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Multiobjective evacuation routes optimization problem is defined to find out optimal evacuation routes for a group of evacuees
under multiple evacuation objectives. For improving the evacuation efficiency, we abstracted the evacuation zone as a superposed
potential field network (SPFN), and we presented SPFN-based ACO algorithm (SPFN-ACO) to solve this problem based on the
proposed model. In Wuhan Sports Center case, we compared SPFN-ACO algorithm with HMERP-ACO algorithm and traditional
ACO algorithm under three evacuation objectives, namely, total evacuation time, total evacuation route length, and cumulative
congestion degree. The experimental results show that SPFN-ACO algorithm has a better performance while comparing with
HMERP-ACO algorithm and traditional ACO algorithm for solving multi-objective evacuation routes optimization problem.

1. Introduction

The evacuation planning in large-scale public area usually
possesses two difficult points:

(1) large scale: the large-scale public area has a complex
flat structure. And it can hold thousands of people.

(2) multisource andmultisink: in evacuation process, the
evacuees often start at different places in public area
and run away from different exits.

In a word, the evacuation planning in large-scale public
area is a challenging problem. For solving this problem,
researchers have put forward some effective methods. Shi
et al. [1] used agent-based model to simulate and ana-
lyze evacuation process in large public building under fire
conditions. Chen and Miller-Hooks [2] employed Benders
decomposition to determine a set of evacuation routes and
the assignment of evacuees to these routes for large building.
Tayfur and Taaffe [3] utilized linear programming relaxation
to model and solve a resource requirements and scheduling
problem during hospital evacuations with the objective of

minimizing cost within a prespecified evacuation completion
time. Fang et al. [4] modeled evacuation process in a teaching
building with multiexits, simulated it by cellular automata,
and analyzed the multiexits choice phenomenon to find out
the optimal exits choice combination for all evacuees. Usually,
multiple macroscopic objectives are required to be consid-
ered in actual evacuation planning, and a set of nondomi-
nated plans are needed for decisionmaking.Thus, evacuation
planning problem could be transformed into multi-objective
optimization problem. However, just a few researches, such
as the literature [5–7], focused on that. Among these pieces
of literature, the literature [7] successfully solved the multi-
objective evacuation routes optimization problem in stadium
using HMERP-ACO algorithm. Fang et al. [7] abstracted
evacuation zone as a hierarchical directed network according
to the feature that the evacuees usually move far away from
the center of evacuation zone in evacuation process.However,
another feature, namely, each evacuee often moves toward
and eventually reaches one of exits, was not considered in
Fang’s paper. Then, how to take these two features into
consideration? In physics, the potential of a point in the space
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generated by multiple point charges can be calculated by the
superposition principle of electric potentials [8]. Inspired by
this, we abstracted the center point of stadium as positive
point charge and each exit as a negative point charge and
used superposition principle of electric potentials to get
the two features mentioned previous together. On the basis
of superposed potential, we abstracted the Wuhan Sports
Center stadium as a superposed potential field network
(SPFN). And on the basis of SPFN, we proposed the SPFN-
ACOalgorithm to solve themulti-objective evacuation routes
optimization problem.ComparedwithHMERP-ACO[7] and
ACO [9], the SPFN-ACO shows much better optimization
performance for solving multi-objective evacuation routes
optimization problem.

The remainder of this paper is organized as follows.
Section 2 introduces the state of the art evacuation planning
using swarm intelligence. Section 3 defines multi-objective
evacuation routes optimization problem. Section 4 intro-
duces the SPFN. Section 5 states SPFN-ACO algorithm.
Section 6 verifies optimization performance of SPFN-ACO
by experiment and contains some analyses. Section 7 con-
cludes this paper and looks into the future direction of this
research.

