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The flexible manufacturing system (FMS) has attracted substantial amount of research
effort during the last twenty years. Most of the studies address the issues of flexibility,
productivity, cost, and so forth. The impact of flexible lines on product quality is less
studied. This paper intends to address this issue by applying a Markov model to evaluate
quality performance of a flexible manufacturing system. Closed expressions to calculate
good part probability are derived and discussions to maintain high product quality are
carried out. An example of flexible fixture in machining system is provided to illustrate
the applicability of the method. The results of this study suggest a possible approach to
investigate the impact of flexibility on product quality and, finally, with extensions and
enrichment of the model, may lead to provide production engineers and managers a bet-
ter understanding of the quality implications and to summarize some general guidelines
of operation management in flexible manufacturing systems.
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1. Introduction

Manufacturing system design and product quality have been studied extensively during
the last 50 years. However, most of the studies address the problems independently. In
other words, the majority of the publications on quality research seek to maintain and
improve product quality while ignoring the production system concerns. Similarly, the
majority of the production system research seeks to maintain the desired productivity
while neglecting the question of quality. Little research attention has been paid to investi-
gate the coupling or interaction between production system design and product quality.
However, it has been shown in [1] that production system design and product quality
are tightly coupled, that is, production system design has a significant impact on product
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quality as well as other factors. The analysis in this area, which is important but largely
unexplored, will open a new direction of research in production systems engineering.
To stimulate research in this area, [1] presents several research opportunities from the
automotive industry perspective, and flexibility is one of them.

To satisfy the rapidly changing markets and varying customer demands, manufactur-
ing systems are becoming more and more flexible. For example, in automotive industry,
flexible manufacturing is “becoming even more critical” [2]. Substantial amount of re-
search effort and practices have been devoted to flexible manufacturing systems (FMSs),
and it has taken an explicit role in production system design. Much of the work related to
flexibility addresses the issues of investment cost, flexibility measurement, and the trade-
offs between productivity and flexibility. However, interactions not only exist between
flexibility and productivity, but also between flexibility and quality (as suggested by [1]).
The latter one is much less studied.

For example, in many flexible machining systems, a flexible fixture restricts and is the
core enabler to flexibility of the whole system, and the cost of designing and fabricating
fixtures can amount to 10%–20% of the total manufacturing system cost [3, 4]. A flex-
ible fixture often is a programmable fixture designed to support multiple distinguished
parts being manufactured (assembled or machined) on the same line. With the flexible
fixture, system flexibility can be achieved with little or no loss of production. In automo-
tive industry, a flexible fixture might be clamps/locators held by robots or other “smart”
mobile apparatuses. The challenge, however, with the flexible fixture is the accuracy of
the locator measured by the variance. Whenever there is a product change, the fixture
needs to adapt itself to the desired corresponding location. As we know, the quality of the
manufacturing operation heavily depends on the fixture. The discrepancy of the fixture
location from its “ideal” one, in many cases, dominates the quality of the products. For
instance, consider a production line producing two products, A and B. Assuming that the
fixture is located in a “good” position, that is, within the nominal tolerance, for product
A, then if the subsequent parts belong to product A, it is more likely that good quality
parts can be produced. Analogously, if the fixture is in a “bad” location, then more de-
fective parts can be produced. However, when the subsequent part is switched to product
B, then the fixture needs to readjust its location and either good quality or defective parts
may be produced (more detailed description is introduced in Section 4). Therefore, the
quality characteristic of the current part is dependent on the part type and quality of
the previous one. A study to evaluate that the quality performance in flexible machining
environment is valuable, however, has been missing in current literature.

An automotive paint shop is typically capable of painting different models with desired
colors. However, the number of available paint colors can significantly impact product
quality [2]. Whenever a color change happens, previous paints and solvent need to be
purged and spray guns need to be cleaned to remove any residue. The paint quality may
temporarily decline after the switch [5]. Thus, the previous vehicle’s color may affect next
vehicle’s quality, as well as other factors (e.g., paint mixing, vehicle cleaning, dirty air,
and equipment, etc.). Therefore, vehicles with the same colors are usually grouped into
a batch before entering the painting booths without sacrificing much on vehicle delivery.
In addition, it is typical to sequence the light color vehicles before the darker ones [6].
Through this, the change-over time (or paint purging time) and the cost of paint purging
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are reduced. More importantly, the paint quality can be improved by reducing the possi-
bility of incomplete cleaning during purging [7]. However, no analytical study has been
found to investigate how flexibility (in terms of number of colors) impacts paint quality,
and what would the appropriate batch size and batch sequence be to obtain good paint
quality and to satisfy throughput and order delivery requirements as well.

Additional examples can be found in welding, assembly operations, and so forth, as
well. These examples suggest that flexibility and quality are tightly coupled and much
more work is needed to fully understand this coupling. Such an issue is very important
but almost neglected. We believe that quality should be integrated into the considera-
tions when designing production systems as well as objectives of productivity and flexi-
bility. The goal of this study is to investigate the coupling between flexibility and product
quality, and to provide production engineers and managers a better understanding of the
quality implications in flexible manufacturing systems and to offer some general guide-
lines for management of flexible operations. To start such a study, a simple Markovian
model to analyze the quality performance of a flexible manufacturing system is devel-
oped. Specifically, a closed-form expression is derived to evaluate the system quality in
terms of good part probability and some discussions are carried out based on the anal-
ysis. Although inventory, flow control, scheduling, and so forth are also important parts
of FMS studies, we limit our work in this paper to quality performance only. Enrichment
of the model by integrating quality with other performance measures (e.g., throughput,
inventory, cost, etc.) will be a topic for future work.

The rest of the paper is structured as follows. Section 2 reviews the related literature.
Models and analysis are developed and carried out in Section 3. Using the method de-
veloped, an example of quality performance evaluation in a flexible machining system is
introduced in Section 4. Finally, Section 5 concludes the paper. All proofs are presented
in the appendix.

