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This paper concerns the Stokes flow of an incompressible viscous fluid past a swarm of porous
nanocylindrical particles enclosing a solid cylindrical core with Kuwabara boundary condition. An
aggregate of porous nanocylindrical particles is considered as a hydro-dynamically equivalent to
a solid cylindrical core with concentric porous cylindrical shell. The Brinkman equation inside the
porous cylindrical shell and the Stokes equation outside the porous cylindrical shell in their stream
function formulations are used. Explicit expressions for the stream functions in both regions have
been investigated. The drag force acting at each nanoporous cylindrical particle in a cell is evalu-
ated. Also, we solved the same problem by using Happel boundary condition on the hypothetical
cell. In certain limiting cases, drag force converges to pre-existing analytical results, such as the drag
on a porous circular cylinder and the drag on a solid cylinder in Kuwabara’s cell or Happel’s cell.
Representative results are then discussed and compared for both cases and presented in graphical
form by using Mathematica software.

Copyright q 2008 S. Deo and P. K. Yadav. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The classical problems of the motion of objects through fluids continue to be of interest because
of their applications in physical sciences and chemical engineering. A variety of physical situ-
ations arises in which the size of moving objects varies from micro-(10−6 meter) to nano-(10−9

meter) scales. The computational predictions of the relevant hydrodynamical parameters of
the flow of a viscous incompressible fluid past a swarm of porous particles at nanoscale are
of considerable practical and theoretical interest of many physical, engineering, and medical
problems.

Happel [1, 2] and Kuwabara [3] proposed a cell model in which two concentric cylin-
ders/spheres serve as the model for fluid moving through an assemblage of circular cylin-
ders/spheres. The Kuwabara model assumes uniform velocity condition and vanishing of
vorticity at the cell surface, whereas, Happel model assumes vanishing of shear stress instead
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of vanishing of vorticity at the cell surface. An analytical study of the steady incompressible
flow past a circular cylinder embedded in a porous medium based on the Brinkman model
has been reported by Pop and Cheng [4]. The drag on flow past a cylinder with slip was also
evaluated by Datta and Shukla [5]. The problem of Stokes flow through a swarm of spherical
particles moving in arbitrary direction was studied by Dassios and Vafeas [6] by using 3D Hap-
pel model. Stokes flow past a swarm of porous circular cylinders with Happel and Kuwabara
boundary conditions was discussed by Deo [7]. Recently, a new model for calculating specific
resistance of aggregated colloidal cake layers in membrane filtration processes was discussed
by Kim and Yuan [8].

In the present work, the problem of the Stokes flow past a swarm of porous nanocylin-
drical particles enclosing a solid cylindrical core with Kuwabara boundary condition is consid-
ered. The Brinkman equation for the flow inside and the Stokes equation outside the porous
cylindrical shell in their stream function formulations is used. The drag force experienced
by each nanoporous circular cylindrical particle in a cell is evaluated. Representative results
are presented in graphical form by using Mathematica and they are compared in both cases.
The Happel formulation is slightly superior because it leads to particles-in-cell that are self-
sufficient in mechanical energy [9]. Special known results are then also deduced from the
present analysis.

2. Statement and mathematical formulation of the problem

A primary assumption employed in this study is that a swarm of nanosized porous coaxial
(along z-axis) cylindrical particles surrounding a solid cylindrical core having the same axis is
hydro-dynamically equivalent to a coaxial porous cylindrical shell surrounding the solid core.
Let the radius of the solid cylindrical core be a and let the radius of the concentric porous
cylindrical shell enclosing the solid cylindrical core be b (b > a). Further, we assume that this
porous shell is enveloped by a concentric cylinder of radius c (c > b) named as cell surface,
and let the radius of each nano porous cylindrical particle be ap (Figure 1). Also, we assume
that the fluid is approaching towards the cell surface as well as partially passing through the
composite cylinder perpendicular to the axis of cylinder (z-axis) with velocity U from left to
right. The radius c of hypothetical cell is so chosen that the solid volume fraction γ of the
swarm is equal to the solid volume fraction of the cell, that is,

γ =
πb2

πc2
. (2.1)

2.1. Governing equations

The governing equation of incompressible Newtonian creeping flow for clear fluid, that is,
outside the porous cylindrical shell, is governed by Stokes equation (Happel and Brenner [10])

μ1∇2v(1) = ∇p(1). (2.2)

Also, we assume that the flow inside the porous cylindrical shell is governed by Brinkman’s
[11] equation

∇2v(2) −
(
σ2

b2

)
v(2) =

(
1
μ2

)
∇p(2). (2.3)
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Figure 1: The physical model and the coordinate system.

