
FlUlctional Implementations of the
Jacobi Eigensolver

.. l 2 A. P. W. BOHM AND R. E. HIROMOTO

lComputer Science Department, Colorado State University, Fort Collins, CO 90523; e-mail: bohm@cs.colostate.edu
2Division of Mathematics, Computer Science and Statistics, The University of Texas at San Antonio, San Antonio, TX

ABSTRACT

In this article we describe the systematic development of two implementations of the
Jacobi eigensolver and give their initial performance results for the MIT /Motorola
Monsoon dataflow machine. Our study is carried out using MINT, the MIT Monsoon
simulator. The functional semantics with respect to array updates, which cause excessive
array copying, have led us to an implementation of a parallel "group rotations" algorithm
first described by Sameh. Our version of this algorithm requires O(n3) operations,
whereas Sameh's original version requires O(n4) operations. The convergence of the
group algorithm is briefly treated. We discuss the issues involved in rewriting the algo
rithm in Sisal, a strict, purely functional language without explicit !-structures. © 1996

John Wiley & Sons, Inc.

1 INTRODUCTION

A fundamental strength of functional languages
is their ability to express the implementation of
parallel algorithms closely following their mathe
matical formulation in a machine-independent
fashion. This combined with their ability to express
parallelism at the function, loop, and instruction
levels provides strong arguments for the use of
functional languages and development of func
tional algorithms for parallel computing. As func
tional languages provide a gateway to novel multi
threaded machine architectures [6], they are of
interest to computational scientists and designers
of numerical algorithms for these machines. Id
[11] and Sisal [9] are languages with such po
tential.

Received April 1995
Revised May 1995

© 19961ohn Wiley & Sons, Inc.
Scientific Programming, Vol. 5, pp. 111-120 (1996)
CCC 1058-9244/96/020111-10

An ultimate goal of parallel programming lan
guage design should be the efficient mapping of
programs onto parallel hardware. Functional lan
guages have yet to provide general evidence that
they can achieve sufficient levels of performance.
Some recent results of optimizing compilation for
Sisal are beginning to demonstrate this capabil
ity [3].

In this article, we present the design and analysis
of a numerical algorithm, the Jacobi eigensolver,
initially written in the functional dataflow language
Id [1, 8, 10]. The programming constructs are
functional, but we are using explicit !-structures in
implementing array computations, exploiting the
extra expressive power that !-structures bring to a
deelarative language. !-structures are data struc
tures with built-in element-level synchronization,
implemented with tag bits. Each element of an
!-structure can be written only once. Element reads
before writes are deferred until the write occurs.
We have not used Id features that allow nondeter
minism in parallel programs. In particular, muta
ble arrays (called M-structures in Id) that allow

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193412782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

t 12 BOHM AND HIROMOTO

parallel updating of array elements, causing time
dependence and hence nondeterminism, are not
used. We discuss the issues involved in rewriting
the algorithm in Sisal, a strict functional language
without explicit I -structures.

Algorithms for eigensolvers represent an import
ant class of numerical software typically found in
standard Fortran system libraries. The Jacobi al
gorithm exhibits an interesting matrix calculation
where the ordered update of each matrix element
is governed by a sequence of previously computed
updates. From the description of this algorithm
given below, the computational use and organiza
tion of the data are initially seen to be a challenging
task for implementation in a functional language.

We show that a functional implementation
taken directly from the specifications of the numer
ical algorithm is marred by an intolerable amount
of work caused by useless data copying required
to maintain functional semantics. A second imple
mentation, which avoids useless copying by per
forming more real work in one step, is of the same
order of total work complexity as the original se
quential algorithm and provides a higher degree
of parallelism. This turns out to be an improved
version of an algorithm that was designed for the
ILLAC-IV [13].