2. Related Works
People in large-scale public areas are in danger because
of a lot of manmade or natural accidents, such as fire,
hurricane, and bomb [10]. For copingwith these emergencies,
many scientists and engineers have paid much attention to
the researches about evacuation routes planning. In these
researches, the application of swarm intelligence technolo-
gies to evacuation routes planning is a hot topic because
evacuation process itself is a collective behavior. Swarm
intelligence technology mainly includes particle swarm opti-
mization (PSO) [11] technology and ant colony optimization
(ACO) [9] technology. The swarm intelligence technology
is mainly used in two aspects: the simulation of evacuation
process and the optimization of evacuation routes [7, 12].
On one hand, swarm intelligence technologies have natural
advantages to simulate collective behavior such as evacuation
process [13]. On the other hand, the optimizationmechanism
of swarm intelligence algorithms can effectively optimize
evacuation objectives by iterating the configuration of factors
that affect evacuation efficiency [7, 14]. The factors that affect
evacuation efficiency includes pheromone [7], location of
shelters in evacuation zone [15], the direction of lanes [16],
the placement of road barriers [17], and the scheduling of
evacuation for each evacuee [18].

Besides, evacuation routes optimization problem usually
needs to consider multiple objectives, such as total clearance
time [19] total number of survivals [20]. A few researches
[5, 6] have involved the multi-objective evacuation routing
optimization problem. Some of them applied swarm intelli-
gence technologies to solve this kind of problem [7, 14].

3. Problem Formulation

In this paper, the evacuation zone is divided into many
subzones. Each evacuation plan is composed of each evacuee’s

route. So each evacuation plan EP
𝑖
can be represented as

EP
𝑖
= [er1 er

2
⋅ ⋅ ⋅ er

𝑗
⋅ ⋅ ⋅ er

𝑁𝐸
] ,

𝑖 = 1, 2, . . . , 𝑁
𝑃
,

(1)

where 𝑁
𝑝
is the number of plans, er

𝑗
is the route of the

evacuee 𝑗, which can be described as

er
𝑗
= [𝑠𝑗Start 𝑠

𝑗1
⋅ ⋅ ⋅ 𝑠
𝑗𝑘

⋅ ⋅ ⋅ 𝑠
𝑗End] ,

𝑗 = 1, 2, . . . , 𝑁
𝐸
,

(2)

where 𝑁
𝐸
is the number of evacuees, 𝑠

𝑗Start and 𝑠
𝑗End are

respectively, the start and the end subzone on the jth evacuee’s
route. 𝑠

𝑗𝑘
is the kth interim subzone on the jth evacuee’s route.

The end subzone is one of the exits in the evacuation zone.
Thus, the multi-objective evacuation routes optimization

problem in this paper could be formulated as in Algorithm 1.
The evacuation routes optimization problem involves

three objectives that need to be achieved simultaneously,
namely, minimization of total evacuation time, minimization
of total evacuation route length, and minimization of cumu-
lative congestion degree.

Total evacuation time (TET) is given by

TET =

𝑁𝐸

∑

𝑖=1

ET
𝑖
, (3)

where ET
𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝐸
) is the evacuation time of evacuee

𝑖.
Total evacuation route length (TERL) is given by

TERL =
𝑁𝐸

∑

𝑖=1

ERL
𝑖
, (4)

where ERL
𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝐸
) is the evacuation route length

of evacuee 𝑖.
Cumulative congestion degree (CCD) is given by

CCD =

𝑁𝑇

∑

𝑡=1

𝑁𝑆

∑

𝑖=1

𝑁
𝐸𝑖
(𝑡)

𝐶
𝑖

, (5)

where 𝑁
𝐸𝑖
(𝑡) is the number of evacuees in subzone 𝑖 at tth

time step, 𝐶
𝑖
is the evacuees capacity of subzone 𝑖, 𝑁

𝑇
is the

number of time steps, and𝑁
𝑆
is the number of subzones.

4. Superposed Potential Field Network (SPFN)

The electric potential field of the point charge is shown in
Figure 1. If zero of potential at infinity is chosen, the potential
𝑢 [8] at a distance 𝑟 from a point charge 𝑄 is

𝑢 =

𝑘𝑄

𝑟

, (6)

for positive point charge (Figure 1(a)) or

𝑢 = −

𝑘𝑄

𝑟

, (7)

for negative point charge (Figure 1(b)).
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(a) Positive point charge (b) Negative point charge

Figure 1: Potential field of point charge.