Here, σ2 = βb2/k, with β = μ1/μ2, μ1 is the viscosity of the fluid, μ2 denotes the effective
viscosity of porous medium, with k being the permeability of porous medium. Since, σ is a
dimensionless number related with the permeability, therefore we called it as dimensionless
permeability parameter. Here, v(i), p(i), i = 1, 2, are the velocity vector and pressure outside
and inside the porous cylindrical shell, respectively.

The equations of continuity for axisymmetric, incompressible viscous fluid in cylindrical
polar coordinates (r, θ, z) in both regions can be written as

∂

∂r

(
rv

(i)
r

)
+
∂

∂θ

(
v
(i)
θ

)
= 0, (2.4)

where v(i)
r and v(i)

θ
, i = 1, 2, are components of velocities in the direction of r and θ, respectively.

The stream functions ψ(i)(r, θ) in both regions satisfying equations of continuity (2.4) may be
defined as

v
(i)
r =

1
r

∂ψ(i)

∂θ
, v

(i)
θ

= −∂ψ
(i)

∂r
. (2.5)

Therefore, on elimination of pressures in both (2.2) and (2.3) and on using (2.4), we get
the following fourth-order partial differential equations, respectively, as

∇4ψ(1) = ∇2(∇2ψ(1)) = 0, (2.6)

∇4ψ(2) −
(
σ2

b2

)
∇2ψ(2) = ∇2

(
∇2 −

(
σ2

b2

))
ψ(2) = 0, (2.7)

where the Laplacian operator

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
, (2.8)

with the macroscopic assumption of μ1/μ2 = 1.
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The range of r and θ in the above (2.6) and (2.7) within a cylinder can be given below as

0 < r <∞, 0 < θ ≤ 2π. (2.9)

Furthermore, the expressions for tangential and normal stresses T (i)
rθ
, T

(i)
rr , i = 1, 2, respectively,

are given by

T
(i)
rθ

= μi
[

1
r2

∂2ψ(i)

∂θ2
+

1
r

∂ψ(i)

∂r
− ∂2ψ(i)

∂r2

]
,

T
(i)
rr = −p(i) + 2μi

r

[
∂2ψ(i)

∂r∂θ
− 1
r

∂ψ(i)

∂θ

]
.

(2.10)

Also, the pressure may be obtained in both regions (Happel and Brenner [10]) by integrating
the following relations, respectively, as

∂p(i)

∂r
= μi

[
∇2v

(i)
r − v

(i)
r

r2
− 2
r2

∂v
(i)
θ

∂θ
− δ2i

(
σ

b

)2

v
(i)
r

]
,

1
r

∂p(i)

∂θ
= μi

[
∇2v

(i)
θ

− v
(i)
θ

r2
+

2
r2

∂v
(i)
r

∂θ
− δ2i

(
σ

b

)2

v
(i)
θ

]
,

(2.11)

where δ21 = 0 and δ22 = 1.
A suitable stream function solution of the Stokes equation (2.6) can be expressed as

ψ(1)(r, θ) = Ub
[
A1r

′ + B1r
′3 +

C1

r′ +D1r
′ ln r ′

]
sin θ. (2.12)

A particular solution of the Brinkman equation (2.7) may be written as

ψ(2)(r, θ) = Ub
[
A2r

′ +
B2

r ′
+ C2I1(σr ′) +D2K1(σr ′)

]
sin θ. (2.13)

Here, I1(σr ′) and K1(σr ′) are the modified Bessel functions of the order one of the first and
second kinds (Abramowitz and Stegun [12]), respectively, and the dimensionless variable r ′ =
r/b.