2 THE JACOBI EIGENSOLVER

Given a symmetric N X N matrix A, the eigenvalue
problem is the determination of eigenvectors x and
eigenvalues A defined by

Ax= Ax. (1)

Any standard reference on numerical methods
[12] will provide several methods for determining
the solution to this problem. One such method,
known as the Jacobi algorithm, uses two-dimen
sional rotations applied successively to each off
diagonal element of the matrix A. When the rota
tions are done systematically. A converges to a di
agonal matrix, thereby producing both the eigen
vectors and the corresponding eigenvalues. The
"plane" or Jacobi rotation is described by an "or
thogonal" transformation matrix Rpq, in which all
diagonal elements are unity except for the two ele
ments c located at RPP and Rqq, and all off-diago
nal elements are zero except for s and -s located
at Rpq and R'IP, respectively. The rotation is de
fined by the values e (eosine) and s (sine) with

respect to a free angular parameter cf>. A rotation
is performed by the matrix product

(2)

This rotation can be shown to preserve the eigen
values of A and to allow for a simple recovery of
the eigenvectors. A Jacobi rotation (p. q) changes
only the p and q rows and columns of A. Solving
Equation 2 we get:

I _ (:2 2) (apq - c - s a1"1 + sc aPP - aqq)

(3)

(4)

(5)

(6)

(7)

where r # p, r # q. The Jacobi method defines the
choice of the free angular parameter cp such that
a 1

!''1 = 0. Given this choice of cp, the corresponding
values of a

1
rp' fl

1
rq' a

1
PP' and a

1
qq can be evalu

ated. It is important to notice that elements zeroed
under this method are likely to be unzeroed as a
result of a subsequent transformation applied to
a different off-diagonal element. Fortunately, it
can be shown that by systematic application of
the Jacobi method, the off-diagonal elements will
converge to zero. Section 5 discusses convergence
issues. We now replace Equations 3-6 with

(8)

(9)

(10)

(11)

where t = tancf> and T (=tan~) is defined by

s
T=='--

1 + c

Using the property that the matrix A is symmetric.
the pattern of element updates as induced by the
similarity transformation RT:l.'iAR.1 _:; is depicted in
Figure 1. These updated elements are denoted by
a 1 with the (3. 5) element zeroed by the appropriate
choice of cf>. When elements are zeroed in a strict

a' a I

I a I a
I a' 0 a' I a I a a

I a

a' a' I a I a

FIGURE 1 Elemental updates induced by RT3.:;AR3.5.

cyclic order, the convergence of this method is qua
dratic for nondegenerate eigenvalues (i.e., eigen
values that are not identical). Because the matrix
A is symmetric, one sweep of the Jacobi method
is applied to n (n - 1)/2 distinct off-diagonal ele
ments. Furthermore, each rotation requires O(n)
operations, so that the total computational com
plexity is of order n 3 for each sweep.

31MPLEMENTATIONS

3.1 A Row Maior Order Implementation

ln the following implementations of the Jacobi al
gorithm, A stands for the input matrix, D for the
diagonal elements that will be converted into eigen
values by a number of rotations, and V stands for
the matrix that will be converted from an identity
matrix into the matrix of eigenvectors.

A sequential implementation of Jacobi's algo
rithm performs sweeps of rotations around points
in the upper triangle in row major order, until the
sum of the absolute values of the upper triangle of
the matrix is sufficiently small. In the following
sketch of the main program, some of the details
concerned with not rotating around a point that is
relativelv small are left out:

while
abs_sum_up_triangle A > epsilon do
next A, next V, next D =
{ for p <- 1 to (N-1) do

next A, next V, next D
{ for q <- (p+1) to N do

next A, next V, next D =
Rotate A V D p q

finallyA, V, D};
finally A, V, D}

finally A, V, D}

JACOBI EIGENSOL VER 113

The while and/or loops in the above code have
the standard meaning. A nextified value, such as
next A, receives a new value for A in every loop
iteration. The finally construct yields the last value
produced in a loop. The function Rotate does the
actual work. Rotate computes the values for s =

simp, t =simp/ cosf/>, and T = s/ (1 +c), as defined
in the previous section, and with these values it
creates next versions of A, V, and D. In the follow
ing sketch of function Rotate, only the creation of
the next value of A using Equations 8 and 9 is
considered (Equations 1 0 and 11 are used in the
computation of next D), and again complications
considering small values are left out:

def Rotate A p q = { % compute s and tau
def e8 p1 p2 = p1 S*(p2+tau*p1);
def e9 p1 p2 = p2 + S*(p1-tau*p2)

in {matrix ((1, N), (1, N)) of
I [i,j] A[i,j] II i <- 1 toN; j <- 1

[i, p]

