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We propose a one-layer neural network for solving a class of constrained optimization problems, which is brought forward from
the MDF continuous hot-pressing process. The objective function of the optimization problem is the sum of a nonsmooth convex
function and a smooth nonconvex pseudoconvex function, and the feasible set consists of two parts, one is a closed convex subset
of 𝑅𝑛, and the other is defined by a class of smooth convex functions. By the theories of smoothing techniques, projection, penalty
function, and regularization term, the proposed network is modeled by a differential equation, which can be implemented easily.
Without any other condition, we prove the global existence of the solutions of the proposed neural network with any initial point in
the closed convex subset.We show that any accumulation point of the solutions of the proposed neural network is not only a feasible
point, but also an optimal solution of the considered optimization problem though the objective function is not convex. Numerical
experiments on the MDF hot-pressing process including the model building and parameter optimization are tested based on the
real data set, which indicate the good performance of the proposed neural network in applications.

1. Introduction

Medium density fibreboard (MDF) finds many applications
in wood industries because of its favorable properties such
as surface characteristics, dimensional stability, and excel-
lent machinability [1, 2]. In the MDF hot-pressing process
many physical processes are involved and the complexity of
this operation arises from the fact that they are coupled.
Hot-pressing process is one of the key procedures in the
production of MDF, which influences the utilization ratio
of energy and resource. With the decreased resource of
timber and the increased demand of MDF, it is of great
important to analyze the experimental data effectively and
reasonably, find the main factors among the many indexes
of MDF, and establish the relation models on the properties
of slab, the parameters in the hot-pressing process, and the
main indexes of MDF. These relation models not only can
help the staff give reasonable prediction and a reliability
assessment to the hot-pressing process according to the actual
process parameters, but also provide a theoretical basis for
the setting and adjusting of the main factors in hot-pressing

process according to the actual demand of MDF properties.
So optimization models and methods have been important
tools for the optimization, control, and scheduling of the hot-
pressing of plates.

Real-time online solutions of optimization problems are
desired in many engineering and scientific applications. One
possible and very promising approach to solve the real-time
optimization problems is to apply artificial neural networks
[3–5]. With the resemblance brains, neural networks can
be implemented online by hardware and have become an
important technical toll for solving optimization problems,
for example, [3, 4, 6–9]. Based on the gradient method, the
Hopfield neural networks proposed in [4, 5] are the two
classical recurrent neural networks for linear and nonlin-
ear programming, whereafter, in addition to the gradient
method, many types of neural networks are designed, such
as the Lagrangian neural networks [10], the projection-
type neural networks [11, 12], the dual network [13], and
the stochastic neural network [14]. Projection method is
an effective and simple method for solving the constraints.
However, it is impossible to solve the general constraints by
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projection method. Then, Lagrangian and penalty methods
are introduced into networks. Based on the Lagrangian func-
tionmethod, Lagrangian networks were proposed for solving
the optimization problems [8, 10] with general constraints.
But the Lagrangian network increases the dimension of the
networks along with the number of the constraints. In recent
years, recurrent neural networks based on penalty method
were widely investigated for solving optimization problems.
The neural networks for smooth optimization problems can
not solve nonsmooth optimization problems, because the
gradients of the objective and constrained functions are
required in such neural networks. The generalized nonlinear
programming circuit (G-NPC) in [15] can be considered as
a natural extension of nonlinear programming circuit (NPC)
for solving nonsmooth convex optimization problems with
inequality constraints. But the nonempty interior of feasible
region and large enough penalty parameters are needed for
the network in [15]. In order to overcome the nonempty
assumption of the interior of feasible region, Bian and Xue
[6] proposed a recurrent neural network for nonsmooth
convex optimization based on penalty function method.
The efficiency of the neural networks for solving convex
optimization problems relies on the convexity of functions.
A neural network for nonconvex quadratic optimization is
presented in [16]. Some neural networks modeled by differ-
ential inclusion were also proposed for some nonsmooth and
nonconvex optimization problems [6, 17]. To overcome the
differential inclusion, smoothing techniques are introduced
into the neural networks. The main feature of smoothing
method is to approximate the nonsmooth functions by a class
of smooth functions. Thus, the neural network constructed
by the smoothing techniques is modeled by a differential
equation, which can be implemented easily in circuits and
mathematical software [18].

In this paper, we propose a neural network model for
solving the optimization problem brought forward from the
MDF continuous hot-pressing automatic control system. In
Section 2, some notations and necessary preliminary results
are listed. In Section 3, based on the SVM theory with
the existing linear and nonlinear kernel functions, we give
an optimization problem, which includes the problems for
building the models of MDF continuous hot-pressing system
and optimizing the MDF performance indexes as special
cases. In order to build up the relation models on the
properties of the slab, technical parameters in hot-pressing
process, and the performance indexes of MDF, when the ker-
nel function is positive definite or semipositive definite, the
corresponding optimization problem is a constrained convex
problem; otherwise it is a nonconvex problem.The optimiza-
tion problem for optimizing the performance parameters
is a nonconvex constrained optimization problem, but its
objective function is pseudoconvex due to the appropriate
choice of kernel functions. In Section 4, we propose a neural
network based on the penalty function method, projection
method, and smoothing techniques. The proposed network
is modeled by a nonautomatic differential equation. By
Lyapunovmethod, we prove that the solution of the proposed
network is global existent and convergent to the feasible set
of the considered optimization problems. Moreover, due to

the pseudoconvexity of the objective function and the con-
vexity of the constraint, the proposed network also converges
to the optimal solution set of the optimization problem. In
Section 5, based on the existing data set, we use the proposed
network into the model building and parameter optimizing
problems of hot-pressing system, which validates the good
performance of the obtained results in this paper.

Notations. 𝑅
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1/2. For a closed convex subset Γ ⊆ 𝑅

𝑛,
dist(𝑥, Γ) is the distance from 𝑥 to Γ defined by dist(𝑥, Γ) =
min

𝑦∈Γ
‖𝑥 − 𝑦‖.

2. Preliminaries

In this section, we state some definitions and properties
needed in this paper. We refer the readers to [19–21].

2.1. Support Vector Regression. Kernels were regarded as a
function with the formulation of inner product and have
been a powerful tool in machine learning for their superior
performance over a wide range of learning problems, such
as isolated handwritten digit recognition, text categorization,
and face detection [21, 22].

LetX be a nonempty set and 𝐾 : X ×X → 𝑅 be a real-
valued and symmetric function. With the kernel matrix K =

(𝑘(𝑥
𝑖
, 𝑥

𝑗
))
𝑛

𝑖,𝑗=1
, 𝐾 is said to be a positive semidefinite kernel,

ifK is positive semidefinite for any 𝑛 ∈ N and 𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
∈

X.We call𝐾 an indefinite kernel, if there exist𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
∈

X and V, 𝑤 ∈ 𝑅𝑛 such that V𝑇KV < 0 and 𝑤𝑇K𝑤 > 0.
In what follows, we list some widely used kernels.

(i) Gaussian radial basis function kernel: 𝐾(𝑥, 𝑦) =

exp(−‖𝑥 − 𝑦‖2/2𝜎2).

(ii) Polynomial kernel: 𝐾(𝑥, 𝑦) = (⟨𝑥, 𝑦⟩ + 𝑐)
𝑝, 𝑐 ≥ 0,

𝑝 ≥ 1.

(iii) Sigmoid kernel: 𝐾(𝑥, 𝑦) = tanh(𝜅⟨𝑥, 𝑦⟩ + V), 𝜅 > 0,
V < 0.

2.2. Smoothing Approximation. Smoothing approximation is
an effective method for solving nonsmooth optimization
problems and has been widely used in the past decades. The
main feature of smoothing method is to approximate the
nonsmooth functions by a class of parameterized smooth
functions. In this paper, we adopt the smoothing function
defined as follows.

Definition 1 (see [23]). Let 𝑔 : 𝑅
𝑛

→ 𝑅 be a continuous
function. One calls �̃� : 𝑅𝑛 ×𝑅

+
→ 𝑅 a smoothing function of

𝑔, if �̃�(⋅, 𝜇) is continuously differentiable for any fixed 𝜇 > 0
and lim

𝑧→𝑥,𝜇↓0
�̃�(𝑧, 𝜇) = 𝑔(𝑥) holds for any 𝑥 ∈ 𝑅𝑛.
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Chen and Mangasarian constructed a class of smooth
approximations of the function (𝑠)

+
fl max{0, 𝑠} by convo-

lution [20, 24] as follows. Let 𝜌 : 𝑅 → 𝑅
+
be a piecewise

continuous density function satisfying

𝜌 (𝑡) = 𝜌 (−𝑡) ,

𝜅 fl ∫

∞

−∞

|𝑡| 𝜌 (𝑡) 𝑑𝑡 < ∞.