Finding the pareto optimal set [21] of evacuation
plans, make

𝑓
1
= min(TET)

𝑓
2
= min(TERL)

𝑓
3
= min(CCD)

Subject to
𝑁
𝐸𝑖
(𝑡) ≤ 𝐶

𝑖
,

where,𝑁
𝐸𝑖
(𝑡) is the number of evacuees in subzone 𝑖 at 𝑡th

time step, 𝐶
𝑖
is the capacity of subzone 𝑖.

Algorithm 1: Formulation of multi-objective evacuation routes
optimization problem.

Figure 2: Wuhan Sports Center (http://www.wuhansport.com/).

The center point of the stadium could be seen as a positive
point charge, and each exit could be seen as a negative point
charge.TheWuhan Sports Center (Figure 2) could be seen in
a superposed potential field. According to the superposition
principle of electric potentials, the superposed potential of a
point in stadium 𝑢

𝑆
could be derived by

𝑢
𝑆
= 𝑢
𝑐
+

𝑁Exits

∑

𝑗=1

𝑢
𝑗
=

𝐶
𝐶

𝑟
𝐶

−

𝑁Exits

∑

𝑗=1

𝐶
𝑗

𝑟
𝑗

, (8)

where𝑁Exits is the number of exits, 𝑢
𝑗
is the potential of exit

𝑗, 𝑢
𝑗
= −𝐶
𝑗
/𝑟
𝑗
.𝐶
𝑗
is the capacity of the exit 𝑗, 𝑟

𝑗
is the distance

to the exit 𝑗, 𝑢
𝐶
is the potential of center point. 𝑟

𝐶
is the

distance to the center point, and 𝐶
𝐶
is the capacity of the

center point.
Based on the superposed potential, we proposed the

superposed potential field network (SPFN) to abstract the
stadium. This model is partly based on the point model used
in [5]. The SPFN could be formulated as

𝐺 = (𝐻,𝑍,𝑈, 𝐶) , (9)

where 𝐻 is the set of nodes, 𝑍 is the set of links, 𝑈 is the set
of potential of each node, and 𝐶 is the set of capacity of each
node.

The stadium is divided into 157 subzones. Each subzone
is abstracted as a node in SPFN. Each link between two nodes
represents a connection relationship between two subzones.
The potential of each node is the potential of the center point
of the corresponding subzone. The capacity of each node is
the capacity of the corresponding subzone. The coordinate
of each node is the coordinate of the center point of the
corresponding subzone. If an evacuee or a group of evacuees
is seen as a positive test charge, it would always move from
high potential node to low potential node. There are 216
links and 157 nodes in the SPFN of the Wuhan Sports Center
stadium, including 10 exits nodes and 42 bleachers nodes.
Figure 3 shows the potential distribution of SPFN of the
Wuhan Sports Center stadium.

5. SPFN-ACO

For solving the multi-objective evacuation routes optimiza-
tion problem mentioned in Section 3, on the basis of SPFN,
we propose SPFN-ACO algorithm.

5.1. The Main Procedure of SPFN-ACO Algorithm. The main
procedure of SPFN-ACO algorithm is listed in Algorithm 2.
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S1. Initializes initial PVs population 𝑃
0
as all-zero vectors. The population size of 𝑃

0
is 2 ∗ 𝑁

𝑝
. The number of ants is𝑁

𝐴
.𝑚 = 1.

S2. For each PV, do:
S2.1. Each ants simultaneously finds its evacuation route under current PV by Simulation of Evacuation Process;
S2.2. All ants’ routes construct the corresponding evacuation plan under current PV and the objectives’ values
of this plan are calculated.

S3.Non-dominated sort 2 ∗ 𝑁
𝑝
PVs according to corresponding route plan’s objectives. And, select the top𝑁

𝑝
PVs.

S4.Update top𝑁
𝑝
PVs. The updated top𝑁

𝑝
PVs construct PVs population 𝑃

𝑚

S5.𝑚 = 𝑚 + 1.
S6. For each PV in 𝑃

𝑚−1
, do:

S6.1. Each ants simultaneously finds its evacuation route under current PV by Simulation of Evacuation Process;
S6.2. All ants’ routes construct the corresponding evacuation plan under current PV and the objectives’ values of this plan are
calculated.

