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Unlike type 2 diabetes which is caused by the loss of insulin sensitivity, type 1 diabetes (T1D) is manifested by the absolute deficien-
cy of insulin secretion due to the loss of β mass by autoimmune response against β-cell self-antigens. Although significant advance-
ment has been made in understanding the pathoetiology for type 1 diabetes, the exact mechanisms underlying autoimmune-
mediated β-cell destruction, however, are yet to be fully addressed. Accumulated evidence demonstrates that endoplasmic ret-
iculum (ER) stress plays an essential role in autoimmune-mediated β-cell destruction. There is also evidence supporting that ER
stress regulates the functionality of immune cells relevant to autoimmune progression during T1D development. In this paper,
we intend to address the role of ER stress in autoimmune-mediated β-cell destruction during the course of type 1 diabetes. The
potential implication of ER stress in modulating autoimmune response will be also discussed. We will further dissect the possible
pathways implicated in the induction of ER stress and summarize the potential mechanisms underlying ER stress for mediation
of β-cell destruction. A better understanding of the role for ER stress in T1D pathoetiology would have great potential aimed at
developing effective therapeutic approaches for the prevention/intervention of this devastating disorder.

1. Introduction

Recent epidemiologic studies revealed that the incidence of
type 1 diabetes (T1D) in most regions worldwide has been
increasing by 2% to 5% [1]. Particularly, in some developing
countries such as China, the rapid economic development
along with changes in lifestyle and presumably the living en-
vironment has rendered this country with an annual increase
of 7.4% for T1D prevalence [2]. Given that T1D is typically
developed in children and juveniles, its impact on the quality
of life is far more significant than that of type 2 diabetes, in
which it usually occurs in adults. Although exogenous in-
sulin therapy partly compensates the function of β cells, it
cannot regulate blood glucose as accurately as the action of
endogenous insulin. As a result, long-term improperly con-
trol of blood glucose homeostasis predisposes T1D patients

to the development of diverse complications such as diabetic
retinopathy [3–5], nephropathy [6, 7], neuropathy [8–10],
foot ulcers [11–13], and cardiovascular diseases [14–16]. Al-
though the underlying mechanisms leading to T1D have
yet to be fully addressed, extensive studies have consistently
demonstrated that endoplasmic reticulum (ER) stress plays
a critical role in autoimmune-mediated β-cell destruction
during the course of T1D development.

The pancreatic β-cells are equipped with highly devel-
oped endoplasmic reticulum (ER) to fulfill the requirement
of secreting a large amount of insulin. This physiological fea-
ture renders β cells particularly vulnerable to ER stress [17].
Exhaustion of β cells is essential for the onset of T1D, which
requires the residual β cells for compensated insulin secre-
tion. While this compensated action is beneficial for control
of blood glucose homeostasis, it also increases ER burden
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associated with the induction of unfolded protein response
(UPR) and ER stress, which further exacerbates β-cell death.
Although the implication of ER stress in β-cell death has
been extensively emphasized, the underlying mechanisms,
however, are yet to be fully elucidated. As such, understand-
ing the role of ER stress in the loss of β mass and dissecting
the mechanisms underlying ER stress would be important
for developing therapeutic approaches aimed at prevention
and intervention of type 1 diabetes. In the present paper, we
will first intend to address the overall role of ER stress in
autoimmune-mediated β-cell destruction based on pub-
lished genetic and experimental data. The impact of ER stress
on modulation of autoimmune response during the course of
T1D development will be next discussed. We will finally focus
on the possible pathways implicated in the induction of ER
stress and summarize the potential mechanisms underlying
ER stress for mediation of β-cell destruction.

2. The Endoplasmic Reticulum (ER)

ER is a membranous network of tubules, vesicles, and cis-
ternae that are interconnected by the cytoskeleton in the cy-
toplasm of eukaryotic cells. ER is responsible for many ge-
neral cellular functions, including the facilitation of protein
folding and assembly [18–20], manufacture of the mem-
branes [21], biosynthesis of lipid and sterol, storage of
intracellular Ca2+, and transport of synthesized proteins in
cisternae.