(1)

Then

𝜙 (𝑡, 𝜇) fl ∫

∞

−∞

(𝑠 − 𝜇𝑡)
+
𝜌 (𝑡) 𝑑𝑡 (2)

from 𝑅 × 𝑅
+
to 𝑅

+
is well defined.

By different density functions, many popular smoothing
functions of (𝑠)

+
can be derived, such as

𝜙
1
(𝑠, 𝜇) = 𝑠 + 𝜇 ln (1 + 𝑒−𝑠/𝜇) ,

𝜙
2
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1

2
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𝜙
3
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{{{
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{
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(𝑠 + 𝜇)
2

4𝜇
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𝜙
4
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{{

{{
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2
𝑒
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𝜇

2
𝑒
−𝑠/𝜇 if 𝑠 ≤ 0,

(3)

where 𝜙
1
is the neural networks smoothing function, 𝜙

2
is

called the CHKS (Chen-Harker-Kanzow-Smale) smoothing
function,𝜙

3
is called the uniform smoothing function, and𝜙

4

is called the Picard smoothing function. The four functions
belong to the class of the Chen-Mangasarian smoothing
functions.

Many nonsmooth functions can be reformulated by using
the plus function. We list some of them as follows:

|𝑠| = (𝑠)
+
+ (−𝑠)

+
,

max (𝑠, 𝑡) = 𝑠 + (𝑡 − 𝑠)
+

min (𝑠, 𝑡) = 𝑠 − (𝑠 − 𝑡)
+
,

mid (𝑠, ℓ, 𝑢) = min (max (ℓ, 𝑠) , 𝑢) , for given ℓ, 𝑢.

(4)

So we can define a smoothing function for the above
nonsmooth functions by a smoothing function of (𝑠)

+
.

From Theorem 9.61 and Corollary 8.47(b) in [20], when
𝑔 : 𝑅

𝑛

→ 𝑅 is locally Lipschitz continuous at 𝑥, the
subdifferential associated with a smoothing function

𝐺
�̃�
(𝑥) = con {V | ∇

𝑥
�̃� (𝑥

𝑘

, 𝜇
𝑘
) → V, for 𝑥𝑘 → 𝑥, 𝜇

𝑘

↓ 0} ,

(5)

is nonempty and bounded, and 𝜕𝑔(𝑥) ⊆ 𝐺
�̃�
(𝑥), where “con”

denotes the convex hull. In [20, 23], it is shown that many
smoothing functions satisfy the gradient consistency

𝜕𝑔 (𝑥) = 𝐺
�̃�
(𝑥) , (6)

which is an important property of the smoothing methods
and guarantees the convergence of smoothing methods with
adaptive updating schemes of smoothing parameters to a
stationary point of the original problem.

2.3. Pseudoconvex Function. Pseudoconvex function is a class
of functions, which may be nonsmooth or nonconvex, but
brings us the opportunity to find the optimal solutions.

Definition 2 (see [25]). Let X be a nonempty convex subset
of 𝑅𝑛. A function 𝜙 is said to be pseudoconvex on X if, for
any 𝑥, 𝑦 ∈ X, one has

∃𝜉 (𝑥) ∈ 𝜕𝜙 (𝑥)

s.t. ⟨𝜉 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0 ⇒

𝜙 (𝑦) ≥ 𝜙 (𝑥) .

(7)

Many nonconvex functions in application are pseudocon-
vex, such as the Butterworth filter function, fraction function,
and density function.Of particular interest in this paper is the
fact that the Gaussian function

ℎ (𝑥) = − exp(−
𝑛

∑

𝑖=1

𝑥
2

𝑖

𝜎
2

𝑖

) , (8)

with 𝜎
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, is pseudoconvex on 𝑅𝑛.

2.4. Project Operator. LetX be a closed convex subset of 𝑅𝑛.
Then the projection operator toX at 𝑥 is defined by

𝑃X (𝑥) = argmin
𝑢∈X

‖𝑢 − 𝑥‖
2 (9)

and satisfies the following inequalities:

⟨V − 𝑃X (V) , 𝑃X (V) − 𝑢⟩ ≥ 0, ∀V ∈ 𝑅𝑛, 𝑢 ∈ X;

𝑃X (𝑢) − 𝑃X (V)
 ≤ ‖𝑢 − V‖ , ∀𝑢, V ∈ 𝑅𝑛.

(10)

(i) Suppose Ω = {𝑥 ∈ 𝑅
𝑛: 𝑢 ≤ 𝑥 ≤ V} with 𝑢, V ∈ 𝑅𝑛 ∪ {±∞};
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Ω
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, . . . , 𝑝

𝑛
)
𝑇 can be expressed by
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𝑖
.

(11)

(ii) Suppose Ω = {𝑥: 𝐴𝑥 = 𝑏} with 𝐴 ∈ 𝑅
𝑟×𝑛 of full row rank

and 𝑏 ∈ 𝑅𝑟; then 𝑃
Ω
(𝑥) = 𝑥 − 𝐴

𝑇

(𝐴𝐴
𝑇

)
−1

(𝐴𝑥 − 𝑏).

3. Optimization Problems in MDF Continuous
Hot-Pressing Process

In this section, we will give the optimization model consid-
ered in this paper. First, by the optimization and support
vector machine theories, we show the optimization models
for building up the relationships in MDF continuous hot-
pressing process. Then, another optimization model for
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optimizing the parameters in the MDF continuous hot-
pressing process is obtained. Thus, we express these two
kinds of problems into a uniform formulation, which is the
optimization problem considered in Section 3.

3.1. Optimization Problem for Building up the Models of MDF
ContinuousHot-Pressing Process. DenoteX ⊂ 𝑅

𝑝 andY ⊂ 𝑅

as two sets, where 𝑥𝑖 = (𝑥𝑖
1
, 𝑥

𝑖

2
, . . . , 𝑥

𝑖

𝑝
) ∈ X is the attribute

vector on behalf of the hot-pressing plate properties; 𝑦𝑖 ∈ Y
indicates the values of the qualities of hot-pressing plate. Let
𝑆 = (𝑠

1

, 𝑠
2

, . . . , 𝑠
𝑛

) be the training data set of hot-pressing
process, where 𝑠𝑖 = (𝑥𝑖, 𝑦𝑖) obeys the unknown distribution
and is IID (independent and identically distributed). Based
on the support vector machine theory and the training data
set, we would like to find a nonlinear function 𝑦 = 𝑓(𝑥) such
that it approximates the training data set as much as possible.

With the kernel function 𝐾 and the Huber loss function,
from the theory in [21], the dual optimization problem of the
primal optimization problem of SVM is given as

min
𝛼,𝛽

1

2

𝑛

∑

𝑖,𝑗=1

(𝛽
𝑖
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𝑖
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𝑗
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𝜀

2𝐶
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)
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s.t.
𝑛

∑
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(𝛽
𝑖
− 𝛼

𝑖
) = 0,

0 ≤ 𝛽
𝑖
, 𝛼

𝑖
≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑛.

(12)

Denote 𝛼∗
𝑖
and 𝛽∗

𝑖
as the optimal solutions of (12). Then the

regression function 𝑓 can be expressed by

𝑓 (𝑥) =

𝑛

∑
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(𝛽
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𝑖
− 𝛼

∗

𝑖
)𝐾 (𝑥

𝑖

, 𝑥) + 𝑏, (13)

where 𝑏 can be calculated by one of the following two
methods:

𝑏 = 𝑦
𝑗

−

𝑛

∑
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(𝛽
∗

𝑖
− 𝛼

∗

𝑖
) ⟨𝑥

𝑖

, 𝑥
𝑗

⟩ + 𝜀, 𝛼
∗

𝑗
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𝑗
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𝑖
) ⟨𝑥

𝑖

, 𝑥
𝑗
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𝑗
∈ (0, 𝐶) .

(14)

Denote 𝑥
𝑖
= 𝛽

𝑖
− 𝛼

𝑖
in (12); then (12) can be reformulated

as

min 1

2
𝑥
𝑇

𝑄𝑥 − 𝑦
𝑇

𝑥

s.t. 𝑒
𝑇

𝑥 = 0, − 𝐶𝑒 ≤ 𝑥 ≤ 𝐶𝑒,

(15)

where 𝑥 = (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
)
𝑇, 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)𝑇, 𝑒 = (1, 1,

. . . , 1)
𝑇

∈ 𝑅
𝑛, and 𝑄 = K+(𝜀/2𝐶)𝐼

𝑛
withK = (𝐾(𝑥

𝑖

, 𝑥
𝑗

))
𝑛

𝑖,𝑗=1
.