2. Literature review

Although significant research effort has been devoted separately to manufacturing sys-
tem design and product quality, the coupling or interaction between them has not been
studied intensively. Paper [1] reviews the related literature and suggests that this is an
open area with promising research opportunities. Limited work addressing this coupling
can be found in [8–14]. Specifically, [8] studies the perturbation in the average steady
state production rate by quality inspection machines for an asymptotically reliable two-
machine one-buffer line. The tradeoffs between productivity and product quality as well
as their impact on optimal buffer designs are investigated in [9]. Paper [10] delineates
the tradeoff between throughput and quality for a robot whose repeatability deteriorates
with speed. Paper [11] uses stochastic search techniques (generic algorithms and simu-
lated annealing) to investigate the impact of inspection allocation in manufacturing sys-
tems (serial and nonserial) from the cost perspective. The competing effects of large or
small batch sizes are studied in [12] and a model for the interaction between batch size
and quality is developed. In addition, [13] uses quantitative measures to deduce that U-
shaped lines produce better quality products. A new line balancing approach is proposed
in [14] to improve quality by reducing work overload. The recent advances in this area
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are contained in [15–19]. In [15], a multistage variation propagation model is presented.
Paper [16] studies a transfer production line with Andon. It is shown that to produce
more good quality parts, Andon is preferable only when average repair time is short and
the line should be stopped to repair all the defects. The impact of repair capacity and first
time quality on the quality buy rate of an automotive paint is analyzed in [17, 18]. Paper
[19] introduces an integrated model of a two-machine one-buffer line with inspection
and information feedback to study both quality and quantity performances in terms of
good production rate.

Flexibility has attracted a significant amount of research in the last two decades. Most
of the work related to flexibility focus on the definition, meaning, and measurement of
manufacturing flexibility, and performance modeling of flexible manufacturing systems,
and so forth (see, e.g., monographs [20–23], and review papers [24–31]). However, as
pointed out in [3], most of the flexibility studies assume that quality-related issues, such
as rejects, rework, have minimal impact and that only products of acceptable quality are
produced. The production of high quality parts in an FMS requires significant effort and
investments. Only a few publications are found discussing the impact of manufacturing
flexibility on product quality [32–35]. Specifically, a measure of productivity, quality, and
flexibility for production systems is presented in [32]. Paper [33] studies the issues of
flexibility, productivity, and quality from an extensive search and analysis of empirical
studies. In [34], a method is developed to model the fuzzy flexibility elements such as
quality level, efficiency, versatility, and availability. In addition, paper [35] surveys the
existing literature related to mass customization. In particular, it points out that quality
control issues should be taken into account and current literature lacks in-depth study on
how to assure quality in mass-customized products.

In spite of the above effort, the current literature does not provide a quantitative model
which enables us to investigate the correlation between quality and number of products
and to predict the quality performance of a flexible manufacturing system. We still need
to fully understand the coupling or interactions between flexible manufacturing system
design and product quality. An in-depth analytical study of the impact of flexibility on
quality is necessary and important. This paper is intended to contribute to this end.

3. Models and analysis

3.1. One product type. Consider a flexible manufacturing system producing one prod-
uct type and let g and d denote the states that the system is producing a good quality part
or a defective part in steady states, respectively. Note that here we only study the work-
ing or production period of the system. In other words, machine breakdowns are not
considered. When the system is in state g, it has a transition probability λ to produce a
defective part in the next cycle, and probability 1− λ to continue producing a good part.
Similarly, when the system is in state d, it can produce a good part with probability μ and
a defective part with probability 1− μ in the next cycle (see Figure 3.1). λ and μ can be
viewed as quality failure and repair probabilities, respectively. Similar to throughput anal-
ysis, constant transition probabilities are assumed to simplify the analysis for steady state
operations.
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Figure 3.1. State transition diagram in one-product-type case.

Let P(g, t) and P(d, t) denote the probabilities that the system is in states g or d at cycle
t, respectively. Clearly, states g and d are similar to the up- and down-states in throughput
analysis. Therefore, by extending the method used in throughput analysis to study quality
performance, we obtain

P(g, t+ 1)= P
(
produce a good part at t+ 1 | produce a good part at t

)
P(g, t)

+P
(
produce a good part at t+ 1 | produce a defective part at t

)
P(d, t)

= P
(
g, t+ 1 | g, t

)
P(g, t) +P

(
g, t+ 1 | d, t

)
P(d, t)

= (1− λ)P(g, t) +μP(d, t).
(3.1)

In terms of the steady states, P(g) and P(d) are used to denote the probabilities to produce
a good or a defective part during a cycle, respectively, that is,

lim
t→∞P(g, t) := P(g), lim

t→∞P(d, t) := P(d). (3.2)

It follows that

P(g)= (1− λ)P(g) +μP(d), (3.3)

which implies that

P(d)= λ

μ
P(g). (3.4)

From the fact that total probability equals 1,

P(g) +P(d)= 1, (3.5)

it follows that the system good product ratio is

P(g)= μ

λ+μ
. (3.6)



6 Mathematical Problems in Engineering

Clearly, as expected, (3.6) has a similar form as machine efficiency in throughput anal-
ysis. Below, we will extend this study to multiple-product-types case.

3.2. Two product types. Now we consider a flexible system producing two types of prod-
ucts, types 1 and 2. Introduce P(gi) and P(di) as the probabilities to produce a good part
type i, i = 1,2, or defective part type i, i = 1,2, during a cycle, respectively. Again P(g)
and P(d) are used to represent the good or defective part probability (of both products).
Then we obtain

P
(
g1
)

+P
(
g2
)= P(g), P

(
d1
)

+P
(
d2
)= P(d). (3.7)

In addition, introduce the following assumptions.
(i) A flexible system has four states: producing good part type 1, type 2, and pro-

ducing defective part type 1 and type 2, denoted as g1, g2, d1, and d2, respectively.
(ii) The transition probabilities from good states gi, i = 1,2, to defective states dj ,

j = 1,2, are determined by λi j . The system has probabilities νi j to stay in good
states gj , j = 1,2. Similarly, when the system is in defective states di, i = 1,2, it
has probabilities μi j to transit to good states gj , j = 1,2, and probabilities ηi j to
stay in defective states dj , j = 1,2.