S7.Update𝑁
𝑝
pheromone vectors in 𝑃

𝑚−1
. The updated top𝑁

𝑝
pheromone vectors construct pheromone vectors population 𝑄

𝑚
.

The 𝑃
𝑚−1

and 𝑄
𝑚
construct 𝑅

𝑚
, namely 𝑅

𝑚
= 𝑃
𝑚−1

∪ 𝑄
𝑚
. The population size of 𝑅

𝑚
is 2 ∗ 𝑁

𝑝
.

S8.Non-dominated sort 𝑅
𝑚
according to corresponding route plan’s objectives. And, select the top𝑁

𝑝
pheromone vectors to

construct new population 𝑃
𝑚
.

S9. If𝑚 ⩽ 𝑚 Max, go to S5.Or else, terminate the algorithm and output final Pareto optimal set of evacuation plans.
Note:𝑚 is the number of generations;𝑚 Max is the maximum number of generations.

Algorithm 2: Procedure of SPFN-ACO.

For each PV, there is a corresponding evacuation plan generated as follows:
S1. 𝑡 = 0;
S2. Set the pheromone amounts on all connections by current PV.
S3. Randomly initialize each ant’s position and velocity, and select interim destination node for each ant by Superposed Potential
Field based Roulette Wheel Method;
S4. 𝑡 = 𝑡 + 1;
S5. For each ant, do:

S5.1.move one step towards the center point of its destination subzone;
S5.2. If this ant reaches its interim destination node, select new interim destination node by Superposed Potential Field based
Roulette Wheel Method;
S5.3. If this ant reaches one of exits, this ant stop move;

S6. If all ants have reached exits, quit and output each ant’s evacuation route; or else, go to S4.

Algorithm 3: Simulation of evacuation process.

We use pheromone vector to represent pheromones config-
uration on each link in the network. The pheromone vector
(PV) is given by

PV = [𝜏1
𝜏
2
𝜏
3
⋅ ⋅ ⋅ 𝜏
𝑁links

] , (10)

where 𝜏
𝑘
is the pheromone on kth link connecting node 𝑖 and

node 𝑗 and𝑁links is the total number of links between nodes
in network.

5.2. Superposed Potential Field Based Roulette Wheel Method
for Node Selection. The main procedure of Superposed
Potential Field BasedWheel Method is listed in Algorithm 3.
There are 𝑁

𝑆𝐶
allowed visit neighbor nodes. 𝑆

𝐶
is the set of

allowed visit neighbor nodes. 𝑠
𝑘
is the kth candidate node

in 𝑆
𝐶
, 𝑘 = 1, 2, . . . , 𝑁

𝑆𝐶
. 𝑠
𝑗
is the node which the ant 𝑖 is in

currently. 𝑆
𝐶
can be given by

𝑆
𝐶
= {𝑘 | 𝑁

𝐸𝑘
≤ 𝐶
𝑘
, 𝑢
𝑘
< 𝑢
𝑗
} . (11)

The neighbor nodes in 𝑆
𝐶

must fit two conditions: the
capacity constraint and the potential constraint.

The capacity constraint is given by

𝑁
𝐸𝑘
≤ 𝐶
𝑘
. (12)

𝑁
𝐸𝑘

is the number of evacuees in node 𝑠
𝑘
, which is given

by

𝑁
𝐸𝑘
= 𝑁
𝐴𝑘

∗ 𝜇. (13)

𝑁
𝐴𝑘

is the number of ants in node 𝑠
𝑘
. Each ant represents 𝜇

evacuees.
𝐶
𝑘
is the capacity of node 𝑠

𝑘
, which is calculated through

𝐶
𝑘
=

Area
𝑘

Area
𝐸

. (14)

Area
𝑘
is the area of subzone𝑘. Area

𝐸
is the average area

which an evacuee usually occupies. By the literature [22], each
evacuee occupies 0.3m2.