For the optimal solution 𝑥∗ = (𝑥∗
1
, 𝑥

∗

2
, . . . , 𝑥

∗

𝑛
) of (15), we call

𝑥
𝑖 a support vector if 𝑥∗

𝑖
̸= 0. The optimal solution of (15)

solved by the originalmethods often has almost 100% support
vectors, which increases the complexity of the relationmodels
largely. Thus, we introduce the problem deduced by (15); that
is,

min 1

2
𝑥
𝑇

𝑄𝑥 − 𝑦
𝑇

𝑥 + 𝛾

𝑛

∑

𝑖=1

𝑥𝑖


s.t. 𝑒
𝑇

𝑥 = 0, − 𝐶𝑒 ≤ 𝑥 ≤ 𝐶𝑒

(16)

with 𝛾 > 0. In (43), 𝛾∑𝑛

𝑖=1
|𝑥
𝑖
| is often called the regulation

term, which is used to control the number of its support
vectors.

Define the penalty function

𝑃 (𝑥) =



1

𝑛
𝑒𝑒
𝑇

𝑥


=
√𝑛

𝑛



𝑛

∑

𝑖=1

𝑥
𝑖



, (17)

and then {𝑥: 𝑃(𝑥) ≤ 0} = {𝑥: 𝑒𝑇𝑥 = 0}. From [19, Proposition
2.4.3], 𝑥 is an optimal solution of (43) if and only if it is an
optimal solution of the following problem:

min 1

2
𝑥
𝑇

𝑄𝑥 − 𝑦
𝑇

𝑥 + 𝛾

𝑛

∑

𝑖=1

𝑥𝑖
 + 𝜎


𝑒
𝑇

𝑥


s.t. − 𝐶𝑒 ≤ 𝑥 ≤ 𝐶𝑒,

(18)

where 𝜎 = 𝐶‖𝑄‖ + ‖𝑦‖/√𝑛 + 𝛾 + 1. Thus, we can build up the
relation models of hot-pressing process by solving problem
(18).

3.2. Optimization Problem for Optimizing the Parameters in
MDF Hot-Pressing Process. Based on the relationships built
up in Section 3.1, we focus on themodulus of rupture (MOR),
modulus of elasticity (MOE), and internal bonding strength
(IBS) of hot-pressing plate by optimizing the process param-
eters and slab attributes. Suppose the regression functions of
MOR,MOS, and IBSwith respect to some relative parameters
based on the Gaussian radial basis function kernel are

𝑓
1
(𝑥) fl

𝑛
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𝜌
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𝑖
exp(−
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1
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𝑓
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𝜃
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2
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𝑓
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𝜅
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2𝜎2
) + 𝑏

3
(IBS)

(19)

and based on the linear polynomial kernel are

𝑓
1
(𝑥) fl

𝑛

∑

𝑖=1

𝜌
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

1
(MOR)

𝑓
2
(𝑥) fl

𝑛

∑

𝑖=1

𝜃
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

2
(MOS)

𝑓
3
(𝑥) fl

𝑛

∑

𝑖=1

𝜅
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

3
(IBS) ,

(20)
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where 𝑧
1
, 𝑧

2
, . . . , 𝑧

𝑛
are the variables in the data set for

regression, and 𝑥 = (𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
)
𝑇 indicates the indepen-

dent variable with hot-pressing temperature 𝑥
1
, hot-pressing

pressure 𝑥
2
, hot-pressing time 𝑥

3
, and moisture content 𝑥

4
.

The regression functions in (19) satisfy the following two
properties.

(i) 𝑓
𝑖
is continuously differentiable on 𝑅𝑛, 𝑖 = 1, 2, 3.

(ii) 𝑓
𝑖
and −𝑓

𝑖
are not convex, but −𝑓

𝑖
is pseudoconvex on

𝑅
𝑛, 𝑖 = 1, 2, 3.

And the regression functions in (20) satisfy the following two
properties.

(i) 𝑓
𝑖
is continuously differentiable on 𝑅𝑛, 𝑖 = 1, 2, 3.

(ii) 𝑓
𝑖
and −𝑓

𝑖
are convex on 𝑅𝑛, 𝑖 = 1, 2, 3.

From the physical significance of MOR, MOS, and IBS,
we suppose that the larger the numbers of MOR, MOS, and
IBS, the better the quality of hot-pressing plate. In order to
adopt the different demand on the indexes of the hot-pressing
plate in different applications, we consider the following two
cases in this part.

First, we focus onmaximizing a single performance index
of the hot-pressing plate when the other two performance
indexes are within the certain areas. If we want to optimize
the IBS, the corresponding optimization model for this case
can be expressed by

min − 𝑓
3
(𝑥)

s.t. 0 ≤ 𝑥
1
≤ ]

1
,

0 ≤ 𝑥
2
≤ ]

2
,

0 ≤ 𝑥
3
≤ ]

3
,

0 ≤ 𝑥
4
≤ ]

4
,

− 𝜄
1
≤ 𝑓

1
(𝑥) − 𝑦

∗

1
≤ 𝜀

1
,

− 𝜄
2
≤ 𝑓

2
(𝑥) − 𝑦

∗

2
≤ 𝜀

2
,

(21)

where ]
1
, ]
2
, ]
3
, ]
4
> 0 indicate the upper bounds of hot-

pressing temperature, hot-pressing pressure, hot-pressing
time, andmoisture content, and [𝑦∗

1
−𝜄

1
, 𝑦

∗

1
+𝜀

1
], [𝑦∗

2
−𝜄

2
, 𝑦

∗

2
+

𝜀
2
] are the feasible regions of MOR and MOS, respectively.
In order to let problem (21) be solved effectively, we

let the objective function 𝑓
3
be with the Gaussian radial

basis function, and the regression functions 𝑓
1
and 𝑓

2
in the

constraints are with the linear polynomial kernel. Then, (21)
is

min −

𝑛

∑

𝑖=1

𝜅
∗

𝑖
exp(−

𝑧𝑖 − 𝑥


2

2𝜎2
) − 𝑏

3

s.t. 0 ≤ 𝑥
1
≤ ]

1
,

0 ≤ 𝑥
2
≤ ]

2
,

0 ≤ 𝑥
3
≤ ]

3
,

0 ≤ 𝑥
4
≤ ]

4
,

− 𝜄
1
≤

𝑛

∑

𝑖=1

𝜌
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

1
− 𝑦

∗

1
≤ 𝜀

1
,

− 𝜄
2
≤

𝑛

∑

𝑖=1

𝜃
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

2
− 𝑦

∗

2
≤ 𝜀

2
,

(22)

which is a pseudoconvex optimization problem with convex
constraints.

Second, we would like to optimize the MOR, MOS, and
IBS synthetically. For this demand, we consider the following
optimization model:

min −
𝜆
1

𝑓
∗

1

𝑓
1
(𝑥) −

𝜆
2

𝑓
∗

2

𝑓
2
(𝑥) −

𝜆
3

𝑓
∗

3

𝑓
3
(𝑥)

s.t. 0 ≤ 𝑥
1
≤ ]

1
,

0 ≤ 𝑥
2
≤ ]

2
,

0 ≤ 𝑥
3
≤ ]

3
,

0 ≤ 𝑥
4
≤ ]

4
,

(23)

where 𝜆
1
, 𝜆

2
, 𝜆

3
> 0 indicate the importance of MOR, MOS,

and IBS, ]
1
, ]
2
, ]
3
, ]
4
are with the same meaning as in (21),

and 𝑓∗
1
, 𝑓∗

2
, and 𝑓∗

3
are the expected values of MOR, MOS,

and IBS. In particular, if MOR, MOS, and IBS are with the
same importance in the quality of the hot-pressing plate, we
can let 𝜆

1
= 𝜆

2
= 𝜆

3
= 1/3, and we can let 𝜆

1
= 1/2,

𝜆
2
= 1/3, and 𝜆

3
= 1/6, if the importance of MOR, MOS,

and IBS is strictly monotone decreasing. Similar to the kernel
functions in problem (21), we let𝑓

1
,𝑓

2
, and𝑓

3
in problem (23)

be with the Gaussian radial basis function, which means that
problem (23) is also a pseudoconvex optimization problem
with convex constraints.

3.3. General Model. Based on analysis in Sections 3.1 and
3.2, we consider the following minimization problem in this
paper:

minimize 𝑓 (𝑥) fl Θ (𝑥) + 𝛾

𝑛

∑

𝑖=1

𝑥𝑖
 + 𝜎


𝑒
𝑇

𝑥


subject to 𝑥 ∈ Ω fl {𝑥: 𝑎 ≤ 𝑥 ≤ 𝑏} ,

𝑔
𝑖
(𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚,

(24)
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where 𝛾, 𝜎 ≥ 0, 𝑎, 𝑏 ∈ 𝑅
𝑛 with 𝑎 < 𝑏, Θ : 𝑅

𝑛

→ 𝑅

is continuously differentiable and pseudoconvex on 𝑅𝑛, and
𝑔
𝑖
: 𝑅

𝑛

→ 𝑅 (𝑖 = 1, 2, . . . , 𝑚) is continuously differentiable
and convex on 𝑅𝑛.