ER can be categorized into rough endoplasmic reticulum
(RER) and smooth endoplasmic reticulum (SER). RER is
responsible for protein synthesis, while SER is in charge of
the synthesis of lipids and steroids, regulation of calcium
concentration, attachment of receptors on cell membrane
proteins, and detoxification of drugs. As featured by its name,
RER bears ribosomes on the outer surfaces of the cisternae
and looks bumpy and rough under a microscope. The newly
synthesized proteins by RER are sequestered in cisternae and
sent to Golgi complex or membrane via small vesicles. In
contrast, SER does not have ribosomes on its cisternae and
appears to have a smooth surface under the microscope. SER
is found commonly in places such as in the liver and muscle.
It is important for the liver to detoxify poisonous substances.
Sarcoplasmic reticulum (SR) is a special type of SER, which
is found in smooth and striated muscle. SR is responsible for
the regulation of calcium levels. It sequesters a large store of
calcium and releases them when the muscle cell is stimulated.

3. ER Stress

ER stress is the cellular responses to the disturbances of nor-
mal function of ER. The most focused and well-studied ER
stress is that caused by protein misfolding. The accumulation
of unfolded proteins leads to a protective pathway to restore
ER function, termed as unfolded protein response (UPR).
ER employs a type of special proteins called chaperones as a
quality control mechanism. Chaperones attach to the newly
synthesized proteins and assist them to fold into their native
conformations. In addition, chaperones also help to break

down unfolded or incorrectly folded proteins in the ER via
a process called ER-associated degradation (ERAD). Protein
folding requires a serial of ER-resident protein folding ma-
chinery. Exhaustion of those protein folding machineries
or insufficient energy supply increases the accumulation of
unfolded or misfolded proteins in ER, leading to the activa-
tion of UPR. Various physiological and pathological insults
such as increased general protein synthesis, failure of post-
translational modifications, hypoxia, nutrient/glucose star-
vation, and alterations in calcium homeostasis can result in
the accumulation of unfolded or misfolded proteins in ER
which then causes ER stress [22]. For example, altered ex-
pression of antithrombin III [23, 24] or blood coagulation
factor VIII [25, 26] results in the exhaustion of protein-
folding machinery and thus induces UPR. Some physiolog-
ical processes such as the differentiation of B lymphocytes
into plasma cells along with the development of highly spe-
cialized secretory capacity can also cause accumulation of
unfolded proteins and induce UPR [27–29]. In response to
certain physiological and pathological insults, cells undergo
UPR to get rid of the unfolded or misfolded proteins. There-
fore, UPR is a protective mechanism by which it monitors
and maintains the homeostasis of ER. For instance, UPR
increases the folding capacity by upregulating ER chaperones
and foldases, and attenuates the biosynthetic burden of
secretory pathway through downregulating the expression of
secreted proteins [30–32]. In addition, UPR also activates
ERAD to eliminate unfolded proteins [33–35] (Figure 1).
However, once the stress is beyond the compensatory capac-
ity of UPR, the cells would undergo apoptosis. As such, UPR
and ER stress are reported to be implicated in a variety of
pathological processes, including diabetes, neurodegenera-
tive diseases, pathogenic infections, atherosclerosis, and is-
chemia [22, 36].

As aforementioned, there is a monitoring mechanism to
ensure the correct protein folding in ER. The unfolded pro-
teins usually have a higher number of hydrophobic surface
patches than that of proteins with native conformation [37].
Thus, unfolded proteins are prone to aggregate with each
other in a crowed environment and directed to degradative
pathway [38]. Molecular chaperones in ER are the major
mechanisms to promote protein folding. They preferentially
interact with hydrophobic surface patches on unfolded pro-
teins and create a private folding environment by preventing
unfolded proteins from interaction and aggregation with
other unfolded proteins. In addition, the concentration of
Ca2+ in ER also impairs protein folding by inhibiting the ac-
tivity of ER-resident chaperones and foldases [39–42]. ER is
the major site for Ca2+ storage in mammalian cells. The con-
centration of Ca2+ in ER is thousands times higher than that
in the cytosol [43]. Most chaperones and foldases in ER are
vigorous Ca2+ binding proteins. Their activity, therefore,
is affected by the concentration of Ca2+ in ER. A variety
of posttranslational modifications including N-linked glyco-
sylation, disulfide bond formation, lipidation, hydroxylation,
and oligomerization occur in ER. Disruption of those post-
translational modifications can also result in the accumu-
lation of incorrectly folded proteins and thereby induce
UPR or ER stress. For example, glucose deprivation impairs
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Figure 1: The regulatory role of unfolded protein response (UPR). Various physiological and pathological insults can result in the accu-
mulation of unfolded proteins which then induces UPR and ER stress. In response to stressful insults, UPR regulates secretory pathway via
following mechanisms: (1) enhancing (red arrow) the expression of ER chaperones and foldases to increase the folding capacity of ER; (2)
attenuating (blue) the biosynthetic burden of secretory pathway through downregulating the expression of secreted proteins (purple arrow);
(3) promoting the clearance of unfolded proteins by activating ERAD (orange arrow).

the process for N-linked protein glycosylation and thus leads
to ER stress [44].