The potential constraint is given by

𝑢
𝑘
< 𝑢
𝑗
, (15)
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S1. Calculate the distance to neighbor nodes.
The distance𝐷

𝑗𝑘
between the current node 𝑠

𝑗
and allowed visit neighbor node 𝑠

𝑘
is given by:

𝐷
𝑗𝑘
=
√
(𝑥
𝑗
− 𝑥
𝑘
)

2

+ (𝑦
𝑗
− 𝑦
𝑘
)

2

, 𝑠
𝑘
∈ 𝑆
𝐶
,

where, (𝑥
𝑘
, 𝑦
𝑘
) is the coordinate of the neighbor node 𝑠

𝑘
; (𝑥
𝑗
, 𝑦
𝑗
) is the coordinate of the current node 𝑠

𝑗
;𝐷
𝑗𝑘
is the length of link

𝑗𝑘.
S2. Calculate the congestion degrees of neighbor nodes.

The allowed visit neighbor node 𝑠
𝑘
’s congestion degree CD

𝑘
(𝑡) at the 𝑡th time step is given by:

CD
𝑘
(𝑡) =

𝑁
𝐸𝑘
(𝑡)

𝑐
𝑘

, 𝑠
𝑘
∈ 𝑆
𝐶
,

where,𝑁
𝐸𝑘
(𝑡) is the number of evacuees in neighbor node 𝑠

𝑘
at the 𝑡th time step. 𝑐

𝑘
is the capacity of node 𝑠

𝑘
.

S3. Calculate transition probability from node 𝑠
𝑗
to 𝑠
𝑘

The transition probability 𝑃𝑖
𝑗𝑘
(𝑚, 𝑛, 𝑡) from node 𝑠

𝑗
to 𝑠
𝑘
at the 𝑡th time step is given by:

𝑃

𝑖

𝑗𝑘
(𝑚, 𝑛, 𝑡) =

{
{
{

{
{
{

{

𝜏

𝛼

𝑗𝑘
(𝑚, 𝑛) 𝜂

𝛽

𝑗𝑘
(𝑚, 𝑛, 𝑡)

∑

𝑠𝑤∈𝑆𝐶

𝜏

𝛼

𝑗𝑤
(𝑚, 𝑛) 𝜂

𝛽

𝑗𝑤
(𝑚, 𝑛, 𝑡)

, 𝑠
𝑘
∈ 𝑆
𝐶

0, otherwise,
where, 𝑠

𝑗
is the subzone which the ant 𝑖 is in currently. 𝜏𝛼

𝑖𝑗
(𝑚, 𝑛) is the pheromone amount on connection 𝑖𝑗 at𝑚th generation

under 𝑛th pheromone vector; 𝜂𝛽
𝑖𝑗
(𝑚, 𝑛, 𝑡) is the heuristic information related with link 𝑖𝑗 at 𝑡th time step, under 𝑛th pheromone

vector, at𝑚th generation; 𝑆
𝐶
is the set of candidate nodes; 𝛼 and 𝛽 are the parameters to control the relative importance between

the pheromone and the heuristic information.
The heuristic information 𝜂

𝑖𝑗
(𝑚, 𝑛, 𝑡) on link 𝑖𝑗 at 𝑡th time step is given by:

𝜂
𝑖𝑗
(𝑚, 𝑛, 𝑡) =

1

𝐷
𝑖𝑗
∗ ((𝑁

𝐸𝑗
(𝑚, 𝑛, 𝑡) + 1) / (𝐶

𝑗
+ 1))

,

where,𝐷
𝑖𝑗
is the length of link 𝑖𝑗;𝑁

𝐸𝑗
(𝑚, 𝑛, 𝑡) is the number of evacuees in node 𝑗 at the 𝑡th time step; 𝐶

𝑗
is the capacity of node 𝑗.

S4. Select one of candidate nodes according to cumulative transition probability
According to roulette wheel selection, the node 𝑠

𝑘
would be selected only and if only when

𝑃𝑃
𝑗(𝑘−1)

(𝑚, 𝑛, 𝑡) < rand ≤ 𝑃𝑃
𝑗𝑘
(𝑚, 𝑛, 𝑡), rand is a random real number between 0 and 1. 𝑃𝑃

𝑗𝑘
(𝑚, 𝑛, 𝑡) is the cumulative transition

probability, which is given by:

𝑃𝑃
𝑗𝑘
(𝑚, 𝑛, 𝑡) =

𝑘

∑

𝑤=0

𝑃
𝑗𝑤
(𝑚, 𝑛, 𝑡) , 𝑠

𝑘
∈ 𝑆
𝐶

Besides, we rule that 𝑃𝑃
𝑗0
(𝑚, 𝑛, 𝑡) = 0.