3. Solution of the problem with Kuwabara boundary condition

The boundary conditions, those are physically realistic and mathematically consistent for the
problem, can be taken as given below. On the solid cylindrical core,

v
(2)
r (a, θ) = 0, v

(2)
θ
(a, θ) = 0. (3.1)

On the porous surface,

v
(2)
r (b, θ) = v(1)

r (b, θ), v
(2)
θ
(b, θ) = v(1)

θ
(b, θ),

T
(2)
rr (b, θ) = T

(1)
rr (b, θ), T

(2)
rθ

(b, θ) = T (1)
rθ

(b, θ).
(3.2)
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On the hypothetical cell surface,

v
(1)
r (c, θ) = U cos θ. (3.3)

The vanishing of vorticity on the cell surface, that is, Kuwabara condition, implies that

∇2ψ(1)(c, θ) = 0. (3.4)

3.1. Determination of arbitrary constants

Applying the boundary conditions given by (3.1)–(3.4) and solving the resulting equations,
we get the values of all the arbitrary constants A1, B1, C1, D1, A2, B2, C2, and D2 appearing
in (2.12) and (2.13).

4. Evaluation of drag

Integrating the normal and tangential stresses over the porous cylindrical shell of radius b in a
cell yields the experienced drag force F per unit length as

F =
∫2π

0

(
T
(1)
rr cos θ − T (1)

rθ
sin θ

)
r=br dθ = 4πμ1UD1, (4.1)

where

D1 =
−4m4σ2[2I1(σ
)K1(σ)+ 


(
1+ 
2)σI2(σ
)K1(σ)+ I1(σ)

{− 2K1(σ
)+ 

(
1+ 
2)σK2(σ
)

}]
Δ

,

Δ = −16m4
σI2(σ
)K1(σ) + 8
3σI2(σ
)K1(σ) + 16m2
3σI2(σ
)K1(σ) − 8m4
3σI2(σ
)K1(σ)

+ 
σ3I2(σ
)K1(σ) − 4m2
σ3I2(σ
)K1(σ) + 3m4
σ3I2(σ
)K1(σ) + 
3σ3I2(σ
)K1(σ)

− 4m2
3σ3I2(σ
)K1(σ) + 3m4
3σ3I2(σ
)K1(σ) + 32m4I1(σ)K1(σ
) − 2σ2I1(σ)K1(σ
)

+ 8m2σ2I1(σ)K1(σ
) − 6m4σ2I1(σ)K1(σ
) − 8
2σI2(σ
)K1(σ
) + 8m4
2σI2(σ
)K1(σ
)

− 8
σI1(σ)K2(σ) + 8m4
σI1(σ)K2(σ) + 4
σ2I2(σ
)K2(σ) − 8m2
σ2I2(σ
)K2(σ)

+ 4m4
σ2I2(σ
)K2(σ) + 4
3σ2I2(σ
)K2(σ) − 8m2
3σ2I2(σ
)K2(σ) + 4m4
3σ2I2(σ
)K2(σ)

− 16m4
σI1(σ)K2(σ
) + 8
3σI1(σ)K2(σ
) + 16m2
3σI1(σ)K2(σ
) − 8m4
3σI1(σ)K2(σ
)

+ 
σ3I1(σ)K2(σ
) − 4m2
σ3I1(σ)K2(σ
) + 3m4
σ3I1(σ)K2(σ
)

+ 
3σ3I1(σ)K2(σ
) − 4m2
3σ3I1(σ)K2(σ
) + 3m4
3σ3I1(σ)K2(σ
)

+ 4
(
1 −m2)σI2(σ)

[ − 2
(
1 +m2)
K1(σ) −

( − 1 +m2){2K1(σ
) − 

(
1 + 
2)σK2(σ
)

}]
− 4m4
σ3I2(σ
)K1(σ) lnm − 4m4
3σ3I2(σ
)K1(σ) lnm + 8m4σ2I1(σ)K1(σ
) lnm

− 4m4
σ3I1(σ)K2(σ
) lnm − 4m4
3σ3I1(σ)K2(σ
) lnm

+ 2I1(σ
)
[
4
( − 1 +m2)σ{( − 1 +m2)K2(σ) +

(
1 +m2)
2K2(σ
)

}
+K1(σ)

{
σ2 − 4m2σ2 +m4( − 16 + 3σ2) − 4m4σ2 lnm

}]
.