Remark 3.1. Similar to one-product-type case, λii and μii, i= 1,2, can be viewed
as nonswitching quality failure and repair probabilities, respectively (i.e., product
types are not switched). Analogously, λi j and μi j , i, j = 1,2, i �= j, can be viewed
as switching quality failure and repair rates, respectively.

(iii) When incoming parts are in random order without correlations (nonsequenced),
the part flow is identically and uniformly distributed with probabilities P(1) and
P(2) for part types 1 and 2, respectively. In other words, every cycle the system
has probability P(1) or P(2) to work on part types 1 and 2, respectively.

Remark 3.2. Assumptions (ii) and (iii) imply that probabilities P(1) and P(2)
are embedded in the transition probabilities λi j , μi j , νi j , and ηi j , i, j = 1,2. For
example, λi j defines the transition probability that the incoming part is type j
and the system produces a defective part at cycle t + 1 given that it produces a
good type i part at cycle t.

Based on the above assumptions, we can describe the system using a discrete Markov
chain illustrated in Figure 3.2. In addition, since total probabilities equal 1, we have

P(1) +P(2)= 1, P
(
g1
)

+P
(
d1
)= P(1), P

(
g2
)

+P
(
d2
)= P(2),

λ11 + λ12 + ν11 + ν12 = 1, λ22 + λ21 + ν22 + ν21 = 1,

μ11 +μ12 +η11 +η12 = 1, μ22 +μ21 +η22 +η21 = 1.

(3.8)
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Figure 3.2. State transition diagram in two-product-type case.

Analogously to Section 3.1, the transitions to state g1 can be described as

P
(
g1, t+ 1

)= P
(
g1, t+ 1 | g1, t

)
P
(
g1, t

)
+P
(
g1, t+ 1 | d1, t

)
P
(
d1, t

)

+P
(
g1, t+ 1 | g2, t

)
P
(
g2, t

)
+P
(
g1, t+ 1 | d2, t

)
P
(
d2, t

)

= ν11P
(
g1, t

)
+ ν21P

(
g2, t

)
+μ11P

(
d1, t

)
+μ21P

(
d2, t

)
.

(3.9)

Considering the steady state probability P(g1), we have

P
(
g1
)= ν11P

(
g1
)

+ ν21P
(
g2
)

+μ11P
(
d1
)

+μ21P
(
d2
)
. (3.10)

Similarly,

P
(
g2
)= ν12P

(
g1
)

+ ν22P
(
g2
)

+μ12P
(
d1
)

+μ22P
(
d2
)
, (3.11)

P
(
d1
)= λ11P

(
g1
)

+ λ21P
(
g2
)

+η11P
(
d1
)

+η21P
(
d2
)
, (3.12)

P
(
d2
)= λ12P

(
g1
)

+ λ22P
(
g2
)

+η12P
(
d1
)

+η22P
(
d2
)
. (3.13)

Solving the above equations, we obtain a closed formula to calculate the probability of
good quality part P(g).
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Theorem 3.3. Under assumptions (i)–(iii), the good part probability P(g) can be calculated
as

P(g)= F

F + G
, (3.14)

where

F = (λ11− λ21
)(
μ12μ21−μ11μ22

)
+
(
1− ν22 + ν12

)[(
1−η11

)
μ21 +η21μ11

]

+
(
1− ν11 + ν21

)[(
1−η11

)
μ22 +η21μ12

]
,

G= (μ21−μ11
)[(

1− ν22
)
λ11 + ν12λ21

]− (μ12−μ22
)[(

1− ν11
)
λ21 + λ11ν21

]

+
[(

1− ν11
)(

1− ν22
)− ν12ν21

](
1−η11 +η21

)
.

(3.15)

For the proof, see the appendix.

3.3. Multiple (n > 2) product types. Now consider a flexible manufacturing system pro-
ducing more than two types of product. The same assumptions and notations in Section
3.2 will be used with the exception that now i= 1, . . . ,n, denoting n product types. There-
fore, we have

n∑

i=1

P(i)= 1,
n∑

i=1

P
(
gi
)= P(g),

n∑

i=1

P
(
di
)= P(d),

P
(
gi
)

+P
(
di
)= P(i), i= 1, . . . ,n,

n∑

i=1

P
(
gi
)

+
n∑

i=1

P
(
di
)= 1,

n∑

j=1

(
λi j + νi j

)= 1, i= 1, . . . ,n,
n∑

j=1

(
μi j +ηi j

)= 1, i= 1, . . . ,n.

(3.16)

Analogously to Section 3.2, we obtain the following transition equations:

P
(
gj
)=

n∑

i=1

νi jP(gi) +
n∑

i=1

μi jP
(
di
)
, j = 1, . . . ,n,

P
(
dj
)=

n∑

i=1

λi jP
(
gi
)

+
n∑

i=1

ηi jP
(
di
)
, j = 1, . . . ,n− 1,

1=
n∑

i=1

P
(
gi
)

+
n∑

i=1

P
(
di
)
.

(3.17)

Rearranging them and writing into a matrix form, we have

AX = B, (3.18)
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where

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ν11− 1 ν21 . . . νn1 μ11 μ21 . . . μn−1,1 μn1

ν12 ν22− 1 . . . νn2 μ12 μ22 . . . μn−1,2 μn2
...

...
...

...
ν1n ν2n . . . νnn− 1 μ1n μ2n . . . μn−1,n μnn
λ11 λ21 . . . λn1 η11− 1 η21 . . . ηn−1,1 ηn1

λ12 λ22 . . . λn2 η12 η22− 1 . . . ηn−1,2 ηn2
...

...
...

...
λ1,n−1 λ2,n−1 . . . λn,n−1 η1,n−1 η2,n−1 . . . ηn−1,n−1− 1 ηn,n−1

1 1 . . . 1 1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.19)

X = (P(g1
)
,P
(
g2
)
, . . . ,P

(
gn
)
,P
(
d1
)
,P
(
d2
)
, . . . ,P

(
dn
))T

, (3.20)

B = (0,0, . . . ,1
)T
. (3.21)

Therefore, we obtain the following.