[i, p]

[i, j l

I [p, j 1

I [i, j 1

[i, q]
[p, q]
[i, q]

I [i, qJ
I [i, j 1

I [p, j 1
I [i, j 1

I [q, j 1

I [i, j 1

} } ;

to p-1
e8 A[i,p] A[i,q] IIi<- 1 to p-1
A[i,p] II i <- p toN
A[i,j] II i <- 1 to p-1; j <- p+l
to q-1
e8 A [p, j l A [j, q] II j <- p+l
to q-1
A [i, j] II i <- p+1 to N; j <- p+1
to q-1
e9 A[i, p] A[i, q] i <- 1 to p-1
0.0
e9 A[p, i] A[i, q] i <- p+1
to q-1
A[i, q] i <- q to N
A [i, j] i <- 1 to p-1; j <- q+1
to N
e8 A[p,j] A[q, j] II j <- q+1 to N
A [i, j] II i <- p+1 to q-1;
j <- q+1 to N
e9 A[p, j] A[q, j] II j <- q+1
to N
A [i, j] II i <- q+1 to N; j <- q+1
to N

The above ld code uses an array comprehension
in which the dimensionality and bounds of the
array are first defined, followed by a number of
region definitions. A region definition of the form

I [target] = expression II generators

is equivalent to the loop

for generators do array[target] = expression.

114 BOHM Al'\D HIROMOTO

A generator of the form

indicates a nested loop.
This first implementation closely follows the

mathematics of the Jacobi transformation and
allows for the natural exploitation of parallelism.
The problem is that this algorithm is too inefficient.
To update O(n) elements in A, Rotate performs
O(n2) work, most of which is just copying. This
makes a sweep [involving 0 (n2) rotations] an 0 (rz-+)
operation, which is one order of magnitude too
high. A nonfunctional solution to this copying
problem would be to use updatable (mutable)
structures (M-structures in Id). This forces the pro
grammer to leave the functional model of compu
tation and rely on time-dependent and nondeter
ministic constructs. It is our view that these
constructs should be used as much as possible at
the compiler leveL and as little as possible at the
source code level. Examples of this approach are
the build-in-place and update-in-place optimiza
tions performed by the Sisal compiler [3].

3.2 Sameh's Parallel Group Rotations

A more parallel and at the same time more space
efficient implementation of the Jacobi algorithm
allows several rotations to be performed concur
rently. A group of rotations (p 1 , q1) . . . (pk, qd
is valid if each point (p1, q1) occupies its own row
and column in the upper triangle of A. Clearly
there cannot be more than Lrz/2j rotation points in
a group. In a parallel rotation based on all rotation
points of such a group, each element in the result
ing matrix is affected by at most two rotation
points. A set of groups partitions the upper triangle
of a matrix if all points in the upper triangle are
included in exactly one group. In [13] Sameh de
fines a minimal number of 2n - 1 groups of maxi
mal size Ln/2j. These groups are essentially anti
diagonals which wrap around the matrix
boundaries. Sameh's group definition can be di
rectly translated into the following function
MakePQs:

def MakePQs n =
{ m =floor(float (n+1)/2.0);

PQs = 2D_I_array ((1, 2*m-1), (1, n)) in
for k <- 1 to 2*m-1 do

if k <= (m-1) then
{ for q <- (m-k+1) to (n-k) do

p = if (((m-k+;I.) <= q)
and (q <= (2*m-2*k))