Algorithm 4: Superposed potential field based roulette wheel method.

where 𝑢
𝑗
is the potential of the current visit node and 𝑢

𝑘
is

the potential of the next visit node. The potential constraint
indicates that the ant should move from high-potential node
to low-potential node, namely, the potential 𝑢

𝑘
of next visit

node 𝑠
𝑘
should be less than the potential 𝑢

𝑗
of current visit

node 𝑠
𝑗
.

The procedure of superposed potential field based
roulette wheel method is shown in Algorithm 4. Its principle
could be explained by an example in Figure 4. In Figure 4,
the digit on each node is the value of potential. The red
node is the node which evacuee 𝑖 is in. By potential, he
could just choose the nodes of which the potential value
is lower than the node which he is in as the candidates.
So, he could choose three neighbor nodes as allowed visit
nodes. The potential of allowed visit nodes is, respectively,
4, 4, and 2. And then, he has to choose one of them as the
next visit node by calculating the transition probability and
cumulative transition probability of each candidate as shown
in Algorithm 4.

5.3. Velocity, Position, andMoving Strategy. When the interim
destination node is selected, the ant 𝑖 begins moving along
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1100

1200
1300

−6000
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u
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n/
m

)

Figure 3: Potential distribution of SPFN of Wuhan Sports Center
stadium.

link between current node 𝑠
𝑗
and interim destination node

𝑠
𝑘
. The moving speed [7] V𝑖(𝑡) of ant 𝑖 is given by

V𝑖 (𝑡) = Vmax ∗ 𝑒
−𝑁𝐸𝑗
(𝑡)/𝐶𝑗

, (16)
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Figure 4: An example to show the superposed potential field based roulette wheel method.
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Figure 6: Evacuation curves of the three algorithms.

where 𝑁
𝐸𝑖
(𝑡) is the number of evacuees in node 𝑠

𝑗
at the

tth time ste, 𝐶
𝑗
is the capacity of node 𝑠

𝑗
, and Vmax is the

maximum speed of ant 𝑖.
We define a concept called remaining distance to interim

destination node to measure whether the ant 𝑖 has already
arrived interim destination node. The iterative formula of
remaining distance is given by

RD𝑖 (𝑡 + 1) = RD𝑖 (𝑡) − V𝑖 (𝑡) ∗ Δ𝑡, (17)

where RD𝑖(𝑡 + 1) and RD𝑖(𝑡) are the remaining distance at
(𝑡 + 1) th and tth time step. Δ𝑡 is the interval of time step,
such as ten or twenty seconds.When an ant arrives at interim
destination node, the remaining distance is set as the length
of link between the interim destination node and the next
interim destination node.

5.4. Pheromone Updating. The pheromone on each link
between nodes is updated by

𝜏
𝑗𝑘 (

𝑚 + 1, 𝑛) = (1 − 𝜌) 𝜏
𝑗𝑘 (

𝑚, 𝑛) + 𝜌Δ𝜏𝑗𝑘 (
𝑚, 𝑛) , (18)

where 𝜏
𝑗𝑘
(𝑚 + 1, 𝑛) and 𝜏

𝑗𝑘
(𝑚, 𝑛) are pheromone amount

on link 𝑗𝑘 between nodes 𝑠
𝑗
and 𝑠
𝑘
at (𝑚 + 1)th and mth

generation under 𝑛th pheromone vector. Δ𝜏
𝑗𝑘
is the variation

amount of pheromone on link 𝑗𝑘. The variation amount of
pheromone Δ𝜏

𝑗𝑘
(𝑚, 𝑛) is given by

Δ𝜏
𝑗𝑘 (

𝑚, 𝑛) =

1

𝐷
𝑗𝑘
∗ ∑

𝑁𝑇(𝑚,𝑛)

𝑡=0
(𝑁
𝐸𝑘
(𝑚, 𝑛, 𝑡) /𝐶𝑘

)

, (19)

where𝐷
𝑗𝑘
is the length of link 𝑗𝑘,𝑁

𝐸𝑘
(𝑚, 𝑛, 𝑡) is the number

of evacuees in node 𝑠
𝑘
at the tth time step, and 𝐶

𝑘
is the

capacity of node 𝑠
𝑘
.