UPR is mediated by three major pathways, which are
initiated by the three transmembrane signaling proteins lo-
cated on the ER membrane. Those transmembrane proteins
function as a bridge to link cytosol and ER with their C-ter-
minal in the cytosol and N-terminal in the ER lumen. The
N-terminal is usually engaged by an ER-resident chaperone
BiP (Grp78) to avoid aggregation. When unfolded proteins
accumulate in ER, chaperons are occupied by unfolded pro-
teins and release the transmembrane signaling proteins:
which include the following three axes of signals: the pan-
creatic endoplasmic reticulum kinase (PERK), the inositol-
requiring enzyme 1 (IRE1), and the activating transcription
factor 6 (ATF6). The release of these proteins triggers UPR
and ER stress (Figure 2). PERK is a Ser/Thr protein kinase
uniquely present in ER. Once released from BiP, PERK be-
comes oligomerized and autophosphorylated. PERK inacti-
vates eukaryotic initiation factor 2α (eIF2α) by phosphoryla-
tion of Ser51 to reduce mRNA translation and protein load
on ER. Deficiency of PERK results in an abnormally eleva-
ted protein synthesis in response to the accumulation of un-
folded proteins in ER. IRE1 is another axis of signal involved
in UPR. IRE1 increases the production of X box protein-1
(XBP-1), a bZIP-family transcriptional factor, by promoting
its mRNA splicing [45]. XBP-1 heterodimerizes with NF-Y
and enhances gene transcription by binding to the ER stress
enhancer (ERSE) and unfolded protein response element

(UPRE) in the promoters of targeted genes. Unlike PERK
and IRE1 which oligomerize upon UPR, when released from
BiP, ATF6, the third axis of signal, translocates into the Golgi
apparatus where its transmembrane domain is cleaved [46].
The cleaved ATF6 is then relocated into the nucleus to regu-
late the expression of targeted genes. For example, once re-
leased from the ER membrane, ATF6 enhances the transcrip-
tion of XBP-1 mRNA which is further regulated by IRE1 [45].

4. ER Stress in Autoimmune-Mediated
β-Cell Destruction

Accumulative evidence supports that ER stress is implicated
in autoimmune-mediated β-cell destruction in type 1 dia-
betes [47, 48]. It was noted that loss of β cells is the direct
causing factor for insufficient insulin secretion in T1D pa-
tients. As described earlier, pancreatic β cells have a very well-
developed ER to fulfill their biological function for secreting
insulin and other glycoproteins, and therefore, β cells are
highly sensitive to ER stress and the subsequent unfolded
protein response (UPR). Severe or long-term ER stress would
direct β cells undergoing apoptosis [47]. For example, mice
deficient in PERK, a molecule responsible for regulating
UPR, are extremely susceptible to diabetes. The null mice
display a progressive loss of β mass and hyperglycemia
with aging [49]. Consistent with the observations in these
mice, some infant-onset diabetes in humans have also been
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Figure 2: Signaling pathways relevant to UPR. PERK, IRE1, and ATF6 act as ER stress sensors by binding to the ER chaperone BiP, and by
which they remain inactive under normal condition. Upon the accumulation of unfolded proteins, BiP preferentially binds to the unfolded
proteins, which results in the release of PERK, IRE1, and ATF6. Once released from BiP, PERK becomes activated and dimerized. Activated
PERK phosphorylates eIF2α to suppress the overall transcription of mRNAs while selectively enhance the transcription of genes implicated
in UPR such as the ATF4 mRNA, and through which ATF4 initiates the transcription of UPR target genes. Similar to PERK, IRE1 is dimerized
and activated after detached from BiP. IRE1 induces XBP-1 by promoting the splicing of its mRNA. XBP-1 activates the transcription of its
target genes to enhance UPR. The release of ATF6 from BiP results in the translocation of ATF6 to the Golgi apparatus, where ATF6 is cleaved
and then translocates into the nucleus, and by which ATF6 initiates the transcription of target genes.