Theorem 3.4. Under assumptions (i)–(iii), the good part probability P(g) can be calcu-
lated from

P(g)=
n∑

i=1

P
(
gi
)=

n∑

i=1

xi, (3.22)

where xi = P(gi), i= 1, . . . ,n, are the elements in X and can be solved from

X = A−1B, (3.23)

and A, B are defined in (3.19) and (3.21), respectively.

Note that the inverse of matrix A exists due to the fact that an irreducible Markov
chain with finite number of states has a unique stationary distribution [36].

In the case of “equal product types,” that is, n product types are equally composed
(1/n each) and have identical transition probabilities, we have

μ11 = μii, ν11 = νii, λ11 = λii, η11 = ηii, i= 1, . . . ,n,

μ12 = μi j , ν12 = νi j , λ12 = λi j , η12 = ηi j , i, j = 1, . . . ,n, i �= j,
(3.24)

which implies that the transitions from one product type to another are reversible (or
equivalent) in terms of quality. Then we obtain the following.

Corollary 3.5. Under assumptions (i)–(iii), the good part probability P(g) for n equal
product types is described by

P(g)= μ11 + (n− 1)μ12

λ11 +μ11 + (n− 1)
(
λ12 +μ12

) . (3.25)

In addition, P(g) is monotonically increasing and decreasing with respect to μ1i and λ1i,
i= 1,2, respectively.

For the proof, see the appendix.
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In order to avoid messy notations, the following discussions are limited to equal prod-
uct types only.

3.4. Discussions

3.4.1. Single versus multiple product types. Similar to throughput analysis (e.g., [20, 21]),
let

e1i = μ1i

λ1i +μ1i
, i= 1,2, (3.26)

where e12 and e11 denote the “switching and nonswitching quality efficiencies,” respec-
tively. In other words, e1i represents the efficiency to produce a good quality part if prod-
uct type is kept constant (i = 1) or changed (i = 2). By comparing the results with the
results of one product case, the following is derived.

Corollary 3.6. Under assumptions (i)–(iii), the following statements hold for the equal
product-type case:

(a)

P(g)= μ11

λ11 +μ11
if e11 = e12, (3.27)

(b)

P(g) <
μ11

λ11 +μ11
if e11 > e12, (3.28)

(c)

P(g) >
μ11

λ11 +μ11
if e11 < e12. (3.29)

From (3.26), we have λ1i +μ1i = μ1i/e1i, i= 1,2. Then expression (3.25) can be rewrit-
ten into

P(g)= μ11 + (n− 1)μ12

μ11/e11 + (n− 1)
(
μ12/e12

) = e11

[
μ11 + (n− 1)μ12

μ11 + (n− 1)μ12 ·
(
e11/e12

)
]
. (3.30)

The statements follow immediately by replacing e12 with e11 in the denominator.
Corollary 3.6 implies that when e11 = e12, that is, quality efficiency does not change

whether the product types are changed or not, we can obtain P(g) with the same method
as in one product case. In other words, if introducing a new product does not change
the quality failure or repair probabilities and the product mix does not affect the quality
efficiency, then the same quality performance can be achieved, which agrees with our in-
tuition. However, if e11 > e12, that is, switching quality efficiency is decreased compared
to nonswitching, then introducing an additional product will lead to a decrease in system
quality performance. Finally, a flexible system can perform better on different products
in terms of quality only when the switching quality efficiency is improved with the addi-
tional products, that is, e12 > e11.
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Since in many cases much more effort may be needed to keep e12 the same as or larger
than e11, this result indicates that frequently changing product types may lead to quality
degradation in a multiple-product environment. Therefore, using batch operation to re-
duce product transitions may be an alternative solution to keep both product flexibility
and high quality performance

3.4.2. Less versus more product types. Now we consider how the number of product types
may affect quality. This is based on the investigation of the monotonic property of P(g)
as a function of number of product types n.

Corollary 3.7. Under assumptions (i)–(iii), the good part probability P(g) is monoton-
ically decreasing or increasing with respect to the number of product types n if e11 > e12 or
e11 < e12, respectively.

For the proof, see the appendix.
Corollary 3.7 suggests that when the switching quality efficiency is not as good as non-

switching efficiency, introducing more products may be harmful for overall quality per-
formance of the system. Therefore, to ensure maintaining desired quality performance,
every effort has to be made to achieve e12 ≥ e11.

3.4.3. Random versus sequenced part flows. To further investigate this phenomenon, con-
sider the following two systems, A and B, both producing n equal part types. System A
adopts a sequencing policy with part types 1 to n being mixed randomly with uniform
distribution (as described in assumption (iii)), while system B keeps strict alternative
sequences 1,2, . . . ,n,1,2, . . . ,n,1,2, . . . , that is, product type changes at the end of every
cycle. Clearly, from (3.25),

P(g)A = μ11 + (n− 1)μ12

λ11 +μ11 + (n− 1)
(
λ12 +μ12

) , (3.31)

where P(g)A defines the good job probability of system A. For system B, product type is
changed at every cycle, therefore,

P(g)B = μ12

λ12 +μ12
. (3.32)

Comparing P(g)A and P(g)B, we have

P(g)A−P(g)B = μ11 + (n− 1)μ12

λ11 +μ11 + (n− 1)
(
λ12 +μ12

) − μ12

λ12 +μ12

= λ12μ11− λ11μ12[
λ11 +μ11 + (n− 1)

(
λ12 +μ12

)](
λ12 +μ12

)

= μ11μ12
(
e11− e12

)

e11e12
[
λ11 +μ11 + (n− 1)

(
λ12 +μ12

)](
λ12 +μ12

) .

(3.33)

Therefore, if e11 > e12, we obtain P(g)A > P(g)B. It implies that when quality efficiency
is decreased for changing products, using randomly mixed sequence has better quality
performance than using strictly alternating sequence policy, since the former one has less
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Product type 1

Product type n

... ���

m1 m2 mM�1 mM

Figure 3.3. M-machine line.

transitions among products. Again, it indicates that using batch processing may lead to a
better quality performance than the sequencing policy. A thorough investigation of batch
production is important and is a topic in future work.

