query log, by statistical analysis and
HotValue calculating. We finally get the hot queries and their
corresponding results. According to the consistency of hot
content, most of the content will maintain a good access

The Scientific World Journal

rate today. However, hot content of yesterday may plummet
today, and these contents may have low query rate. In view of
this situation, the system introduces a mechanism about how
to dynamically adjust the data of static cache and dynamic
cache. And it is realized with cache replacement algorithm.

5. Experiments

The cache structure has superior performance and higher hit
rate; there are the two following reasons.

(a) Using static cache, after initialization, hot queries and
their corresponding results are stored in static cache.
When the user queries come, most of them will match
the data in cache. Compared with just using dynamic
cache, it needs a period of time to make the hit rate
from low to high. Therefore, using two-level cache
structure will have a higher hit rate.

(b) The cache is made of memory, and thus it is fast.
However, as the cache size increases, although the
hit rate increases, the processing speed of finding a
record will be slower. For a cache server, it is not large
cache capacity which makes better performance. The
cache structure of the system on the whole can be
divided into two parts. Static cache initialized with
hot queries based on query log and its corresponding
results. With the help of cache replacement algorithm,
the content in static is the hottest queries. For each
query, the system first looks it up in static cache.

In this paper, experimental data based on query log
are used to compare the cache server with two-level cache
structure.

Hardware environment is as follows: desktop with 4
cores, AMD Athlon (tm) IT CPU 2.6 G, 250 G hard disk and
2 GRAM. The number of query requests is, respectively, as
follows: 1000 2000 5000 10000 20000 30000 50000 80000.
The experiment is using two different cache structures, so
there are two test cases: Case 1 is using the two-level cache
structure and Case 2 just uses dynamic cache.

In the experiments, the cache in two-level cache structure
is divided into two halves: 500 records in static cache and
500 records in dynamic cache. But cache with just dynamic
cache holds all of the 1000 records. Static cache in two-level
structure will not change and the dynamic cache changes with
LRU algorithm. The dynamic cache structure also changes
with LRU algorithm.

Test 1. Test two-level cache structure and pure dynamic cache
2 cases. For different total queries, the result of single query
processing time is shown in Table 1.

Test 2. Test the hit rates of 2 cases; the results are shown in
Table 2.

From the test results in Tables 1 and 2, some conclusion
can be made. Two-level cache structure based on query
log puts the hottest queries and their corresponding results
into the static cache. After the initialization, 500 records in
static cache may have a high access frequency. Compared
with using only the dynamic cache, the performance of

TaBLE 1: The processing time of single query.

Processing time of single
query by using two-level

Processing time single

Total queries query by just using

(times) cache structure (ms) dynamic cache (ms)
1000 323 59.6
2000 31.6 51.2
5000 395 54.5
10000 463 48.6
20000 531 50.3
30000 55.2 52.6
50000 50.8 50.4
80000 49.1 48.7

TABLE 2: The number of hits while dealing with different total
queries.

Total queries Hit counts of two-level ~ Hit counts of just using

(times) cache structure (times) dynamic cache (times)
1000 354 208

2000 694 451

5000 1332 1025

10000 2135 2093

20000 5214 5526

30000 7198 7663

50000 11210 12329

80000 19522 20861

two-level cache structure is much higher than only using
dynamic cache at start stage. When the total queries are 1000,
2000, 5000, and 10000, the processing speed is better than
only using dynamic cache. But with the increase of queries
number, the advantage of the two-level cache structure is no
longer obvious. When the total queries are 50000, 80000,
or more, its performance is nearly the same with structure
of the dynamic cache caching system. After analyzing cache
records, the records in static cache are fixed in a period of
time, but this data may not be hot today. And it is contrary
to our design ideas. After analyzing the hit rate of static cache
and dynamic cache, it was found that the hot content based on
the query log can only represent popular queries in the past,
access frequency of some of the queries may decrease, and,
what is worse, the access frequency of few queries may be low,
affecting the performance of the two-level cache structure.
However, this is not saying that the two-level cache structure
design is not scientific, and designing a reasonable cache
replacement algorithm can solve this problem. In order to
maintain the heat and freshness of a static cache, the design
is not only to achieve cache replacement but also to achieve
replacement between static cache and dynamic cache.

6. Conclusions

The paper introduces a two-level cache structure based on
query log; the cache is divided into two parts, static cache and
dynamic cache. The system initializes its data after analyzing

the query log, with the help of replacement algorithm. The
static cache stores the hottest queries and their corresponding
results. Compared with just using dynamic cache, the two-
level cache structure initializes its data by query logs. Thus, at
the beginning of the system, the hit rate can be maintained in
a high level. The whole cache is composed of static cache and
dynamic cache. Cache matching (look up query in cache) can
be fast. The experimental results show that two-level cache
structure is 28% faster than dynamic cache.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Basic Research
Program of China under Grant no. G2011CB302605, the
National Natural Science Foundation of China (NSFC) under
Grant nos. 61173145 and 61100188, and the National High
Technology Research and Development Program of China
under Grant no. 2011AA010705.

References

[1] P. C. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira, R. Fon-
seca, and B. Riberio-Neto, “Rank-preserving two-level caching
for scalable search engines,” in Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 51-58, ACM Press, New York,
NY, USA, 2008.

S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina, “Build-
ing a distributed full-text index for the web,” ACM Transactions
on Information Systems, vol. 19, no. 3, pp. 217-241, 2001.

S

[3] A.Odlyzko, “The Internet and other networks: utilization rates
and their implications,” Information Economics and Policy, vol.
12, no. 4, pp. 341-365, 2000.

[4] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Pla-
chouras, and E Silvestri, “The impact of caching on search
engines,” in Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 07), pp. 183-190, July 2007.

[5] Z. Gu and J. Ma, “Automatic detection of shared fragments in
large collections of web pages and its applications,” Journal of
Algorithms & Computational Technology, pp. 215-250, 2007.

[6] Q. Gan and T. Suel, “Improved techniques for result caching
in web search engines,” in Proceedings of the 18th International
Conference on World Wide Web (WWW °09), pp. 431-440, 2009.

[7] J. Zhang, X. Long, and T. Suel, “Performance of compressed
inverted list caching in search engines,” in Proceedings of the 17th
International Conference on World Wide Web (WWW °08), pp.
387-396, April 2008.

E. Putrycz and G. Bernard, “Connecting frameworks: case study
with middleware based load balancing,” in Proceedings of 23rd
International Conference on Distributed Computing Systems
Workshops (ICDC-SW "03), pp. 126-131, 2003.

[8

The Scientific World Journal

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