confirmed to be associated with the mutations in PERK. For
example, loss of EIF2AK3 (the gene encodes PERK) develops
Wolcott-Rallison syndrome, an autosomal recessive disorder
characterized by early infancy insulin-dependent diabetes
and multisystemic manifestations including growth retarda-
tion, hepatic/renal dysfunction, mental retardation, and car-
diovascular abnormalities [50, 51]. Similarly, disruption of
UPR by mutating eIF2α, a protein that controls mRNA trans-
lation upon ER stress, enhances the sensitivity to ER stress-
induced apoptosis and results in defective gluconeogenesis.
Mice carrying a homozygous Ser51Ala mutation for eIF2α
show defective in pancreatic β cells manifested by the smaller
core of insulin-secreting β cells and attenuated insulin se-
cretion [52]. Altogether, defects in PERK/eIF2α signaling
render β cells highly vulnerable to ER stress in both humans
and mice [53, 54].

In type 1 diabetes, ER stress in the pancreatic β cells is
primarily induced by proinflammatory cytokines produced
by infiltrated immune cells, which then contributes to β-
cell destruction. During the course of autoimmunity, pro-
inflammatory cytokines are secreted by the infiltrated autore-
active immune cells in the milieu of pancreatic islets. For ex-
ample, nitric oxygen (NO) is an inflammatory mediator re-
sulted from autoimmune response during the course of type
1 diabetes. Studies have shown that excessive NO production
induces β-cell apoptosis in a CHOP-dependent manner [55].

Other than ER stress caused by autoimmunity, misfolding of
insulin in β cells can also directly induce chronic ER stress
as evidenced by the observations in Akita mice. The Akita
mouse carries a mutation for the Ins2 gene which disrupts a
disulfide bond between the α and β chain of proinsulin, lead-
ing to the mis-folding of the mutated insulin, and by which
the mutated insulin induces ER stress in β cells to cause dia-
betes [56].

It is likely that inflammatory cytokines produced by islet-
infiltrated autoreactive immune cells are the major factors
causing β-cell death in type 1 diabetes [57]. In the early stage
of type 1 diabetes, the autoreactive immune cells such as ma-
crophages and T lymphocytes infiltrate into the pancreatic
islets along with the secretion of inflammatory cytokines
such as IL-1β, IFN-γ, and TNF-α, which then induce ER
stress to mediate β-cell destruction. The damaged or dying β
cells also release danger signals such as high-mobility group
box 1 and heat shock proteins (HSPs), to alert the immune
system for the presence of β-cell injury, which in turn further
promotes autoimmune progression [57–60]. Studies have
shown that stimulation of β cells with IL-1β and IFN-γ in-
duces the expression of death protein 5 (DP5), and through
which these cytokines mediate β-cell apoptosis via ER stress
[61]. Knockdown of DP5 provides protection for β cells
against inflammatory cytokine-induced ER stress [61]. In-
sult of β cells with IL-1β and IFN-γ has also been found to
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decrease the expression of sarcoendoplasmic reticulum
pump Ca2+ ATPase (SERCA) 2b, which controls the storage
of ER Ca2+ [62]. It has been well demonstrated that al-
tered ER Ca2+ concentration induces the accumulation of
unfolded proteins in ER associated with the induction of
UPR and ER stress in β cells [63].

Given that hyperglycemia only occurs when β cells fail
to compensate the increased demand for insulin, β cells are
usually “exhausted” in T1D patients [54]. Therefore, other
than the ER stress induced by autoimmune response, β cells
in T1D patients are also under ER stress caused by altered
insulin synthesis. In later case, the increased insulin demand
requires the remaining functional β cells to increase insulin
synthesis to compensate the decrease of β mass. While this
process in short term is beneficial for control of blood glu-
cose homeostasis, it also induces ER stress, which in turn ex-
acerbates β-cell dysfunction to promote disease progression
and diabetes onset. Collectively, there is convincing evidence
that ER stress plays an essential role in β-cell destruction
during the course of T1D development.

5. The Impact of ER Stress on Modulation of
Autoimmune Response

Unlike its well-defined effect on autoimmune-mediated β-
cell destruction in type 1 diabetes, the impact of ER stress
in modulating autoimmune response during the course of
type 1 diabetes, however, remains poorly elucidated. There is
evidence supporting that other than its critical roles played in
β-cell destruction, ER stress also modulates the functionality
of immune cells with implications in autoimmune response
in type 1 diabetes.