On the one hand, when Θ(𝑥) := (1/2)𝑥𝑇𝑄𝑥 − 𝑦𝑇𝑥, 𝑎 fl
−𝐶𝑒, 𝑏 fl 𝐶𝑒, and 𝛾 and 𝜎 are defined as in (18), then problem
(24) without 𝑔

𝑖
reduces to problem (18). On the other hand,

if we let

Θ (𝑥) fl −

𝑛

∑

𝑖=1

𝜅
∗

𝑖
exp(−

𝑧𝑖 − 𝑥


2

2𝜎2
) − 𝑏

3
,

𝑎 fl 0,

𝑏 fl (]
1
, ]
2
, ]
3
, ]
4
)
𝑇

,

(25)

𝑔
1
(𝑥) fl −

𝑛

∑

𝑖=1

𝜌
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ − 𝑏

1
+ 𝑦

∗

1
− 𝜄

1
,

𝑔
2
(𝑥) fl

𝑛

∑

𝑖=1

𝜌
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

1
− 𝑦

∗

1
− 𝜀

1
,

(26)

𝑔
3
(𝑥) fl −

𝑛

∑

𝑖=1

𝜃
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ − 𝑏

2
+ 𝑦

∗

2
− 𝜄

2
,

𝑔
4
(𝑥) fl

𝑛

∑

𝑖=1

𝜃
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

2
− 𝑦

∗

2
− 𝜀

2
,

(27)

then problem (24) reduces to problem (22). Similar reformu-
lation can be done for problem (23) by (24).

Therefore, problem (24) considered in this paper includes
the optimizationmodels for building up the relationships and
optimizing the relative parameters in MDF continuous hot-
pressing process.

Inwhat follows, we denoteF as the feasible region of (24);
that is,

F fl {𝑥 ∈ Ω: 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚} , (28)

andM is the optimal solution set of (24).

4. Main Results

4.1. Proposed Neural Network. In this subsection, we propose
a one-layer recurrent neural network for solving problem
(24), where we combine the penalty function and projection
methods to solve the constraints and use the smoothing
techniques to overcome the nonsmoothness of the objective
function and penalty function.

Define the penalty function

𝑝 (𝑥) =

𝑚

∑

𝑖=1

max {0, 𝑔
𝑖
(𝑥)} . (29)

Then {𝑥 ∈ Ω: 𝑝(𝑥) ≤ 0} = F.
From the smoothing functions in (25) for the plus

function, we define the smoothing function of 𝑝 as

�̃� (𝑥, 𝜇) =

𝑚

∑

𝑖=1

𝜙 (𝑔
𝑖
(𝑥) , 𝜇) , (30)

where

𝜙 (𝑠, 𝜇) =

{{{

{{{

{

max {0, 𝑠} if |𝑠| > 𝜇

(𝑠 + 𝜇)
2

4𝜇
if |𝑠| ≤ 𝜇.

(31)

Form the results in [23], 𝜙(𝑠, 𝜇) owns the following
properties.

Lemma 3 (see [23]). (i) For any 𝑠 ∈ 𝑅, 𝜙(𝑠, ⋅) is continuously
differentiable, and 𝜙(⋅, 𝜇) is also continuously differentiable for
any fixed 𝜇 > 0;

(ii) 0 ≤ ∇
𝜇
𝜙(𝑠, 𝜇) ≤ 1, ∀𝑠 ∈ 𝑅, ∀𝜇 ∈ (0, +∞);

(iii) 0 ≤ 𝜙(𝑠, 𝜇) − |𝑠| ≤ 𝜇/4, ∀𝑠 ∈ 𝑅, ∀𝜇 ∈ (0, +∞);
(iv) 𝜙(⋅, 𝜇) is convex for any fixed 𝜇 > 0, and

{lim
𝑠→𝑡,𝜇↓0

∇
𝑠
𝜙(𝑠, 𝜇)} ⊆ 𝜕max{0, 𝑡}.

Then, �̃� has the following properties.

Lemma 4. �̃� is a smoothing function 𝑝 and satisfies the
following:

(i) �̃�(⋅, 𝜇) is convex for any fixed 𝜇 > 0;
(ii) {lim

𝑧→𝑥,𝜇↓0
∇
𝑧
�̃�(𝑧, 𝜇)} ⊆ 𝜕𝑝(𝑥);

(iii) 0 ≤ ∇
𝜇
�̃�(𝑥, 𝜇) ≤ 𝑚, ∀𝑥 ∈ 𝑅𝑛, 𝜇 ∈ (0, +∞).

Next, by the smoothing function for the absolute value
function | ⋅ |

𝜃 (𝑠, 𝜇) =

{{

{{

{

|𝑠| if |𝑠| ≥ 𝜇

𝑠
2

2𝜇
+
𝜇

2
if |𝑠| < 𝜇,

(32)

we define

�̃� (𝑥, 𝜇) fl Θ (𝑥) + 𝛾

𝑛

∑

𝑖=1

𝜃 (𝑥
𝑖
, 𝜇) + 𝜎𝜃 (𝑒

𝑇

𝑥, 𝜇) . (33)

Since 𝜃(𝑠, 𝜇) = 𝜙(𝑠, 𝜇) + 𝜙(−𝑠, 𝜇), 𝜃(𝑠, 𝜇) owns all
properties in Lemma 8 and the following results hold.

Lemma 5. �̃� is a smoothing function 𝑓 in (24) with the
following properties:

(i) �̃�(⋅, 𝜇) is pseudoconvex for any fixed 𝜇 > 0;

(ii) {lim
𝑧→𝑥,𝜇↓0

∇
𝑥
�̃�(𝑥, 𝜇)} ⊆ 𝜕𝑓(𝑥);

(iii) 0 ≤ ∇
𝜇
�̃�(𝑥, 𝜇) ≤ 𝛾𝑛 + 𝜎, ∀𝑥 ∈ 𝑅𝑛, 𝜇 ∈ (0, +∞).

From the projected gradient method and the viscosity
regularization method, we introduce the following neural
network to solve (24):

�̇� (𝑡) ∈ −𝑥 (𝑡) + 𝑃
Ω
[𝑥 (𝑡) − ∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

− 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))] ,

(34)

where 𝜇(𝑡) = 𝑒−𝑡 and 𝜀(𝑡) = 1/(𝑡 + 1) with 𝜀
0
> 0.
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𝜇∫
−1

−1

x∫
−

∑∑ PΩ
−

−

+
+

𝜀∫
ab

bb
a

a
ab

p̃∇x

xq̃∇

Figure 1: Simple block structure of proposed network (37).

By the definitions for �̃�, (34) can be expressed as

�̇� (𝑡) ∈ −𝑥 (𝑡) + 𝑃
Ω
[𝑥 (𝑡)

−

𝑟

∑

𝑖=1

∇
𝑠
𝜙 (𝑠, 𝜇 (𝑡))

𝑠=𝑔𝑖(𝑥(𝑡))
∇𝑔

𝑖
(𝑥 (𝑡)) − 𝜀 (𝑡)

⋅ (∇Θ (𝑥 (𝑡)) + 𝛾

𝑛

∑

𝑖=1

∇
𝑠
𝜃 (𝑠, 𝜇)

𝑠=𝑥𝑖(𝑡)
𝑒
𝑖

+ 𝜎∇
𝑠
𝜃 (𝑠, 𝜇)

𝑠=𝑒
𝑇
𝑥(𝑡)

𝑒)] ,

(35)

where

∇
𝑠
𝜙 (𝑠, 𝜇) =

{{{{

{{{{

{

1 if 𝑠 > 𝜇
𝑠 + 𝜇

2𝜇
if |𝑠| ≤ 𝜇

0 if 𝑠 < −𝜇,

∇
𝑠
𝜃 (𝑠, 𝜇) =

{{

{{

{

1 if |𝑠| ≥ 𝜇
𝑠

𝜇
if |𝑠| < 𝜇.

(36)

To implement (34) by circuits, we can use the reformu-
lated form of (34) as follows:

�̇� (𝑡) ∈ −𝑥 (𝑡) + 𝑃
Ω
[𝑥 (𝑡) − ∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

− 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))] ,

̇𝜀 (𝑡) = −𝜀
2

(𝑡) ,

�̇� (𝑡) = −𝜇 (𝑡) .

(37)

Equation (34) can be seen as a network with three input and
three output variables that are 𝑥(𝑡), 𝜇(𝑡), and 𝜀(𝑡). A simple
block structure of the proposed network (37) implemented
by circuits is presented in Figure 1.

4.2. Theoretical Analysis. In this subsection, we study some
necessary dynamical and optimality properties of proposed
network (34) for solving (24).