6. Experiment and Analysis

6.1. The Experiment Design. In this paper, we took a 20000
evacuees’ drill in Wuhan Sports Center Stadium as an
example to do simulation experiment. This stadium has 42

Table 1: Parameter values in SPFN-ACO, HMERP-ACO, and ACO.

𝑚 Max 𝑁
𝑝

Vmax Δ𝑡 𝛼 𝛽 𝜌 𝑁
𝐴

𝜇

200 10 2m/s 25 s 1 3 0.5 200 100

bleachers subzones and 10 exits subzones. Ants are randomly
allocated to 42 bleachers subzones, and each ant represents
100 evacuees. The maximum speed of each ant is 2m/s [23]
and varies from 0 to 2m/s along with the congestion degree.
The optimization performance of SPFN-ACO was compared
with HMERP-ACO and traditional ACO which is used in
Fang’s paper [7]. By experience, the parameters of the three
algorithms are set as Table 1. m Max is the total number of
generations.𝑁

𝑝
is the population size of evacuation plans in

each generation. Vmax is the maximum speed of each ant. Δ𝑡
is the length of each time step.𝑁

𝐴
is the total number of ants.

Each ant represents 𝜇 evacuees. 𝛼 and 𝛽 are the parameters
to control the relative importance between the pheromone
and the heuristic information. 𝜌 is the evaporation rate [24],
𝜌 ∈ (0, 1].

6.2. The Experimental Result Analysis. Figure 5 shows the
𝑓
1
, 𝑓
2
, and 𝑓

3
values of non-dominated plans derived from

the three algorithms. The “blue cross,” “red pentagram,” and
“black solid circle,” respectively, represent the 𝑓

1
, 𝑓
2
, and 𝑓

3

values of non-dominated plans derived from the SPFN-ACO,
the HMERP-ACO, and the ACO algorithm. The 𝑓

1
, 𝑓
2
, and

𝑓
3
values of non-dominated plans derived from the SPFN-

ACO algorithm are smaller than those generated by the
other two algorithms. According to Bierlaire’s viewpoint [25],
the evacuation process could be seen as a series of node
selections made by evacuees, and then 𝑓

1
, 𝑓
2
, and 𝑓

3
values

of non-dominated plans would depend on the node selection
strategy. For the three algorithmsmentioned in this paper, the
efficiency of node selection strategy resorts to the transition
probabilities.The transition probability is mainly determined
by two aspects: the selection of candidate neighbor nodes
and the relative importance pheromone versus heuristic
information. The latter aspect is determined by the setting of
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Figure 7: Time-varying congestion degrees in three algorithms.

relative importance parameters 𝛼 and 𝛽. The former aspect is
determined by the conditions of candidate neighbor nodes
selection. Among the conditions, the capacity constraint is
same for all the three algorithms. Thus, the difference is
another condition: the ACO algorithm adopts the tabu list;
the HMERP-ACO adopts the hierarchy defined in Fang’s
paper [7]; the SPFN-ACO adopts the potential introduced in
this paper. The tabu list takes the visited nodes on each ant’s
route as forbidden visit nodes for this ant. It did not consider
any domain knowledge that can raise evacuation efficiency.
The hierarchical directed network uses the feature that each
evacuee moves far away from the center point of the stadium
but without considering another feature that each evacuee
moves towards one of the exits.The superposed potential field
network takes the two features into account, obviously further
raises the evacuation efficiency, and improves optimization
objectives. This is the reason why the 𝑓

1
, 𝑓
2
, and 𝑓

3
values of

non-dominated plans derived from the SPFN-ACO are better
than those derived from HMERP-ACO and ACO.