It has been well accepted that the presence of β-cell-spe-
cific autoantibodies serves as a marker for the initiation and
progression of autoimmunity in type 1 diabetes [64]. Studies
have shown that IRE1, a key molecule in UPR, modulates the
differentiation of antibody-producing B lymphocytes. Defi-
ciency of IRE1 hampers pro-B cells differentiating into pre-B
cells [65], and XBP-1, an IRE1 downstream molecule, is re-
quired for antibody production by mature B cells [66]. It was
found that the engagement of B-cell receptor (BCR) induces
ubiquitin-mediated degradation of BCL-6, a repressor for B-
lymphocyte-induced maturation protein 1 (BLIMP1) [67],
while BLIMP1 negatively regulates the expression of B-cell-
lineage-specific activator protein (BSAP) [68], and BSAP is
suggested to function as a repressor for XBP-1 [69]. In line
with these results, B lymphocytes deficient in BLIMP1 failed
to express XBP-1 in response to LPS stimulation [66].

Recent studies highlighted the importance of innate im-
munity in the pathogenesis of type 1 diabetes [59, 60], while
elements of the UPR pathway are found to regulate innate
immune response [70]. The expression of CREBH, an ER
stress-associated transcription factor, can be induced by in-
flammatory cytokines such as IL-1β and IL-6, which in turn
regulates the transcription of serum amyloid P-component
and C-reactive protein, the two critical factors implicated
in innate immune responses [71]. Furthermore, the differ-
entiation of dendritic cells (DCs), the most critical innate

immune cells, is regulated by UPR signaling element, XBP-1
[72]. High levels of mRNA splicing for XBP-1 are found in
DCs, and mice deficient in XBP-1 show altered development
of both conventional and plasmacytoid DCs. Loss of XBP-1
renders DCs vulnerable to ER stress-induced apoptosis [72].
Moreover, the capacity for DCs secretion of inflammatory
cytokine IL-23 is regulated by CHOP, a UPR mediator.
CHOP can directly bind to the IL-23 gene and regulate its
transcription. ER stress combined with Toll-like receptor
(TLR) agonists was found to markedly increase the mRNA of
IL-23 p19 subunit and the secretion of IL-23, while knock-
down of CHOP suppressed the induction of IL-23 by ER
stress and TLR signaling [73].

Richardson and coworkers reported that innate immune
response induced by P. aeruginosa infection causes ER stress
in C. elegans, and mutations with loss of function for XBP-
1 lead to larval lethality [74]. In consistent with this result,
the polymorphisms within the XBP-1 gene were found to
be associated with Crohn’s disease and ulcerative colitis in
humans [75], and the two autoimmune diseases share similar
properties as type 1 diabetes. Loss of XBP-1 in intestinal epi-
thelial cells induces Paneth cell dysfunction and overactive
epithelium, leading to impaired mucosal defense to Listeria
monocytogenes and increased sensitivity to colitis [75].

Other than the IRE1/XBP-1 axis, the PERK/eIF2α/ATF4
axis of UPR is also found to be associated with innate res-
ponse. TLR signaling, the most important innate signaling
pathway, is reported to induce selective suppression of the
ATF-4/CHOP axis of UPR pathway [76]. TLR signaling de-
creases eIF2α-induced ATF4 translation. For example, pre-
treatment of LPS, an agonist for TLR4, suppressed ATF4/
CHOP signaling and prevented systemic ER stress-induced
apoptosis in macrophages, renal tubule cells, and hepatocytes
[76]. In contrast, loss of Toll-IL-1R-containing adaptor in-
ducing IFN-β (TRIF), an important adapter for TLR signal-
ing, abrogated the protective effect of LPS on systemic ER
stress-induced renal dysfunction and hepatosteatosis, sug-
gesting that TLR signaling suppresses ATF4/CHOP via a
TRIF-dependent pathway [76].

6. Pathways for Cytokines Induction of
ER Stress

Upon the insults of pathogens, mutated self-antigens, or
tissue damage, the immune system initiates inflammatory
response by releasing copious amount of cytokines. UPR and
ER stress are interconnected with inflammatory cytokines
through multiple mechanisms including reactive oxygen spe-
cies (ROS), NFκB, and JNK (Figure 3). ROS are highly
reactive small molecules with unpaired electrons. They are
important mediators of inflammatory response. The accu-
mulation of ROS, referred to as oxidative stress, was con-
firmed to be associated with ER stress [77]. Oxidizing con-
dition is required for the disulphide bond formation during
the process of protein folding [78]. Increased protein folding
load may lead to oxidative stress. The PERK axis of UPR sig-
naling is reported to be able to activate antioxidant pathway
by promoting ATF4 and nuclear factor-erythroid-derived
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Figure 3: The possible implication of UPR in inflammatory response. UPR is associated with inflammation via a variety of mechanisms
involving ROS, JNK, and NFκB. PERK promotes ATF4 and NRF2, which then suppress ROS production by activating antioxidant pathway.
Upon activation, IRE1/TRAF2 recruits IKK, leading to the phosphorylation of IκBα and subsequent activation of NFκB. IRE1/TRAF2 can
also activate AP1, resulting in the activation of JNK. XBP-1 induced by IRE1 can further induce the expression of various genes implicated
inflammation. Furthermore, ATF6, the other axis of UPR signaling, can promote inflammation via activating NFκB.