The global existence of the solutions of (34) is a necessary
condition for its usability in optimization. With an initial

point 𝑥
0
∈ Ω, the solution of (34) is global existent.Moreover,

the uniqueness of the solution of (34) with 𝑥
0
∈ Ω is proved

under some conditions. The proposed network (34) can be
implemented in circuits and mathematical software. Then,
the feasibility and optimality of network (34) for optimization
problem (24) are proved theoretically.

We call 𝑥 : [0, 𝑇) with T > 0 a solution of (34) if 𝑥 is
absolutely continuous on [0, 𝑇) and satisfies (34) everywhere.

Proposition 6. For any initial point 𝑥
0
∈ Ω, there is a global

solution of (34) defined on [0, +∞) and it satisfies

𝑥 (𝑡) ∈ Ω, ∀𝑡 ∈ [0, +∞) . (38)

Proof. Since the right hand function in network (34) is
continuous about 𝑥 and 𝑡, there are 𝑇 > 0 and an absolute
continuous function 𝑥 : [0, 𝑇) → 𝑅

𝑛 such that 𝑥(𝑡) satisfies
(34) for all 𝑡 ∈ [0, 𝑇).

Denote 𝜃(𝑡) = 𝑃
Ω
[𝑥(𝑡) − ∇

𝑥
�̃�(𝑥(𝑡), 𝜇(𝑡)) − 𝜀(𝑡)∇

𝑥
�̃�(𝑥(𝑡),

𝜇(𝑡))]. Then, (34) can be rewritten as

�̇� (𝑡) + 𝑥 (𝑡) = 𝜃 (𝑡) , 𝑡 ∈ [0, 𝑇) . (39)

A simple integration procedure of the above equation gives

𝑥 (𝑡) = 𝑒
−𝑡

𝑥
0
+ 𝑒

−𝑡

∫

𝑡

0

𝜃 (𝑠) 𝑒
𝑠

𝑑𝑠, (40)

which can be rewritten as

𝑥 (𝑡) = 𝑒
−𝑡

𝑥
0
+ (1 − 𝑒

−𝑡

)∫

𝑡

0

𝜃 (𝑠)
𝑒
𝑠

𝑒𝑡 − 1
𝑑𝑠. (41)

By ∫𝑡
0

𝑒
𝑠

/(𝑒
𝑡

− 1)𝑑𝑠 = 1, 𝜃(𝑠) ∈ Ω, ∀0 ≤ 𝑠 ≤ 𝑡 and 𝑥
0
∈ Ω, we

obtain that 𝑥(𝑡) ∈ Ω, ∀𝑡 ∈ [0, 𝑇).
By the boundedness of Ω and the extension theory, this

solution of (34) can be extended. Thus, the solution of (34)
with initial point 𝑥

0
∈ Ω is globally existent. Similarly, we can

obtain that

𝑥 (𝑡) ∈ Ω, ∀𝑡 ∈ [0, +∞) . (42)

Some Lipschitz condition is often used to guarantee
the uniqueness of the solution of a neural network. In
what follows, we give a sufficient condition to ensure the
uniqueness of the solution of (34) with initial point 𝑥

0
∈ Ω.

Proposition 7. For any initial point 𝑥
0
∈ Ω, if ∇

𝑥
�̃�(⋅, 𝜇) and

∇
𝑥
�̃�(⋅, 𝜇) are locally Lipschitz continuous for any fixed 𝜇 ∈

(0, 1], then the solution of neural network (34) is unique.

Proof. By Proposition 6, the solutions of (34) with initial
point𝑥

0
∈ Ω exist globally and satisfy𝑥(𝑡) ∈ Ω,∀𝑡 ∈ [0, +∞).

Suppose that there exist two solutions 𝑥 : [0, +∞) → 𝑅
𝑛

and 𝑦 : [0, +∞) → 𝑅
𝑛 of (34) with initial point 𝑥

0
∈ Ω,

and suppose there exists �̂� such that �̂� = inf
𝑡≥0,𝑥(𝑡) ̸=𝑦(𝑡)

𝑡. By the
boundedness of Ω, there is 𝑅 > 0 such that ‖𝑥(𝑡)‖ ≤ 𝑅 and
‖𝑦(𝑡)‖ ≤ 𝑅, ∀𝑡 ∈ [0, +∞).
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Then, there is 𝐿 > 0 such that

∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) − ∇

𝑥
�̃� (𝑦 (𝑡) , 𝜇 (𝑡))



≤ 𝐿
𝑥 (𝑡) − 𝑦 (𝑡)

 , ∀𝑡 ∈ [̂𝑡, �̂� + 1] ,

∇𝑥�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) − ∇𝑥�̃� (𝑦 (𝑡) , 𝜇 (𝑡))


≤ 𝐿
𝑥 (𝑡) − 𝑦 (𝑡)

 , ∀𝑡 ∈ [̂𝑡, �̂� + 1] .

(43)

Differentiating (1/2)‖𝑥(𝑡)−𝑦(𝑡)‖2 along the two solutions
of (34), by the Lipschitz continuity of 𝑃

Ω
and (43), we have

𝑑

𝑑𝑡

1

2

𝑥 (𝑡) − 𝑦 (𝑡)


2

= ⟨𝑥 (𝑡) − 𝑦 (𝑡) , �̇� (𝑡) − �̇� (𝑡)⟩

≤ (𝐿 + 𝜀 (𝑡) 𝐿)
𝑥 (𝑡) − 𝑦 (𝑡)



2

.

(44)

Applying Gronwall’s inequality into the integration of the
above inequality, it gives 𝑥(𝑡) = 𝑦(𝑡), ∀𝑡 ∈ [̂𝑡, �̂� + 1], which
leads to a contradiction. Therefore, the solution of (34) with
initial point 𝑥

0
∈ Ω is unique.

Lyapunov method is employed to analyze the perfor-
mance of (34). Here, we introduce the following two Lya-
punov energy functions:

𝐸 (𝑥, 𝑡) = �̃� (𝑥, 𝜇 (𝑡)) + 𝜀 (𝑡) (�̃� (𝑥, 𝜇 (𝑡)) − inf
Ω

𝑓) ,

𝐺 (𝑥, 𝑡) =
1

2
dist2 (𝑥,M) + �̃� (𝑥, 𝜇 (𝑡))

+ 𝜀 (𝑡) (�̃� (𝑥, 𝜇 (𝑡)) − inf
Ω

𝑓) .

(45)

The above two Lyapunov functions satisfy the following
estimations along the solutions of (34).

Lemma 8. (i) The derivative of 𝐸(𝑥, 𝑡) along the solution of
(34) can be calculated by

𝑑

𝑑𝑡
𝐸 (𝑥 (𝑡) , 𝑡) ≤ − ‖�̇� (𝑡)‖

2

. (46)

(ii) The derivative of 𝐺(𝑥, 𝑡) along the solution of (34) can be
calculated by

𝑑

𝑑𝑡
𝐺 (𝑥 (𝑡) , 𝑡) ≤ − ‖�̇� (𝑡)‖

2

− ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ .

(47)

Proof. (i) Differentiating𝐸(𝑥(𝑡), 𝑡) along the solutions of (34),
we have

𝑑

𝑑𝑡
𝐸 (𝑥 (𝑡) , 𝑡) = ⟨∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , �̇� (𝑡)⟩ + ̇𝜀 (𝑡)

⋅ (�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) − inf
Ω

𝑓) + (∇
𝜇
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ 𝜀 (𝑡) ∇
𝜇
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))) �̇� (𝑡) .

(48)

Equation (34) can be rewritten as

�̇� (𝑡) + 𝑥 (𝑡) = 𝑃
Ω
[𝑥 (𝑡) − ∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

− 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))] .

(49)

Letting V = 𝑥(𝑡)−∇
𝑥
�̃�(𝑥(𝑡), 𝜇(𝑡))−𝜀(𝑡)∇

𝑥
�̃�(𝑥(𝑡), 𝜇(𝑡)) and

𝑢 = 𝑥(𝑡), using (49) and (10), we have

⟨𝑥 (𝑡) − ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) − 𝜀 (𝑡) ∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

− �̇� (𝑡) − 𝑥 (𝑡) , �̇� (𝑡) + 𝑥 (𝑡) − 𝑥 (𝑡)⟩ ≥ 0,

(50)

which follows the fact that

⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) + 𝜀 (𝑡) ∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , �̇� (𝑡)⟩

≤ − ‖�̇� (𝑡)‖
2

, ∀𝑡 ≥ 0.

(51)

Combining (48) and (51), we get that

𝑑

𝑑𝑡
𝐸 (𝑥 (𝑡) , 𝑡) ≤ − ‖�̇� (𝑡)‖

2

+ ̇𝜀 (𝑡)

⋅ (�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) − inf
Ω

𝑓)

+ (∇
𝜇
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) + 𝜀 (𝑡) ∇

𝜇
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))) �̇� (𝑡) .