3.5. Extensions to multistage flexible systems. Now we consider a flexible system con-
sisting of multistages as shown in Figure 3.3, where the circles represent each stage. In-
troduce the following additional assumption.

(iv) Each stage of flexible system, mi, only performs its own function, and therefore
each stage is independent. In other words, downstream stages could not correct
the defects introduced by upstream stages.

Let P(g(i)), i = 1, . . . ,M, be the probability of producing a good part at stage i, then
the overall probability to produce a good part for an M-stage flexible line would be

P(G)=
M∏

i=1

P
(
g(i)

)
. (3.34)

Introduce λi,k j and μi,k j , i = 1, . . . ,M, k, j = 1, . . . ,n, to be the transition probabilities
from state gk to state dj , or from dk to gj for machine i. Then for the case of n equal part
types, we obtain

P(G)=
M∏

i=1

μi,11 + (n− 1)μi,12

λi,11 +μi,11 + (n− 1)
(
λi,12 +μi,12

) . (3.35)

In the case where all stages are identical, the first subscripts in λi,k j and μi,k j can be omit-
ted, we have

P(G)= [P(g(i)
)]M =

[
μ11 + (n− 1)μ12

λ11 +μ11 + (n− 1)
(
λ12 +μ12

)
]M

. (3.36)

Similar insights can be obtained when we compare the results with the single-stage
multiple-product-type case (where quality performance is [μ11/(λ11 +μ11)]M). In other
words, when switching quality efficiency is kept the same as nonswitching in mixed prod-
ucts environment, that is, e11 = e12, the same quality performance as single product case
can be achieved. However, if quality efficiency is decreased for changing products, e11 >
e12, then additional product type can decrease the system quality performance. Only
when e12 > e11, multiple-product system has better quality performance. Therefore, to
ensure a flexible manufacturing system having high quality performance, the quality effi-
ciency for changing products must be equivalent to or better than that for single product.
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0 ε Δ

Figure 4.1. Locator discrepancy and tolerance range.

Remark 3.8. Note that in the above multistage model of flexible systems, only quality
performance is addressed and the issues of buffers and inventory are not investigated.
However, even if buffers are considered, since the current formulation does not include
machine breakdown, all parts, no matter good or defective, will flow into and out of the
buffer without interruptions. Moreover, even when productivity (e.g., machine break-
downs) is taken into consideration, a separation principle can be applied, that is, as long
as there are no actions (e.g., scrap, rework, etc.) taking at each stage, we can simply
separate the analysis of quality and productivity (similar to the separation principle
in control theory) by evaluating the good part probability and production volume in-
dependently. Only when we reach the stage where some actions are taken, integrated
analysis is needed. Such integrated study will be a topic of future work.

4. An example in flexible machining system

Consider a drilling operation in a flexible machining system that drills a hole on part
type A and part type B. The system has a flexible fixture. When a job comes in, the fixture
can adapt itself to predesigned locations (referred to as La and Lb for part types A and
B, resp.) in order to hold the part, then the drill will take place. Now assuming incoming
parts are in a random order mixed with types A and B (assumption (iii)), then the fixture
may move to location La when part type A is coming, then to Lb when B is coming, and
may return to La after some time to process A again. Since the fixture is not perfect, the
Las (correspondingly, Lbs) may not be the same as the designed La (correspondingly, Lb).
One way of evaluating it is to measure the distance between the real La (correspondingly,
Lb) and the ideal location. Figure 4.1 shows discrepancy of a locator from its nominal
position, assuming the locator can be anywhere between the “ideal” location 0 and dis-
tance Δa or Δb with uniform distribution for parts A and B, respectively. It is clear that
when the locator (e.g., La) is too far from the designed (ideal) location, the hole will be
drilled on a wrong place, which will cause a quality defect. On the other hand, when the
locator is within the designed tolerance (shown in Figure 4.1 as ε), it will not hurt the
hole drilling.

Now we assume that the flexible fixture is the only factor that causes quality defects.
(It is common that the locating error is much larger than the tooling error.) Then the
probability of a part with good quality is ε/Δa for part type A (correspondingly, ε/Δb



14 Mathematical Problems in Engineering

for part type B), denoted as δa (correspondingly, δb), indicating the probability that the
locator moves to a satisfactory location.

Assuming δa and δb are independent of the locator’s starting location, then the transi-
tion matrix of the states of this problem (making part A and part B) becomes

Ptransition =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ν11 λ11 ν12 λ12

μ11 η11 μ12 η12

ν21 λ21 ν22 λ22

μ21 η21 μ22 η22

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(4.1)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

P(move, good)Pa P(move, bad)Pa P( move, good)Pb P( move, bad)Pb

P(move, good)Pa P(move, bad)Pa P(move, good)Pb P(move, bad)Pb

P(move, good)Pa P(move, bad)Pa P(move, good)Pb P(move, bad)Pb

P(move, good)Pa P(move, bad)Pa P(move, good)Pb P(move, bad)Pb

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(4.2)

where Pa and Pb are the probabilities that the next job is part A or B, respectively, and
Pa + Pb = 1. P(move, good) and P(move, bad) are the probabilities that the locator has
moved and is in a “good” or “bad” location, respectively. Similarly, P(move, good) and
P( move, bad) are the probabilities that the locator has not moved and is in a “good” or
“bad” location, respectively.