}
} ;

else

then ((2*m-2*k+1) -q)
else if (((2*m-2*k) < q)

and (q<=(2*m-k-1))
then ((4*m-2*k) -q)
else n;

(i,j) =if p < q then (p,q)
else (q, p);

PQs[k,i] = (i,j); PQs[k,j] (i' j)

{ for q <- (4*m-n-k) to (3*m-k-1) do
p = if (q < (2*m-k+1))

} ;

then n
else if ((2*m-k+1) <= q)

and (q<=(4*m-2*k-1))
then ((4*m-2*k) -q)
else ((6*m-2*k-1)-q);

(i,j) =if p < q then (p,q)
else (q, p);

PQs[k,i] = (i,j); PQs[k,j] = (i,j)

{for i <- n to 2*m-1 do PQs[k,2*m-k] =
(0, 0)}

finally PQs

The following are Sameh's groups for n = 5 and
n = 6:

2 4 1 3

1 3 5

n=5 5 2

4

2 4 1 3 5

1 3 5 4

5 2 3
n=6

4 2

1

Observe that for odd n, in the example rz = 5,
Sameh's group numbers start at L(n - 1)/2j and
increment (modulo n) with L(rz - 1)/2j in both
row and column directions, and that for even rz a
last column is added with groups n down to 1. We
have a proof for this observation in general [2],
which is beyond the scope of this article. Thus
MakePQs can be simplified, especially if we sepa
rate the cases for odd and even n:

def MakeOddPQs n =

{ m = div (n-1) 2;

};

PQs 2D_I_array ((1,n), (1,n))
in {for p <- 1 to n do

{for q <- p+1 to n do
h (mod (m*p + m*q- 2*ml n);
k = if (h 0) then n else h;
PQs [k, p] (p, q); PQs [k, q] =

(p, q)};
PQs[p,n+1-p) =(0,0)
finally PQs}

def MakeEvenPQs n =
{ m = div (n-1) 2; dn = n-1;

};

PQs 2D_I_array ((1, dn), (l,n))
in {for p <- 1 to dn do

{for q <- p+1 to dn do
h (mod (m*p + m*q- 2*ml dn};
k = if (h == 0) then dn else h;
PQs [k, p] (p, q); PQs [k, q]
(p, q) } ;

PQs[p,n]=(n-p,n); PQs[p,n-p]
(n-p,n)
finally PQs}

We have left the definition of PQs in MakeOdd
PQs and MakeEvenPQs in the form of a side-ef
fecting loop, as an array comprehension would
force us to compute k twice, for index expression
[k,p] and for [k, q].

3.3 Implementing the Group Rotations

Sameh uses the groups defined in the previous
section to create an orthogonal transformation Qk
for each group, consisting of sines and cosines of
the various <f>s that occupy disjoint elements of
the transformation matrix, and then performs the
transformation using a matrix product given in
Equation 2. As there are 2n - 1 groups, this
method requires O(n) matrix multiplications,
which renders the complexity of one sweep to be
O(n4

).

We now present a new, demand-driven, imple
mentation of the parallel group rotations algorithm
that requires only O(n3) operations. Instead of
forming a transformation matrix and performing
a matrix product, we register with each element in
the transformed matrix A' the two corresponding
rotations that affect it and perform those rotations
in row major order, guaranteeing that for the two
elements modified by the same rotations, the rota
tion orders are the same.