(52)

From Lemmas 4 and 5, �̇�(𝑡) = −𝑒−𝑡 and ̇𝜀(𝑡) < 0, we obtain
the estimation in (i).

(ii) Differentiating 𝐺(𝑥(𝑡), 𝑡) along the solutions of (34),
we have

𝑑

𝑑𝑡
𝐺 (𝑥 (𝑡) , 𝑡) = ⟨𝑥 (𝑡) − 𝑃M (𝑥 (𝑡)) , �̇� (𝑡)⟩

+ ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , �̇� (𝑡)⟩ + ̇𝜀 (𝑡)

⋅ (�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) − inf
Ω

𝑓) + (∇
𝜇
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ 𝜀 (𝑡) ∇
𝜇
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))) �̇� (𝑡) .

(53)

Letting V = 𝑥(𝑡)−∇
𝑥
�̃�(𝑥(𝑡), 𝜇(𝑡))−𝜀(𝑡)∇

𝑥
�̃�(𝑥(𝑡), 𝜇(𝑡)) and

𝑢 = 𝑃M(𝑥(𝑡)), using (10) and (49), we have

⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) + 𝜀 (𝑡) ∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ �̇� (𝑡) , �̇� (𝑡) + 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ ≤ 0,

(54)

which can be rewritten as

⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) + 𝜀 (𝑡) ∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , �̇� (𝑡)⟩

+ ⟨�̇� (𝑡) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩

≤ − ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩

− ‖�̇� (𝑡)‖
2

.

(55)
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Combining (53) and (55), we get

𝑑

𝑑𝑡
𝐺 (𝑥 (𝑡) , 𝑡) ≤ − ‖�̇� (𝑡)‖

2

+ ̇𝜀 (𝑡) (𝑓 (𝑥 (𝑡)) − inf
Ω

𝑓)

+ (∇
𝜇
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) + 𝜀 (𝑡) ∇

𝜇
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))) �̇� (𝑡)

− ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ .

(56)

Similar to the analysis in (i), we obtain the estimation in
(ii).

Next, we prove the efficiency of proposed network (34) for
solving optimization problem (24), where the convergence
feasibility of the proposed network is a basic property.

Theorem 9. For initial point 𝑥
0
∈ Ω, any solution 𝑥 : [0, +∞)

→ 𝑅
𝑛 of (34) satisfies

lim
𝑡→+∞

dist (𝑥 (𝑡) ,F) = 0. (57)

Proof. Denote 𝑥 : [0, +∞) → 𝑅
𝑛 as a global solution of (34)

with initial point 𝑥
0
∈ Ω.

From 𝑥(𝑡) ∈ Ω, ∀𝑡 ∈ [0, +∞) and Lemma 8, 𝐸(𝑥(𝑡), 𝑡) is
nonincreasing along the solution of (34). Using𝐸(𝑥(𝑡), 𝑡) ≥ 0,
∀𝑡 ∈ [0, +∞), we confirm that

lim
𝑡→+∞

𝐸 (𝑥 (𝑡) , 𝑡) exists. (58)

From 𝑥(𝑡) ∈ Ω, ∀𝑡 ∈ [0, +∞) and lim
𝑡→+∞

𝜀(𝑡) = 0, we
have

lim
𝑡→+∞

𝜀 (𝑡) (�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) − inf
Ω

𝑓) = 0, (59)

which implies

lim
𝑡→+∞

𝐸 (𝑥 (𝑡) , 𝑡) = lim
𝑡→+∞

�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) . (60)

Inwhat follows, wewill prove that lim
𝑡→+∞

�̃�(𝑥(𝑡), 𝜇(𝑡)) =

0. Arguing by contradiction, we assume that

lim
𝑡→+∞

�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) = 𝑐 ̸= 0. (61)

By �̃�(𝑥(𝑡), 𝜇(𝑡)) ≥ 𝑝(𝑥(𝑡)) ≥ 0, ∀𝑡 ∈ [0, +∞), we have 𝑐 > 0,
which follows the fact that there is 𝑇

1
≥ 0 such that

�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) ≥
𝑐

2
, ∀𝑡 ∈ [𝑇

1
, +∞) . (62)

From Lemma 4, we obtain

�̃� (𝑃M (𝑥 (𝑡)) , 𝜇 (𝑡)) − 𝑝 (𝑃M (𝑥 (𝑡)))
 ≤ 𝑚𝜇 (𝑡) , (63)

which implies that there exists 𝑇
2
> 𝑇

1
such that

�̃� (𝑃M (𝑥 (𝑡)) , 𝜇 (𝑡)) ≤
𝑐

8
. (64)

Since Ω is bounded and 𝑥(𝑡) ∈ Ω, ∀𝑡 ∈ [0, +∞), by
Lemma 5, there is 𝑅 > 0 such that

⟨∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩


≤ 𝑅,

∀𝑡 ∈ [0, +∞) .

(65)

Then,

lim
𝑡→+∞

𝜀 (𝑡) ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ = 0, (66)

which implies that there is 𝑇
3
≥ 𝑇

2
such that


𝜀 (𝑡) ⟨∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑃M (𝑥 (𝑡)) − 𝑥 (𝑡)⟩


≤
𝑐

8
,

∀𝑡 ∈ [𝑇
2
, +∞) .

(67)

From Lemma 8 and the convexity of �̃�(⋅, 𝜇) for any fixed
𝜇 > 0, we obtain that

𝑑

𝑑𝑡
𝐺 (𝑥 (𝑡) , 𝑡) ≤ − ⟨∇

𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡))

+ 𝜀 (𝑡) ∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩

≤ −�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) + �̃� (𝑃M (𝑥 (𝑡)) , 𝜇 (𝑡)) − 𝜀 (𝑡)

⋅ ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ .

(68)

By (62), (67), and (68), we obtain

𝑑

𝑑𝑡
𝐺 (𝑥 (𝑡) , 𝑡) ≤ −

𝑐

4
, ∀𝑡 ∈ [𝑇

3
, +∞) . (69)

Integrating the above inequality from 𝑇
3
to 𝑡 (>𝑇

3
), we

have

𝐺 (𝑥 (𝑡) , 𝑡) ≤ 𝐺 (𝑥 (𝑇
3
) , 𝑇

3
) −

𝑐

4
(𝑡 − 𝑇

3
) ,

∀𝑡 ∈ [𝑇
3
, +∞) .

(70)

Thus,

lim
𝑡→+∞

𝐺 (𝑥 (𝑡) , 𝑡) = −∞, (71)

which leads to a contradiction with 𝐺(𝑥, 𝑡) ≥ 0 for all 𝑥 ∈ 𝑅𝑛
and 𝑡 ∈ [0, +∞). Therefore,

lim
𝑡→+∞

𝑝 (𝑥 (𝑡)) = lim
𝑡→+∞

�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) = 0, (72)

which guarantees that

lim
𝑡→+∞

dist (𝑥 (𝑡) ,F) = 0. (73)

The following theorem indicates that any accumulation
point of the solutions of (34) is just an optimal solution of
(34).



10 Mathematical Problems in Engineering

Theorem 10. For initial point 𝑥
0
∈ Ω, any solution 𝑥 of (34)

is convergent to the optimal solution setM; that is,

lim
𝑡→+∞

dist (𝑥 (𝑡) ,M) = 0. (74)

Proof. From (63), (68), and �̃�(𝑥(𝑡), 𝜇(𝑡)) ≥ 0, ∀𝑡 ∈ [0, +∞),
we have

𝑑

𝑑𝑡
𝐺 (𝑥 (𝑡) , 𝑡)

≤ −𝜀 (𝑡) ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩

+ 𝑚𝜇 (𝑡) ,

(75)

by �̇�(𝑡) = −𝜇(𝑡), which can be rewritten as

𝑑

𝑑𝑡
[𝐺 (𝑥 (𝑡) , 𝑡) + 𝑚𝜇 (𝑡)]

≤ −𝜀 (𝑡) ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ .

(76)

Denote

𝐼 = {𝑡

∈ [0, +∞) : ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩

≤ 0} ;

𝐽 = {𝑡

∈ [0, +∞) : ⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩

> 0} .

(77)

Owning to the continuity of ⟨∇
𝑥
�̃�(𝑥(𝑡), 𝜇(𝑡)), 𝑥(𝑡)−𝑃M(𝑥(𝑡))⟩

on [0, +∞), 𝐼 and 𝐽 are closed and open in [0, +∞), respec-
tively.

Case 1. In this case, we assume that there exists 𝑇 ≥ 0 such
that 𝑡 ∈ 𝐼, ∀𝑡 ∈ [𝑇, +∞).