2-related factor 2 (NRF2) [79, 80]. Therefore, loss of PERK
markedly increases ROS accumulation induced by toxic
chemicals [79, 81]. The IRE1/TRAF2 axis of UPR can recruit
IκB kinase (IKK), leading to the activation of NFκB, a key
regulator in inflammation [82]. As a result, NFκB activation
and TNF-α production are reduced in cells lacking IRE1 [82].
Furthermore, the IRE1/TRAF2 axis can activate JNK, and by
which it induces the expression of inflammatory genes by
activating activator protein 1 (AP1) [83]. ATF6, the third axis
of UPR signaling, can also activate NFκB pathway, in which
suppression of ATF6 reduces NFκB activation caused by BiP
degradation [84].

Other than the above described pathways, cytokines may
also induce ER stress via inducible nitric oxide (NO) synthase
(iNOS) and JNK pathway. JNK pathway is activated by IL-1β.
Suppression of JNK by its inhibitor SP600125 protected β
cells from IL-1β-induced apoptosis [85]. Cytokines have
been evidenced to induce the expression of iNOS, leading to
excessive NO production. Stimulation with IL-1β and IFN-γ
activates ER stress pathway and induces β-cell apoptosis via
NO synthesis [62]. NO has been suggested to be an impor-
tant mediator of β-cell death in type 1 diabetes. Inflam-
matory cytokines including IL-1β, IFN-γ, and TNF-α can
induce iNOS expression in β cells which then produces copi-
ous amount of NO [50]. Excessive NO induces DNA damage
and thus results in β-cell apoptosis through p53 pathway
or necrosis through poly(ADP-ribose) polymerase (PARP)
pathway [54]. Moreover, NO depletes ER Ca2+ stores via
activating Ca2+ channels or inhibiting Ca2+ pumps [86–88].
Depletion of Ca2+ then leads to ER stress and apoptosis in
β cells via the induction of CHOP signaling [55, 89].

7. Mechanisms Underlying ER-Stress-Induced
β-Cell Death

ER stress is a key mediator for β-cell death in type 1 dia-
betes. The primary purpose of ER stress or UPR is to com-
pensate the damage caused by the disturbances of normal ER
function. However, continuous ER dysfunction would even-
tually render cells undergoing apoptosis. The mechanisms by
which ER stress induces cell death are not fully elucidated,
due to the fact that multiple potential participants involved
but little clarity on the dominant death effectors in a par-
ticular cellular context. In general, ER stress induction of cell
death can be illustrated in three phases: adaptation, alarm,
and apoptosis [44].

The phase for adaptation response is initiated to restore
the homeostasis of ER and to protect cells from damage in-
duced by the disturbances of ER function. As described ear-
lier, the signaling for UPR involves three axes of responses:
IRE1, PERK, and ATF6. These axes interact between each
other and form a feedback regulatory mechanism to control
the activity of UPR. The accumulation of unfolded proteins
in ER results in the engagement of ER-resident chaperon BiP,
and as a consequence, IRE1, PERK, and ATF6 are released
from BiP. Therefore, overexpression of BiP can prevent cell
death induced by oxidative stress, Ca2+ disturbances, and
hypoxia [90]. PERK is oligomerized and phosphorylated
when released from BiP. Activated PERK inactivates eIF2α to
reduce mRNA translation and protein load on ER. Therefore,
PERK deficiency results in an abnormally elevated protein
synthesis in response to the accumulation of unfolded pro-
teins in ER, which renders cells highly sensitive to ER stress
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and ER stress-induced apoptosis [91]. Similarly, as a down-
stream molecule of PERK, eIF2α is required for cell survival
upon the insult of ER stress, and a mutation at the phospho-
rylation site of eIF2α (Ser51Ala) abolishes the translational
suppression in response to ER stress [52]. Similar as PERK,
IRE1 becomes dimerized and activated once released from
BiP. IRE1 induces XBP-1 by promoting the splicing of its
mRNA [45]. XBP-1 is a transcriptional factor belonging to
the bZIP-family and is responsible for the transcription of
many adaptation genes implicated in UPR. Unlike PERK and
IRE1, ATF6 translocates into the Golgi apparatus upon the
release from BiP. The transmembrane domain of ATF6 is
cleaved in the Golgi apparatus and is then relocated into the
nucleus, by which it regulates gene expression [46].