(4.2)
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Also, the drag coefficient CD can be defined as

CD =
F

(1/2)ρU22b
=

8πD1

Re
, (4.3)

where Re = 2bU/ν1 is the Reynolds number, and ν1 = μ1/ρ being the kinematic viscosity of
fluid.

4.1. Deductions of some known results

4.1.1. Drag on a porous circular cylinder in a cell

If a = 0, that is, 
 = a/b = 0, then cylindrical shell will reduce to a porous circular cylinder of
radius b. In this case, we get the value of the drag coefficient CD as

CD =
32πσ2I1(σ)

Re
[{ − 4

(
σ2(1−γ)− 4

)
+ σ2

( − (2 log γ+1)+γ2
)}
I1(σ)+2σ

{
σ(1−γ2)I1(σ)+2(1−γ)2I2(σ)

}] ,
(4.4)

where γ = (πb2)/(πc2) = 1/m2 being the particle volume fraction.
A known result has been reported earlier by Deo [7] for the drag force experienced by a

porous circular cylinder in a cell.

4.1.2. Drag on a solid cylinder in Kuwabara cell model (k → 0)

When permeability k vanishes, that is, permeability parameter σ → ∞, then the porous circular
cylinder behaves like a solid cylinder of radius b. In this case, the value of the drag coefficient
CD will become as

CD =
32π

Re
(
4γ − γ2 − 3 − 2 ln γ

) . (4.5)

A known result for the drag has been reported earlier by Kuwabara [3].

4.1.3. Happel boundary condition

Happel assumes that on the cell surface shear stress vanishes instead of vorticity. In this case,we
take the seven boundary conditions in (3.1)–(3.3) to be the same as in the previous case but in
place of eighth condition (3.4), Happel boundary condition is used. Thus, vanishing of shear
stress on the cell surface implies that

T
(1)
rθ

(c, θ) = 0. (4.6)

Applying the boundary conditions (3.1)–(3.3) with (4.6) and solving the resulting equations,
we get the values of unknown constants appearing in (2.12) and (2.13). Therefore, we get
the explicit expressions of the stream functions, and, hence, velocity distributions, pressure
distributions, stress, vorticity, and the drag force may be evaluated. Instead, we report the
values of the drag coefficient for the simpler cases as mentioned below.
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Figure 3: Variation of the drag coefficient CD versus particle volume fraction γ for various values of per-
meability parameter σ.

4.1.4. Drag on a porous circular cylinder in a cell

In particular, when a = 0, that is, 
 = a/b = 0, then cylindrical shell will reduce to a porous
circular cylinder of radius b. Thus, the value of the drag coefficient CD will come out as

CD =
16πσ2[σI1(σ)

(
1 + γ2) − 4γ2I2(σ)

]
Re

[
σ2

(
γ2 − 1

)[
σI1(σ) − 2I2(σ)

]
+
(
8 − σ2 ln γ

)[
σ
(
1 + γ2

)
I1(σ) − 4γ2I2(σ)

]] . (4.7)

4.1.5. Drag on a solid cylinder in Happel cell model (k → 0)

Again, if permeability k vanishes, that is, permeability parameter σ → ∞, then the porous
circular cylinder behaves like a solid cylinder of radius b. In this case, the value of the drag
coefficient CD will become as

CD =
16π{

Re
[
(ln γ + 1) − 2γ2/

(
1 + γ2

)]} , (4.8)

which agrees with the result reported earlier by Happel [2] for the drag force experienced by a
solid cylinder in a cell.
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5. Conclusions

Figure 2 shows that the comparison between Happel and Kuwabara results in the porous cir-
cular cylindrical shell for various values of the particle volume fraction γ , when permeability
parameter σ varies as parameter and 
 = 0.4. It is seen that the variation of the drag coeffi-
cient CD is large in case of Kuwabara boundary condition in comparison to the case of Happel
boundary condition. Figure 3 shows that the comparison between Happel and Kuwabara re-
sults in the porous circular cylinder for various values of the permeability parameter σ, when
particle volume fraction γ varies and 
 = 0.4. It is seen that the variation of the drag coeffi-
cient CD is large in case of Kuwabara boundary condition in comparison to the case of Happel
boundary condition when particle volume fraction γ varies as parameter.
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