From the definition on 𝐼 and the pseudoconvexity of
�̃�(⋅, 𝜇) on 𝑅𝑛, we have

�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) ≤ �̃� (𝑃M (𝑥 (𝑡)) , 𝜇 (𝑡)) ,

∀𝑡 ∈ [𝑇, +∞) ,

(78)

which implies

lim sup
𝑡→+∞

𝑓 (𝑥 (𝑡)) ≤ min
𝑥∈F

𝑓 (𝑥) . (79)

ByTheorem 9, we confirm that

lim
𝑡→+∞

dist (𝑥 (𝑡) ,M) = 0. (80)

Case 2. In this case, we assume that there exists 𝑇 ≥ 0 such

that 𝑡 ∈ 𝐽, ∀𝑡 ∈ [𝑇, +∞), which means that

𝑑

𝑑𝑡
[𝐺 (𝑥 (𝑡) , 𝑡) + 𝑚𝜇 (𝑡)] < 0, ∀𝑡 ∈ [𝑇, +∞) . (81)

Then,

lim
𝑡→+∞

[𝐺 (𝑥 (𝑡) , 𝑡) + 𝑚𝜇 (𝑡)] exists. (82)

Since lim
𝑡→+∞

𝐸(𝑥(𝑡), 𝑡) exists and lim
𝑡→+∞

𝜇(𝑡) = 0, we
obtain that

lim
𝑡→+∞

dist (𝑥 (𝑡) ,M) exists. (83)

Suppose

lim inf
𝑡→+∞

⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ = 𝑑

> 0.

(84)

Then, there is 𝑇
1
≥ such that

⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ ≥

𝑑

2
,

∀𝑡 ∈ [𝑇
1
, +∞) .

(85)

Then, from (76), we have

𝑑

𝑑𝑡
[𝐺 (𝑥 (𝑡) , 𝑡) + 𝑚𝜇 (𝑡)] ≤ −

𝑑

2
𝜀 (𝑡) ,

∀𝑡 ∈ [𝑇
1
, +∞) .

(86)

Integrating the above inequality from 𝑇
1
to 𝑡 (>𝑇

1
), we

have

𝐺 (𝑥 (𝑡) , 𝑡) + 𝑚𝜇 (𝑡) ≤ 𝐺 (𝑥 (𝑇
1
) , 𝑇

1
) + 𝑚𝜇 (𝑇

1
)

+ ∫

𝑡

𝑇1

−
𝑑

2
𝜀 (𝑠) 𝑑𝑠.

(87)

Let 𝑡 → +∞ in the above inequality; then we have

lim
𝑡→+∞

𝐺 (𝑥 (𝑡) , 𝑡) = −∞, (88)

which leads to a contraction with the boundedness from
below 𝐺(𝑥(𝑡), 𝑡) on [0, +∞). Thus,

lim inf
𝑡→+∞

⟨∇
𝑥
�̃� (𝑥 (𝑡) , 𝜇 (𝑡)) , 𝑥 (𝑡) − 𝑃M (𝑥 (𝑡))⟩ = 0, (89)

which follows the fact that there is an increasing sequence {𝑡
𝑛
}

such that 𝑡
𝑛
→ +∞ and

lim
𝑛→+∞

⟨∇
𝑥
�̃� (𝑥 (𝑡

𝑛
) , 𝜇 (𝑡

𝑛
)) , 𝑥 (𝑡

𝑛
) − 𝑃M (𝑥 (𝑡

𝑛
))⟩

= 0.

(90)

By {𝑥(𝑡
𝑛
)} ⊆ Ω and Ω which is bounded, there are 𝑥∗∗ ∈

Ω and a subsequence of {𝑥(𝑡
𝑛
)} (denoted as {𝑥(𝑡

𝑛𝑘
)}) such that

lim
𝑘→+∞

𝑡
𝑛𝑘
= +∞ and lim

𝑘→+∞
𝑥(𝑡

𝑛𝑘
) = 𝑥

∗∗. By Lemma 5,
there is 𝜉(𝑥∗∗) ∈ 𝜕𝑓(𝑥∗∗) such that

⟨𝜉 (𝑥
∗∗

) , 𝑥
∗∗

− 𝑃M (𝑥
∗∗

)⟩ = 0. (91)

From the pseudoconvexity of 𝑓 and the above inequality,
we have

𝑓 (𝑥
∗∗

) ≤ 𝑓 (𝑃M (𝑥
∗∗

)) . (92)
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Table 1: Experimental data set in MDF hot-pressing.

Regression parameter 𝛾 𝜎 𝐶 MSE DF SE
MOR 0.001 5 30 0.0307 0.9543 −0.8299

MOE 0.001 6 40 0.0642 0.9063 −1.7060

IBS 0.001 5 40 0.0451 0.9256 −0.6388

By Theorem 9, we have 𝑥∗∗ ∈ F. Therefore, 𝑥∗∗ ∈ M,
which implies that

lim
𝑘→+∞

dist (𝑥 (𝑡
𝑛𝑘
) ,M) = 0. (93)

Combining the above results with (83), we conclude that
lim

𝑡→+∞
dist(𝑥(𝑡),M) = 0.

Case 3. In this case, we assume that both 𝐼 and 𝐽 are
unbounded.

For 𝑡 ∈ 𝐼, similar to the analysis in Case 1, we have

lim
𝑡→+∞,𝑡∈𝐼

dist (𝑥 (𝑡) ,M) = 0. (94)

For 𝑡 ∈ 𝐽, define 𝜏(𝑡) = sup
𝑠≤𝑡,𝑠∈𝐼

𝑠. Then 𝜏(𝑡) ∈ 𝐼 and
(𝜏(𝑡), 𝑡] ⊆ 𝐽. By the unboundedness of 𝐼 and 𝐽, we have

lim
𝑡∈𝐽,𝑡→+∞

𝜏 (𝑡) = +∞. (95)

From (81) and the continuity of 𝐺(𝑥(𝑡), 𝑡) on [0, +∞), we
have

𝐺 (𝑥 (𝑡) , 𝑡) + 𝑚𝜇 (𝑡) ≤ 𝐺 (𝑥 (𝜏 (𝑡)) , 𝜏 (𝑡))

+ 𝑚𝜇 (𝜏 (𝑡)) , ∀𝑡 ∈ 𝐽.

(96)

By 𝜏(𝑡) ∈ 𝐼, (94), and (95), we have

lim sup
𝑡→+∞,𝑡∈𝐽

[𝐺 (𝑥 (𝑡) , 𝑡) + 𝑚𝜇 (𝑡)]

≤ lim
𝑡→+∞,𝑡∈𝐽

[𝐺 (𝑥 (𝜏 (𝑡)) , 𝜏 (𝑡)) + 𝑚𝜇 (𝜏 (𝑡))] = 0,

(97)

which gives

lim
𝑡→+∞,𝑡∈𝐽

𝐺 (𝑥 (𝑡) , 𝑡) = 0. (98)

From the definition of 𝐺(𝑥, 𝑡) and the above result, we
have

lim
𝑡→+∞,𝑡∈𝐽

dist (𝑥 (𝑡) ,M) = 0. (99)

Therefore, from (94) and (99), we obtain

lim
𝑡→+∞

dist (𝑥 (𝑡) ,M) = 0. (100)

5. Numerical Experiments

In this section, we test the proposed neural network (34)
for solving problem (24), which is brought forward from

the MDF continuous hot-pressing process. Based on the
existing data set, we use the established theories and proposed
neural network (34) to build the relationships between the
main qualities of the hot-pressing plate and some relative
technology parameters from optimization problem (18).
Then, based on optimization problem (22), we will use
proposed network (34) to solve the optimal values of the
technology parameters in hot-pressing system for optimizing
the qualities of the hot-pressing plate. All these numerical
experiments validate the good performance of the proposed
network in this paper.

The numerical testing was carried out on a Lenovo PC
(3.00GHz, 2.00GB of RAM) with the use of Matlab 7.4. And
we use ode23 to realize the neural network (34) in Matlab.

5.1. Construction Relation Models in MDF Continuous Hot-
Pressing Process. In this part, by considered optimization
problem (18) and network (34), we build the relation model
which takes the hot-pressing temperature (TE), hot-pressing
pressure (PR), hot-pressing time (TI), and moisture content
(MC) of slab as the argument variables and the MOR, MOE,
and IBS indexes of MDF as the dependent variables. The
numerical results show the good fitting of the built models
for the data set, where the data set is given in Table 4.

In order to use the data in Table 4, we first normalize them
into [0, 1]. And we use the mean square error (MSE), degree
of fitting (DF), and sufficient evaluation (SE) to evaluate the
numerical results, where

MSE: MSE = √
∑
𝑛

𝑖=1
(𝑥

𝑖
− 𝑥

∗

𝑖
)
2

𝑛
,

DF: DF = 1 − √(
∑
𝑛

𝑖=1
(𝑥

𝑖
− 𝑥

∗

𝑖
)
2

∑
𝑛

𝑖=1
𝑥
2

𝑖

),

SE: SE = 1
2
𝑥
𝑇

𝑄𝑥 − 𝑦
𝑇

𝑥,

(101)

where 𝑥 and 𝑥∗ indicate the actual value and predicted value
and 𝑄 and 𝑦 are defined as in (18). The smaller the MSE and
the SE and the closer the DF to 1, the better the regression
result. Moreover, the SE function is the objective function in
(15).