This matrix can be simplified. For example, when the locator is in “good” location
producing part A, then it does not move if the next job is still part A, and the transition
probability of making a good part A (correspondingly, bad part A) will be only deter-
mined by Pa (correspondingly, 0). (Note that here we assume that location error is the
only source for defects.) This is because when the locator is in a good position and the
next job belongs to the same type, the probability of making another good job is 1. Simi-
larly, if it is in the “good” location producing part A, but the next job is part B, the locator
will move. The probability of moving to a “good” position (making a good part B) is
δb. Therefore the transition probability from good A location to good B location is δbPb.
Repeat this process, and finally we can obtain a simplified transition matrix:

Ptransition =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ν11 λ11 ν12 λ12

μ11 η11 μ12 η12

ν21 λ21 ν22 λ22

μ21 η21 μ22 η22

⎞

⎟
⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Pa 0 δbPb
(
1− δb

)
Pb

0 Pa δbPb
(
1− δb

)
Pb

δaPa
(
1− δa

)
Pa Pb 0

δaPa
(
1− δa

)
Pa 0 Pb

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (4.3)

With the above relationship, we obtain values for variables λi j , μi j , νi j and ηi j , i, j = 1,2.
Then, using Theorem 3.3, the good part probability is obtained as

P(g)= F

F + G
, (4.4)
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where

F =−Pa
(
1− δa

)
δbPbδaPa +

(
1−Pb + δbPb

)(
1−Pa

)
δaPa +

(
1−Pa + δaPa

)(
1− δa

)
PaδbPb

= Pa
[− (1− δa

)
δaδbPaPb +

(
1−Pb + δbPb

)(
1−Pa

)
δa +

(
1−Pa + δaPa

)(
1− δa

)
δbPb

]

= Pa
(
1−Pa

)[(
1− δa

)
δbPb + δa

(
1−Pb + δbPb

)]

= PaPb
(
δaPa + δbPb

)
,

G= δaPaδbPb(1− δ)Pa− δbPb
(
1−Pa

)(
1− δa

)
Pa

+
[(

1−Pa
)(

1−Pb
)− δbPbδaPa

][
1−Pa +

(
1− δa

)
Pa
]

= δaδbP
2
aPb
(
1− δa

)− δbPaP
2
b

(
1− δa

)
+PaPb

(
1− δaδb

)[
Pb +

(
1− δa

)
Pa
]

= PaPb
[
Paδaδb

(
1− δa

)−Pbδb
(
1− δa

)
+
(
1− δaδb

)(
Pb +

(
1− δa

)
Pa
)]

= PaPb
[(

1− δa
)(
Paδa−Pb

)
δb +

(
1− δaδb

)(
1−Paδa

)]
.

(4.5)

It follows that

F + G= PaPb
[(
δaPa + δbPb

)
+
(
1− δa

)(
Paδa−Pb

)
δb +

(
1− δaδb

)(
1−Paδa

)]

= PaPb
(
1− δaδb +Paδaδb +Pbδaδb

)= PaPb.
(4.6)

Therefore, we obtain

P(g)= Pa
(
1−Pa

)[
δa
(
1−Pb

)
+ δbPb

]

PaPb
= δaPa + δbPb. (4.7)

Furthermore, it is reasonable to assume that Δa and Δb would be the same in many
cases. Therefore δa = δb = δ, and we obtain P(g)= δ, that is, the probability of making a
good part depends only on the flexible locators, which is consistent with our intuition.

Applying the same concept to three-product case, we assume that three products A, B,
and C are manufactured with the flexible locator. For simplicity, here we only consider
the case of δa = δb = δc = δ. We compose the matrix A in (3.19) and simplify it as follows:

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ν11− 1 ν21 ν31 μ11 μ21 μ31

ν12 ν22− 1 ν32 μ12 μ22 μ32

ν13 ν23 ν33− 1 μ13 μ23 μ33

λ11 λ21 λ31 η11− 1 η21 η31

λ12 λ22 λ32 η12 η22− 1 η32

1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Pa− 1 δPa δPa 0 δPa δPa
δPb Pb− 1 δPb δPb 0 δPb
δPc δPc Pc− 1 δPc δPc 0
0 (1− δ)Pa (1− δ)Pa Pa− 1 (1− δ)Pa (1− δ)Pa

(1− δ)Pb 0 (1− δ)Pb (1− δ)Pb Pb− 1 (1− δ)Pb
1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.8)
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After some simplification and rearrangement (see the appendix for details), we can
finally reach

P
(
ga
)= δPa, P

(
gb
)= δPc, P

(
gc
)= δPc, (4.9)

where ga, gb, and gc denote that the system is in good states producing parts A, B, and C,
respectively. Therefore, the probability of making a good part is

P(g)= P
(
ga
)

+P
(
gb
)

+P
(
gc
)= δ

(
Pa +Pb +Pc

)= δ. (4.10)

This result again is consistent with the one of two-product case and matches our expec-
tation. It also verifies the analysis presented in Section 3.

For more than three-product case, assume there are n products, and all δi = δ, i =
1, . . . ,n. By induction, we can show that P(g)= δ holds again. The idea of the proof is as
follows. We first show that the base case (n = 2) is true (4.7). Next, we assume that the
case n = k− 1 is true. Then for case n = k, we can group the first k− 1 products into an
aggregated product since they result in good part probability equal to δ. Now we only
have two products, the aggregated product and product k. Using the results for n= 2, we
prove that the case n= k is also true, which will lead to the good part probability equal to
δ for n products as well.

It is not surprising that the probability of making a good part is not dependent on the
number of products nor the penetration of each product, since we assume that the quality
is only determined by the locators with the same δ. This implies that once we can control
the flexible fixture (locator), introducing more products will not hurt product quality.
However, when δ’s are not identical for different products, then the system quality per-
formance will be dependent on the number of products, their respective δ, and different
ratios of product mix.

5. Conclusions

Manufacturing system design has a significant impact on product quality as well as other
factors. The quality performance of a flexible manufacturing system is less studied and
often assumed unchanged compared to dedicated production lines. In this paper, we de-
velop a quantitative model to evaluate the quality performance of a flexible manufactur-
ing system using a discrete Markov chain. We derive closed formulas to calculate good
part probability and show that the quality of a flexible system depends on the quality
efficiency during transitions of different products. An example in a flexible machining
system is presented to illustrate the applicability of the method and verify the results ob-
tained in the paper.

The work presented in this paper provides a possible approach for further investi-
gation of the coupling between flexibility and product quality. The future work can be
directed to, first, extend the model to multiple-stage flexible lines with correlated qual-
ity propagations (e.g., variation stack-up), where the quality performance of a flexible
system is also dependent on the condition of incoming parts; second, extend the model
to investigate flexible lines with batch or sequenced production to evaluate the impacts
of different scheduling and control policies on quality; third, integrate with online and
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offline inspections, quality repair, and maintenance scheduling, and so forth; fourth, in-
tegrate with multiple-product throughput analysis models with quality control devices
and study the tradeoffs among productivity, quality, and order delivery; and finally, apply
the method to model and analyze different flexible manufacturing systems. The results
of such study will provide production engineers and managers a better understanding of
the quality implications and to summarize some general guidelines for operation man-
agement in flexible manufacturing systems.