JACOBI EIGENSOL VER 115

We will derive this algorithm in two transforma
tion steps from the row major implementation. In
the first transformation step we turn the row major
implementation function Rotate into the demand
driven form RotDemand in which the effect of one
rotation point (p, q) is computed for each element
of the result army.

def RotDemand A p q =
{% compute s and tau
def es pl p2 = pl- S*(p2+tau*pl);
def e9 fl f2 = p2 + s*(p1-tau*p2) in
{matrix ((l,N), (l,N)) of
I £i, j 1 =

} ;

if (j == p)

then e8 A[i,p] A[i,q]
else if (j == q)

then if (i < p)
then e9 A[i,p] A[i,q]
else e9 A[p,i] A[i,q]

else if (i == p)
then if (j < q)

then e8 A[p,j] A[j,q]
else e8 A[p,j] A[q,j]

else if (i == q)
then e9 A[p,j] A[q,j]
else A[i,j]

II i <- 1 to N-1; j <- i+1 to N
}

In the second step of the transformation, we
allow each element of a result matrix to be affected
by two rotation points as defined by Sameh's
groups. For this we define a table PQs where row
PQsk defines the k1

h group rotation, such that
PQs [k, i] and PQs [k,j] contain the points affecting
A'[i,j]. A tuple (0,0) in PQs[k,i] signifies that there
is no rotation in row or column i in group k. The
assignments to array elements of PQs in the func
tions MakePQs, and also in MakeOddPSs and
MakeEvenPQs accomplish the creation of PQs,
which is constant throughout the computation,
and is created once. The PQs arrays for n = 5 and
n = 6 are:

(14) (23) (23) (14) (00)

(12) (12) (35) (00) (35)

n=5 (15) (24) (00) (24) (15)

(13) (00) (13) (45) (45)

(00) (25) (34) (34) (25)

116 BOHM AND HIROMOTO

(14) (23) (23) (14) (56) (56)

(12) (12) (35) (46) (35) (46)

n = 6 (15) (24) (36) (24) (15) (36)

(13) (26) (13) (45) (45) (26)

(16) (25) (34) (34) (25) (16)

A parallel group rotation now involves the com
putation of the s, t, and T values associated with all
points in the group, and one array comprehension
defining A'. The function GroupRot presents this
process, again with complications concerning
small elements of A left out. Notice the strong simi
larity between rot1 and RotDemand. The differ
ence is that in rot1 we need to create arrays of T

and s values. This takes O(n) operations. Each
element of A' is computed with a constant number
of operations, so creating A' takes O(n2) opera
tions. Consequently, a sweep takes 0 (n3

). Further
more, all n 2 elements of A' can be computed in
parallel, and no needless copying is performed.

def GroupRot A V D PQs k N = {
Ts, Taus, Ss = MakeTsTausSs A D PQs k N in
{ matrix((1,N), (1,N)) of
I [i, j 1 =

{p1,q1,p2,q2 =

{p1,q1 = PQs[k,i]; p2,q2 = PQs[k,j]
in if (p1<p2) then p1,q1,p2,q2

else p2,q2,p1,q1}
in if (p1 == 0)

then rot1 A Taus Ss i j p2 q2
else if ((p1 == i) and (q1 j))

then 0.0
else rot2 A Taus Ss i j p1 q1
p2 q2}

IIi <- 1 to N-1; j <- i+l to N
}

} ;

def rot1 A Taus Ss i j p q =
def e8 p1 p2 = p1- Ss[p]*

(p2+Taus [p] *P1);
def e9 f1 f2 = p2 + Ss[p]*

(p1-Taus[p]*p2) in
if (Ss[p] == 0.0)
then A [i, j l
else if (j == p)

then e8 A[i,p] A[i,q]
else if (j == q)

then if (i < p)
then e9 A[i,p] A[i,q]
else e9 A[p,i] A[i,q]

else if (i == p)
then if (j < q)

} ;

then e8 A[p,j] A[j,q]
else e8 A[p,j] A[q,j]

else if (i == q)
then e9 A[p,j] A[q,j]
else A[i,j]

def rot2 A Taus Ss i j p1 q1 p q
{ def re8 r1 c1 r2 c2 =

} ;