Based on the Gaussian radial basis function kernel, the
values of the initial parameters in problem (18) are given in
Table 1. With a random initial point 𝑥

0
∈ Ω, the numerical

results with respect to the obtained solution are also listed in
Table 1. Figures 2–4 illustrate the fitting effect of the MOR,
MOE, and IBS values by using the proposed network (34) for
solving problem (18). And the parameters of the regression
functions in (19) are shown in Table 5.
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Table 2: Criterion of physical and mechanical performance indexes.

Performance index Unit Thickness range
4∼6 6∼9 9∼12 12∼19 19∼30 30∼45 >45

IBS
Excellent grade 0.65 0.65 0.60 0.55 0.55 0.50 0.50
First grade Mpa 0.60 0.60 0.55 0.50 0.50 0.45 0.45
Accepted product 0.55 0.55 0.50 0.45 0.45 0.45 0.45

MOR Mpa 23 23 22 20 18 17 15
MOE Mpa 2700 2700 2500 2200 2100 1900 1700

2520151050
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Figure 2: Normalized sample fitting results of network (34) for the
regression of MOR.

Moreover, the regression functions based on the linear
polynomial kernel in (20) are also calculated by network (34),
where the parameters are also shown in Table 5.

5.2. Optimization of Parameters in MDF Continuous Hot-
Pressing Process. In this subsection, we consider two classes
of parameter optimizing problems, one aims at optimizing
one performance index of MDF, and the other is for com-
prehensively optimizing the three performance indexes of
MDF. Based on the obtained relation models for a particular
slab and hot-pressing system, we give a suggestion on the
setting of hot-pressing pressure, hot-pressing temperature,
hot-pressing time, and moisture content of slab to let the
MDF meet the given requirements. We refer to the current
standard of MDF indoor plate in China (GB/T11718-1999),
which is given in Table 2.

5.2.1. Case 1

Case 1. When the MOR and MOE of the hot-pressing plate
are in the certain regions, we would like to maximize the
IBS by control of the hot-pressing pressure, hot-pressing
temperature, hot-pressing time, andmoisture content of slab.

Original
Predicted
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0

0.5

1

1.5

2

2.5

3

3.5

4

5
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Figure 3: Normalized sample fitting results of network (34) for the
regression of MOE.

By the information in Table 2, we let ]
1
= 200, ]

2
= 4,

]
3
= 7, and ]

4
= 12% and choose 𝑦∗

1
= 22, 𝑦∗

2
= 2500, 𝜄

1
= 8,

𝜀
1
= 8, 𝜄

2
= 500, and 𝜀

2
= 500 in optimization problem (21).

Then, Ω = {𝑥 ∈ 𝑅
4

: 0 ≤ 𝑥
1
≤ ]

1
, 0 ≤ 𝑥

2
≤ ]

2
, 0 ≤ 𝑥

3
≤

]
3
, 0 ≤ 𝑥

4
≤ ]

4
}, and we can let

𝑔
1
(𝑥) = −

𝑛

∑

𝑖=1

𝜌
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ − 𝑏

1
+ 𝑦

∗

1
− 𝜄

1
,

𝑔
2
(𝑥) =

𝑛

∑

𝑖=1

𝜌
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

1
− 𝑦

∗

1
− 𝜀

1
,

𝑔
3
(𝑥) = −

𝑛

∑

𝑖=1

𝜃
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ − 𝑏

2
+ 𝑦

∗

2
− 𝜄

2
,

𝑔
4
(𝑥) =

𝑛

∑

𝑖=1

𝜃
∗

𝑖
⟨𝑧

𝑖
, 𝑥⟩ + 𝑏

2
− 𝑦

∗

2
− 𝜀

2
.

(102)

By the proposed network (34) for solving (21), we obtain
the optimal solution

𝑥
∗

= (159.4725, 3.1022, 6.4866, 6.0061)
𝑇

. (103)
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Figure 4: Normalized sample fitting results of network (34) for the
regression of IBS.
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Figure 5: Convergence of MOR regression function 𝑓
1
(𝑥) along the

solution of (34).

Table 3: Case 1: performance index values of obtained hot-pressing
plate.

MOR (Mpa) MOE (Mpa) IBS
21.7247 2650.4081 0.6040

This means that when we let the hot-pressing temperature
be 159.4725∘C, hot-pressing pressure be 3.1022Mpa, hot-
pressing time be 6.4866min, and moisture content of slab be
6.0061%, we can maximize the IBS of the hot-pressing plate
and let the MOR and MOE of it be in the certain regions,
where the three performance indexes are shown in Table 3.
The convergence of theMOR regression function𝑓

1
(𝑥),MOE

regression function 𝑓
2
(𝑥), and IBS regression function 𝑓

3
(𝑥)

along the solution of (34) are plotted in Figures 5–7.
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Figure 6: Convergence of MOE regression function 𝑓
2
(𝑥) along the

solution of (34).
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Figure 7: Convergence of IBS regression function 𝑓
3
(𝑥) along the

solution of (34).
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Figure 8: Convergence of 𝑓(𝑥) along the solution of (34).
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Table 4: Experimental data set in MDF hot-pressing.

Number TE (∘C) PR (MPa) TI (min) MC (%) MOR (Mpa) MOE (MPa) IB (Mpa)
1 170 3 4 8 25.66 2538.93 0.4775
2 170 3.4 5 10 29.1275 2887.788 0.62
3 170 2.7 6 12 33.95 3159.645 0.635
4 180 3 6 10 29.9025 2967.803 0.625
5 180 3.4 4 12 31.76 3034.485 0.7025
6 180 2.7 5 8 33.1925 3215.603 0.5625
7 190 3 5 12 33.98 3122.16 0.72
8 190 3.4 6 8 35.1575 3191.608 0.63
9 190 2.7 4 10 31.955 3034.818 0.65
10 180 3 4 8 25.13 2296.26 0.42
11 170 3.4 4 10 20.36 2601.56 0.5
12 170 2.7 4 12 28 2743.05 0.44
13 190 3 4 12 35.74 3063.48 0.687
14 180 3.4 4 8 22.2025 2707.743 0.7
15 190 2.7 5 10 30.85 3212.7 0.68
16 190 3 6 12 32.65 2982.33 0.66
17 170 3.4 6 10 29.38 3487.39 0.77
18 180 2.7 4 8 25.87 2304.19 0.41
19 190 2.7 6 10 27.63 2539.05 0.49
20 180 2.7 5 10 28.35 2675.37 0.42
21 170 2.7 5 8 14.63 1806.99 0.5431
22 180 3 5 12 34.52 3462.12 0.63
23 190 3.4 5 10 38.07 3457.79 0.77

Table 5: Parameter values in the regression functions.

In the regression functions (19) In the regression functions (20)
𝜌
∗

1
−0.1385 𝜃

∗

1
−0.0335 𝜅

∗

1
−0.073 𝜌

∗

1
2.5815 𝜃

∗

1
1.37581 𝜅

∗

1
−0.5275

𝜌
∗

2
0.0139 𝜃

∗

2
−0.0794 𝜅

∗

2
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∗

2
1.1358 𝜃

∗

2
−0.7298 𝜅

∗

2
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𝜌
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3
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∗

3
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3
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Figure 9: Convergence ofMOR regression function𝑓
1
(𝑥) along the

solution of (34).
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solution of (34).
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5.2.2. Case 2

Case 2. We would like to maximize the MOR, MOE, and
IBS synthetically by control of the hot-pressing pressure,
hot-pressing temperature, hot-pressing time, and moisture
content of slab.

In this case, we use optimization problem (23) with 𝜆
1
=

1/3, 𝜆
2
= 1/3, 𝜆

3
= 1/3, ]

1
= 200, ]

2
= 4, ]

3
= 7, ]

4
= 12%,

𝑓
∗

1
= 22 (Mpa), 𝑓∗

2
= 2500 (Mpa), and 𝑓∗

3
= 0.60 (Mpa).

Using proposed network (34) to solve (23), we obtain the
optimal solution

𝑥
∗

= (182.2461, 3.0991, 8.5167, 5.1801)
𝑇

. (104)

The convergence of 𝑓(𝑥) along the solution of (23) is plotted
in Figure 8, where the convergence of MOR regression
function 𝑓

1
(𝑥), MOE regression function 𝑓

2
(𝑥), and IBS

regression function 𝑓
3
(𝑥) is shown in Figures 9–11.
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