Figure 6 shows the evacuation curves [26] of the three
algorithms. By SPFN-ACO, 95% of evacuees have left the
stadium at 450 seconds, and 100% of evacuees have been

evacuated out of the stadium at 725 seconds. By HMERP-
ACO, it, respectively, needs 575 and 875 seconds; by ACO, it
even needs 1675 and 3525 seconds. The results indicate that
the candidate nodes selection condition using domain knowl-
edge can shorten the evacuation time and raise evacuation
efficiency. And if two factors that can facilitate evacuation
are taken into account, the evacuation time is less than that
just considering one factor. The SPFN-ACO shows a much
better evacuation time performance than that of the other two
algorithms.

Figure 7 shows the time-varying congestion degrees of
the nodes in the three algorithms. At the first X seconds,
all the three algorithms show a relatively high congestion in
nodes 1 to 100. With the rise of time, the plans generated
by the ACO and HMERP-ACO algorithms show a slowly
decreased heavy congestion in nodes. But the congestion in
nodes decreases sharply for the plan generated by SPFN-
ACO. This indicates that, compared with the other two
algorithms, the SPFN-ACO can evacuate most of evacuees
out of the middle zone of stadium and therefore reduce
the congestion degree in the middle zone rapidly. However,
in all the three algorithms, it takes a relatively long time
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Figure 8: The natural logarithm of hypervolume for three algorithms.

to make the congestion degrees in all nodes decrease to
zero, although the SPFN-ACO expands the least time. The
“long-tail pheromone” indicates that all the three algorithms
need a relatively long time (compared with the network
clearance time) to take all evacuees out of the stadium.
Besides, the SPFN-ACO possesses the smallest cumulative
congestion degree in the three algorithms. Therefore, totally
speaking, the congestion situation of SPFN-ACO generated
plans is better than that of the other two algorithms, but the
congestion situation of SPFN-ACOstill needs to be improved.

Figure 8 shows the natural logarithm of hypervolume
for three algorithms. Horizontal ordinate is the generations
of evolution; vertical ordinate is the natural logarithm of
the hyper volume (HV). The hyper volume is a metric of
convergence [27]. The larger the natural logarithm of hyper
volume, the better the convergence of the algorithm. Thus,

from Figure 8, we can conclude that the SPFN-ACO acquires
the best convergence performance, the HMERP-ACO comes
second, and the ACO has the worst. And, with the rise
of generations, the convergence of all three algorithms is
improved. It indicates that, with the iteration of pheromones
on each link, the evacuation plans generated by all the three
algorithms could be gradually slightly improved. However,
the relative merits between three algorithms are not changed.
This indicates that the relative merits between three algo-
rithms are determined by the selection of candidate nodes
and the relative importance pheromone versus heuristic
information but not the concrete pheromone value on each
link.

Figure 9 shows the proportion of non-dominated plans
in all plans derived from three algorithms. As shown in
Figure 8, before the 40th generation, for all three algorithms,
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Figure 9: The proportion of non-dominated plans derived from
three algorithms.

the proportion of non-dominated plans fluctuates; from the
40th to 197th generation, the proportion increases in stage.
But at the 198th generation, forHMERP-ACO, the proportion
sharply drops down to 20%. Finally, by the evolution of
200 generations, the proportion of non-dominated plans for
SPFN-ACO reaches 50%, higher than that for HMERP-ACO
(20%) and ACO (40%).

7. Conclusions and Future Works

We proposed a multi-objective optimization algorithm of
the evacuation routes SPFN-ACO, which is based on the
organization of the evacuees’ space-timepathswithin a super-
posed potential field network (SPFN). The ACO algorithm
organizes evacuees’ space-time paths without any domain
knowledge that can help improve evacuation efficiency; the
HMERP-ACO algorithmmerely employs one promotive fac-
tor for improving evacuation efficiency; the SPFN efficiently
combines two factors together, which can facilitate the raise of
evacuation efficiency by reasonably organizing the evacuees’
space-time paths. By validation of simulation experiment,
compared with HMERP-ACO and ACO algorithms, the
SPFN-ACO algorithm is more suitable to solve the multi-
objective optimization problem of the evacuation routes.

It is planned to do further researches on the basis
of SPFN-ACO, such as defining more realistic evacuation
scenarios, studying the effects of grouping size of evacuees
and the total number of evacuees on evacuation efficiency,
and discussing the influences of the population size of
pheromone vectors and the number of evolution generations
on algorithm performance.
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