During the alarm phase, many signal pathways are activa-
ted, and the expression of responsive genes has been induced
to alert the system. For example, the cytoplasmic part of IRE1
binds to TNF receptor-associated factor 2 (TRAF2), a key
adaptor for TNF-mediated innate immune signaling. TRAF2
would then activate NFκB pathway via activating IKK and
activate the signaling for c-Jun N-terminal kinases (JNK) by
apoptosis signal-regulating kinase 1 (Ask1). Studies have
shown that dominant negative TRAF2 suppresses the acti-
vation of JNK by IRE1 in response to ER stress [92]. Impor-
tantly, TRAF2 is also a critical component for E3 ubiquitin-
protein ligase complex [93], which binds to Ubc13 and pro-
motes the noncanonical ubiquitination of substrates. The
Ubc13-dependent ubiquitination of TRAF2 is suggested to
be required for the activation of JNK [94]. In addition, IRE1
can further activate JNK signaling through interacting with
c-Jun N-terminal inhibitory kinase (JIK) [95].

Although the purpose for the initiation of adaptation res-
ponse is to restore the homeostasis of ER, apoptosis however
could occur, once the accumulation of unfolded proteins ex-
ceeds the cellular regulatory capacity. The action for apop-
tosis is initiated by the activation of several proteases such
as caspase-12, caspase-4, caspase-2, and caspase-9. Studies in
rodents provided evidence supporting that caspase-12 is in-
volved in ER stress-induced apoptosis. Caspase-12 is acti-
vated by IRE1 upon the insult of ER stress. Mice deficient
in caspase-12 are resistant to ER stress-induced apoptosis,
but remain susceptible to apoptosis induced by other stimuli
[96]. There is evidence that caspase-12 can also be activated
by interacting with TRAF2, a signaling molecule downstream
of IRE1 [95]. In response to ER stress, caspase-7 is trans-
located from the cytosol to the ER surface, which then acti-
vates procaspase-12 as well [97]. The human caspase-4 is the
closest paralog of rodent caspase-12, which is normally loca-
ted on the ER membrane. However, caspase-4 can only be
activated by ER stress-inducing reagents not by the other
apoptotic reagents, and knockdown of caspase-4 by siRNA
reduces ER stress-induced apoptosis in neuroblastoma cells
[98]. Similarly, caspase-2 and caspase-9 are found to be acti-
vated in the early phase of ER stress and inhibition of their
activation either by inhibitors or siRNA reduces ER stress-
induced apoptosis [99]. Studies also suggest that some mem-
bers of inhibitor of apoptosis protein family prevent ER
stress-induced cell death via interacting with caspase-2 and
caspase-9 [99].

Other than the implication of caspases, Ask1 kinase and
CCAAT/enhancer binding protein (C/EBP) homologous
protein (CHOP) are also critical mediators for ER stress-in-
duced cell death. IRE1/TRAF2 complex recruits Ask1 and
activates subsequent JNK signaling. Studies have shown that
the activation of JNK inhibits antiapoptotic protein BCL-2
[100] and induces proapoptotic protein Bim [101, 102]. Loss
of Ask1 suppresses ER stress-induced JNK activation and
provides protection for cells against ER stress-induced death
[103]. CHOP is a transcription factor belonging to basic
leucine zipper transcription factor (bZIP) family. Many in-
ducers of UPR including ATF4, ATF6, and XBP-1 up-reg-
ulate CHOP expression, and phosphorylation of CHOP at
ser78 and ser81 by p38 MAPK enhances its transcriptional
activity [44, 104]. Upon its activation, CHOP suppresses
anti-apoptotic protein BCL-2 which in turn induces cells
undergoing apoptosis [105–107].