Appendices

A. Proofs

Due to page limitation, we provide here only the sketches of the proofs. The complete
proof can be found in [37].

Proof of Theorem 3.3. From transition equation (3.10), we have

P
(
d2
)= 1

μ21

[(
1− ν11

)
P
(
g1
)− ν21P

(
g2
)−μ11P

(
d1
)]
. (A.1)

Substituting (A.1) into (3.11), we have

(
1− ν22

)
μ21P

(
g2
)= ν12μ21P

(
g1
)

+μ12μ21P
(
d1
)

+μ22
(
1− ν11

)
P
(
g1
)

−μ22ν21P
(
g2
)−μ22μ11P

(
d1
)
,

(A.2)

which leads to

P
(
d1
)=

[(
1− ν22

)
μ21 +μ22ν21

]
P
(
g2
)− [(1− ν11

)
μ22 +μ21ν12

]
P
(
g1
)

μ12μ21−μ11μ22
. (A.3)

Substituting into (A.1), we obtain

P
(
d2
)=

[
μ11ν12 +μ12

(
1− ν11

)]
P
(
g1
)− [μ11

(
1− ν22

)
+μ12ν21

]
P
(
g2
)

μ12μ21−μ11μ22
. (A.4)

Rewriting (3.12), we have

(
1−η11

)
P
(
d1
)= λ11P

(
g1
)

+ λ21P
(
g2
)

+η21P
(
d2
)
. (A.5)

Again substituting (A.3) and (A.4), we obtain

(
1−η11

)
[(

1− ν22
)
μ21 +μ22ν21

]
P
(
g2
)− [(1− ν11

)
μ22 +μ21ν12

)
P
(
g1
)

μ12μ21−μ11μ22

= λ11P
(
g1
)

+ λ21P
(
g2
)

+η21

[
μ11ν12 +μ12

(
1− ν11

)]
P
(
g1
)− [μ11

(
1− ν22

)
+μ12ν21]P

(
g2
)]

μ12μ21−μ11μ22
.

(A.6)
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It follows that
[(

1−η11
)(

1− ν22
)
μ21 +

(
1−η11

)
μ22ν21− λ21

(
μ12μ21−μ11μ22

)

+η21μ11
(
1− ν22

)
+η21μ12ν21

]
P
(
g2
)

= [λ11
(
μ12μ21−μ11μ22

)
+η21μ11ν12 +η21μ12

(
1− ν11

)

+
(
1−η11

)(
1− ν11

)
μ22 +

(
1−η11

)
μ21ν12

]
P
(
g1
)
.

(A.7)

Therefore,

P
(
g2
)

= λ11
(
μ12μ21−μ11μ22

)
+η21

[
μ11ν12 +μ12

(
1−ν11

)]
+
(
1−η11

)[(
1−ν11

)
μ22 +μ21ν12

]

(
1−η11

)[(
1−ν22

)
μ21 +μ22ν21

]− λ21
(
μ12μ21−μ11μ22

)
+η21

[
μ11
(
1−ν22

)
+μ12ν21

]P
(
g1
)
.

(A.8)

From total probabilities equal to 1, that is,

P
(
g1
)

+P
(
g2
)

+P
(
d1
)

+P
(
d2
)= 1, (A.9)

we obtain

P
(
g1
)

+P
(
g2
)

+

[(
1− ν22

)
μ21 +μ22ν21

]
P
(
g2
)− [(1− ν11

)
μ22 +μ21ν12

]
P
(
g1
)

μ12μ21−μ11μ22

+

[
μ11ν12 +μ12

(
1− ν11

)]
P
(
g1
)− [μ11

(
1− ν22

)
+μ12ν21

]
P
(
g2
)

μ12μ21−μ11μ22
= 1,

(A.10)

which implies that

μ12μ21−μ11μ22 = P
(
g1
)[
μ12
(
1− ν11 +μ21

)−μ22
(
1− ν11 +μ11

)
+
(
μ11−μ21

)
ν12
]

+P
(
g2
)[
μ21
(
1− ν22 +μ12

)−μ11
(
1− ν22 +μ22

)
+ ν21

(
μ22−μ12

)]
.

(A.11)

For simplification purpose, introduce the following notations:

A= μ12μ21−μ11μ22,

B= (1− ν11
)(
μ12−μ22

)
+
(
μ11−μ21

)
ν12 + A,

C= (1−η11
)[(

1− ν22
)
μ21 +μ22ν21

]− λ21A +η21
[
μ11
(
1− ν22

)
+μ12ν21

]
,

D= λ11A +η21
[
μ11ν12 +μ12

(
1− ν11

)]
+
(
1−η11

)[(
1− ν11

)
μ22 +μ21ν12

]
,

E= (1− ν22
)(
μ21−μ11

)
+
(
μ22−μ12

)
ν21 + A.

(A.12)

Replacing into (A.11), we obtain

A=BP
(
g1
)

+ EP
(
g2
)
. (A.13)

From (A.8), we have

P
(
g2
)= D

C
P
(
g1
)
, (A.14)
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then

A=BP
(
g1
)

+
D

C
EP
(
g1
)
. (A.15)

It follows that

P
(
g1
)= A

B +
(
D/C

)
E
= AC

BC + DE
,

P
(
g2
)= D

C
P
(
g1
)= AD

BC + DE
.

(A.16)

Therefore,

P(g)= P
(
g1
)

+P
(
g2
)= A(C + D)

BC + DE
. (A.17)

To continue simplifying the equations, we obtain

C + D= (1− ν22 + ν12
)[(

1−η11
)
μ21 +η21μ11

]
+
(
λ11− λ21

)
A

+
(
1− ν11 + ν21

)[(
1−η11

)
μ22 +η21μ12

]
,

BC + DE=A(C + D)

+ A
[(
μ21−μ11

)[(
1− ν22

)
λ11 + ν12λ21

]− (μ12−μ22
)

× [(1− ν11
)
λ21 + λ11ν21

]
+
[(

1− ν11
)(

1− ν22
)− ν12ν21

](
1−η11 +η21

)]
.