8. Conclusion and Future Directions

There is convincing evidence that ER stress plays an essential
role in autoimmune-mediated β-cell destruction. Feasible
evidence also supports that ER stress modulates autoimmune
response during T1D development (Table 1). ER stress in
β cells can be either triggered by autoimmune responses
against β-cell self-antigens and/or by the increase of com-
pensated insulin synthesis. During the course of type 1 dia-
betes, autoreactive immune cells secrete copious amount of
inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ
into the islet milieu, which stimulate excessive production
of NO in β cells and mediate β-cell destruction by inducing
ER stress. Recent studies further suggest that ER stress also
modulates the functionality of immune cells with implica-
tions in autoimmune progression. The absolute insulin defi-
ciency in T1D patients renders the residual β cells for com-
pensated insulin secretion to meet the demands of insulin
for maintaining blood glucose homeostasis. This increase in
insulin biosynthesis could overwhelm the folding capacity of
ER, leading to UPR and ER stress in β cells, which in turn
exacerbates β-cell dysfunction and T1D onset.

It should be kept in mind that the mechanisms underly-
ing autoimmune-mediated β-cell destruction in type 1 dia-
betes are complex, and ER stress is unlikely the exclusive
mechanism implicated in disease process. Despite recent sig-
nificant advancement in this field, there are still many ques-
tions yet to be addressed. Can ER stress be served as a bio-
marker for β-cell destruction and autoimmune progression
in the clinic setting? Are there additional factors for induc-
tion of ER stress in β cells during T1D development? Does
modulation of ER stress in immune cells attenuate autoim-
mune progression? Does blockade of ER stress protect β
cells from autoimmune-mediated destruction? Future stud-
ies aimed at dissecting these questions would provide a
broadened insight for T1D pathogenesis and would have
great potential for developing novel therapeutic strategies
against this devastating disorder.
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Table 1: Publications relevant to ER stress in the regulation of immune response and β-cell destruction.

Author Defective/mutant gene Species Major finding Reference

Harding et al. PERK−/− Mouse
PERK-deficient mice are extremely susceptible to diabetes. They
display a progressive β-cell loss and hyperglycemia with aging.

[49]

Delépine et al. PERK−/− Human
Deficiency of PERK in human results in Wolcott-Rallison
syndrome, which is characterized by early infancy
insulin-dependent diabetes and multisystemic dysfunction.

[50]

Scheuner et al. eIF2α mutant (Ser51Ala) Mouse

Ser51Ala mutation of eIF2α shows a deficiency in pancreatic β cells
manifested by the smaller core of insulin-secreting β cells and
attenuated insulin secretion, and the mice die from hypoglycemia
at their early infancy.

[52]

Ron et al. Ins2 mutation Mouse

Ins2 mutation in Akita mice disrupts disulfide bond between
the α and β chain of proinsulin, which leads to the mis-folding
of the mutated insulin and further induces ER stress in β cells
and diabetes.

[56]

Zhang et al. IRE1−/− Mouse
Pro-B cells failed to differentiate into pre-B cells when deficient
for IRE1.

[65]

Iwakoshi et al. XBP-1−/− Mouse
Deficiency of XBP-1 results in the impacted development of both
conventional and plasmacytoid DCs. Loss of XBP-1 renders DCs
vulnerable to ER stress-induced apoptosis.

[72]

Goodall et al. CHOP knockdown
Knockdown of CHOP suppressed the production of IL-23 induced
by ER stress and TLR signaling.

[73]

Richardson et al. XBP-1 mutation C. elegans
Innate immune response induced by P. aeruginosa infection causes
ER stress in C. elegans, and mutations with loss of function for
XBP-1 lead to larval lethality.

[74]

Kaser et al. XBP-1 polymorphisms Human

Loss of XBP-1 in intestinal epithelial cells induces Paneth cell
dysfunction and overactive epithelium, leading to impaired
mucosal defense to Listeria monocytogenes and increased
sensitivity to colitis, an inflammatory disease sharing
similar properties with T1D. The polymorphisms within the
XBP-1 gene are associated with Crohn’s disease and ulcerative
colitis in humans.

[75]

Nakagawa et al. Caspase-12−/− Mouse
Caspase-12 is involved in ER stress-induced apoptosis. Mice
deficient in caspase-12 are resistant to ER stress-induced apoptosis,
but remain susceptible to apoptosis induced by other stimuli.

[96]

Hitomi et al. Caspase-4 knockdown Human
Human caspase-4, the closest paralog of rodent caspase-12, is
involved in ER stress-induced apoptosis. Knockdown of caspase-4
by siRNA reduces ER stress-induced apoptosis.

[98]

Nishitoh et al. Ask1−/− Mouse
Loss of Ask1 suppresses ER stress-induced JNK activation and
protects cells from ER stress-induced death.

[103]
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