(A.18)

Introduce notations F and G:

F = C + D,

G= (μ21−μ11
)[(

1− ν22
)
λ11 + ν12λ21

]− (μ12−μ22
)[(

1− ν11
)
λ21 + λ11ν21

]

+
[(

1− ν11
)(

1− ν22
)− ν12ν21

](
1−η11 +η21

)
.

(A.19)

Then

BC + DE=A(C + D) + AG. (A.20)

Finally, we obtain

P(g)= AF

FA + GA
= F

F + G
. (A.21)

�
Proof of Corollary 3.5. First we aggregate all the good states gi, i= 1, . . . ,n, and all the defec-
tive states di, i= 1, . . . ,n, into aggregated good state gagg and defective state dagg, respectively.
Following the logic in Section 3.1, we have

P
(
gagg
)= P

(
gagg
)(

1− λagg
)

+P
(
dagg

)
μagg, (A.22)

where λagg and μagg are the aggregated quality failure and repair probabilities. (The state
transition diagram is equivalent to that of Figure 3.1 with subscripts “agg” in all notations.)
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Therefore,

P
(
gagg
)= μagg

λagg +μagg
. (A.23)

In addition,

λagg =
n∑

i=1

λiiP
(
gi
)
P
(
di
)

+
n∑

i=1

n∑

j=1, j �=i
λi jP

(
gi
)
P
(
dj
)

= nλ11P
(
g1
)
P
(
d1
)

+n(n− 1)λ12P
(
g1
)
P
(
d2
)
,

μagg =
n∑

i=1

μiiP
(
di
)
P
(
gi
)

+
n∑

i=1

n∑

j=1, j �=i
μi jP

(
di
)
P
(
gj
)

= nμ11P
(
d1
)
P
(
g1
)

+n(n− 1)μ12P
(
d1
)
P
(
g2
)
.

(A.24)

Since all products are equally distributed, we have

P
(
d2
)= P

(
d1
)
, P

(
g2
)= P

(
g1
)
. (A.25)

Therefore,

λagg = nλ11P
(
g1
)
P
(
d1
)

+n(n− 1)λ12P
(
g1
)
P
(
d1
)
,

μagg = nμ11P
(
d1
)
P
(
g1
)

+n(n− 1)μ12P
(
d1
)
P
(
g1
)
.

(A.26)

Substituting into (A.23), we obtain

P
(
gagg
)= nP

(
d1
)
P
(
g1
)[
μ11 +n(n− 1)μ12

]

nP
(
g1
)
P
(
d1
)[
λ11 + (n− 1)λ12

]
+nP

(
d1
)
P
(
g1
)[
μ11 + (n− 1)μ12

]

= μ11 + (n− 1)μ12

λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12
.

(A.27)

Moreover, from

∂P(g)
∂μ11

= 1
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

− μ11 + (n− 1)μ12
[
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

]2

= λ11 + (n− 1)λ12
[
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

]2 > 0,

∂P(g)
∂μ12

= n− 1
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

−
[
μ11 + (n− 1)μ12

]
(n− 1)

[
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

]2

=
[
λ11 + (n− 1)λ12

]
(n− 1)

[
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

]2 > 0,

∂P(g)
∂λ11

=− μ11 + (n− 1)μ12
[
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

]2 < 0,

∂P(g)
∂λ12

=−
[
μ11 + (n− 1)μ12

]
(n− 1)

[
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

]2 < 0,

(A.28)
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we obtain the monotonicities of P(g) with respect to μ1i and λ1i, i= 1,2. �
Proof of Corollary 3.7. From

∂P(g)
∂n

= μ12

λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12
−

[
μ11 + (n− 1)μ12

](
λ12 +μ12

)

[
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

]2

=− μ11μ12
(
e11− e12

)

[
λ11 + (n− 1)λ12 +μ11 + (n− 1)μ12

]2 ,

(A.29)

we obtain

∂P(g)
∂n

< 0 if e11 > e12,
∂P(g)
∂n

> 0 if e11 < e12. (A.30)

Therefore, P(g) is monotonically decreasing or increasing with respect to n if e11 > e12 or
e11 < e12, respectively. �

B. Solution procedure for three-product case in Section 4

Using matrix A in (4.8), we further simplify (3.18) as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Pa− 1− δPa
δPa

0 0 −1 0 0

0
Pb− 1− δPb

δPb
0 0 −1 0

0 0
Pc− 1− δPc

δPc
0 0 −1

−1 0 0
δPa− 1

(1− δ)Pa
0 0

0 −1 0 0
δPb− 1

(1− δ)Pb
0

1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P
(
ga
)

P
(
gb
)

P
(
gc
)

P
(
da
)

P
(
db
)

P
(
dc
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
−1
−1
−1
−1

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(B.1)

Therefore, we obtain

Pa− 1− δPa
δPa

P
(
ga
)−P

(
da
)=−1,

Pb− 1− δPb
δPb

P
(
gb
)−P

(
db
)=−1,

Pc− 1− δPc
δPc

P
(
gc
)−P

(
dc
)=−1,

−P(ga
)

+
δPa− 1

(1− δ)Pa
P
(
da
)=−1,

−P(gb
)

+
δPb− 1

(1− δ)Pb
P
(
db
)=−1.

(B.2)

Rearranging the first equation, we have

(
Pa− 1− δPa

)
P
(
ga
)− δPaP

(
da
)=−δPa. (B.3)
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Using P(ga) +P(da)= Pa, it follows that

(
Pa− 1

)
P
(
ga
)− δP2

a =−δPa, (B.4)

which leads to

P
(
ga
)= δP2

a − δPa
Pa− 1

= δPa. (B.5)

Similarly, we obtain

P
(
gb
)= δPb, P

(
gc
)= δPc. (B.6)

Then the probability of making a good part is

P(g)= P
(
ga
)

+P
(
gb
)

+P
(
gc
)= δ

(
Pa +Pb +Pc

)= δ. (B.7)
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