{g = rot1 A Taus Ss r1 c1 p1 q1;
h = rot1 A Taus Ss r2 c2 p1 q1
in g-Ss[p]*(h+g*Taus[p]) };

def re9 r1 c1 r1 c2 =
{g = rot1 A Taus Ss r1 c1 p1 q1;
h = rot1 A Taus Ss r2 c2 p1 q1

in h+Ss[p]*(g-h*Taus[p])} in
if (Ss[p] == 0.0)
then rot1 A Taus Ss i j p1 q1
else if (j == p)

then re8 i p i q;
else if (j == q)

then if (i < p)
then re9 i
else re9 p

else if (i == p)
then if (j

p i
i i

< q)
then re8 p

q
q

j
else re8 p j

else re9 p j q j

j
q

4 PRELIMINARY MONSOON
PERFORMANCE

p
j

This section provides some preliminary perfor
mance results. A more complete study of the per
formance of the algorithms, written in Id and Sisal
and running on parallel platforms, still needs to
be done. The run-time behavior of Jacobi algo
rithms is highly data dependent. Also, the conver
gence rate is dependent on the order in which the
rotations take place. Section 5 discusses conver
gence issues further. The order of the rotations
differs in the two implementations, and thus the
number of rotations and sweeps needed to con
verge may differ. This is exemplified by Table 1,
which contains simulation results of both Jacobi
implementations, run fora matrix A with 1.0 on the
diagonal and A[i,j] = i + j off the diagonal. "lnstr"
stands for the number of instructions executed,
''Rots'' for the number of rotations performed, and
"Sweeps" for the number of sweeps performed.
The diagonal elements in this particular type of
input matrix are smaller than the off-diagonal ele
ments, which give rise to relatively slow conver-

Tablet. Monsoon Performance of the
Algorithms

Row Major Order Group Rotations

lnstr lnstr Sweeps
n * 1000 Rots * 1000 (Rots)

4 133 21 84 4(24)
6 527 64 313 4(60)
8 773 72 866 5(140)

10 1769 132 1928 5(225)
12 4295 261 3367 5(330)
14 7144 359 6492 6(546)
16 11248 476 9791 6(720)

gence. Notice that the row major order algorithm
performs many fewer rotations than the group ro
tation algorithm, but that the group rotation algo
rithm still executes fewer instructions most of the
time (except in cases n = 8 and n = 1 0). Clearly, a
more thorough study of the convergence character
istics of the two algorithms is needed; however,
that is beyond the scope of this article. The next
section provides an outline of the convergence
proof for these algorithms.

5 NUMERICAL CONVERGENCE

The convergence of the Jacobi method is depen
dent on the ordering of the rotations applied to
each of the off-diagonal elements of the matrix.
With (n(n- 1))/2)! ways of choosing the updating
order for the Jacobi method, it is important that a
particular class of rotation orderings can be guar
anteed to converge. One such ordering is the cyclic
row major ordering, in which the first rotation in
the sweep is (1,2). Forsythe and Henrici [41 have
proved the convergence of the cyclic row major
ordering algorithm via the following theorem:

THEOREM: Let a sequence of Jacobi transforma
tions be applied to a symmetric matrixA. Further,
let the angle cf>k be restricted as follows:

If the off-diagonal elements are annihilated using
a cyclic row major ordering, then this Jacobi
method converges.

Building on this theorem, Shroff and Schreiver
[14] introduce the notions of "cyclic wavefront"
orderings, and "weak equivalent ordering" to

JACOBI EIGENSOL VER 117

prove that a modulus ordering of the form

1 2 3 4

3 4 5

5 1

2

converges. In the modulus ordering, rotations are
sequenced according to their group number l(p,q),
where l(p,q) = ((p + q - 3) mod n) + 1 for odd
n, and /(p,q) = ((p + q- 3) mod n- 1) + 1 for
even n. Inside a group, the rotations are sequenced
according to row major ordering. Shroff and
Schreiver show that, if an ordering X can be trans
formed into the modulus ordering by a permuta
tion of the array indices, then X gives rise to a
converging Jacobi algorithm. As an example, for
N = 6, the permutation of the array indices
(123456) ~ (135246) transforms Sameh's order
ing, when taking symmetry into account, into mod
ulus ordering:

2 4 1 3 5

1 3 5 4

5 2 3

4 2

1

with index permutations:

(12) ~ (13)

(13) ~ (15)

(35) ~ (54)~ (45)

(45) ~

(46) ~

(24)

(26)

transforms into:

1 2 3 4 5

3 4 5 1

5 1 2

2 3

4

118 BOHM Al\iD HIROMOTO

6 A STRICT FUNCTIONAL
IMPLEMENTATION OF
GROUP ROTATIONS

In ld's array comprehensions, the tar~et of a cer
tain array element expression can he explicitly
specified in a re~ion definition:

I [target] = expression II generators

Moreover, ld's }-structures allow array-element
assignments A [i] = u to he scattered over the pro
gram. Thus, in Id there is no relation between the
process defining an array element and the place
ment of that element. As ld data structures are
nonstrict, it is not even necessary that all elements
of an array be defined. It is in general not decidable
whether an Id array is uniquely defined. i.e., all
elements are defined at most once, or completely
defined, i.e., all elements are defined exactly once.
For array comprehensions with linear expressions
defining the array dimensions, array-element tar
gets. and bounds of the generators, uniqueness
and completeness can he checked [5].

In contrast, the strict functional programming
language Sisal allows array creation in a loop only
monolithically and in an implicitly defined order:
loop body (it, ... , in) of an n-deep nested loop
defines element (it, ... , i") of an n-dimensional
array. For example

fori in ll,ul cross j in l2,u2
returns array of f(i,j)

end for

creates a two-dimensional array with bounds
((/1,u1), (/2,u2)), and/(i,j) at position (i,j). We call
this the strict loop order property of Sisal, which
statically guarantees that arrays are uniquely and
completely defined. This property allows efficient
array allocation and creation at the cost of some
loss in expressiveness. As an example, translating
the ld functions Grouprot, rot!, and rot2 into Sisal
is straightforward, whereas translating the ld func
tion MakePQs into Sisal is not. as it relies on a
nonmonolithic computation of one I -structure (in
this case scattered over three loops), and side-ef
fecting assignments with computation of the tar
get index.

There are four approaches in Sisal to create
arrays such as PQs, where there is no direct relation
between the order of creation and the place in
the array.

1. Devise a new implementation of the algo
rithm that adheres to strict loop ordering.
This often requires a more thorough under
standing of the algorithm being imple
mented, and often helps the programmer to

come to a more elegant solution of the prob
lem. It turns out that it is possible to change
MakePQs so that it adheres to the strict
loop order.

2. Create the array in a sequential loop by sub
sequent array updates of the form:

PQs : = old PQs [k, i: tuple] [k, j: tuple]

relying on the update in place optimization of the
Sisal compiler to create only one array and perform
destructive updates. In this form the creation of
the array is completely sequential.

3. The second approach can sometimes be
made more parallel when rows (or more gen
erallv, suharravs) can he created in parallel
and . concaten~ted together, exploiting the
build-in-place optimization. This can be
done for ;v/akePQs, as the elements are
placed in the correct rows, but not in the
strict loop order inside a row.

4. Create an intermediate arrav of (value.in
dex) tuples in any order. followed by a forall
loop that places the values in the array by
searching in the intermediate array. This
very general approach exploits all available
parallelism. but is costly in instruction count
and space usage as a search is involved and
an intermediate array is built. In our case
the intermediate array would have the cor
rect row order but not the correct element
order per row. Also, it would not be neces
sarv to store the row index i with the element
(p,q), as an element (p.q) of the intermedi
ate array must he placed in both positions
(k,p and k.q) of the final array PQs.

The design of the Sisal function MakePQs 1s
based on the following observations.

I. If n is odd. then
1. The branches assigning p = n are never

taken, as 2m - k - 1 = n - k and 4m - n
- k =2m- k + 1.

2. All other expressions in different conditional
branches assigning a value to p are equal
modulo n. The different expressions in the

various conditional branches guarantee that
the value assigned top lies between 1 and n.

3. p and q are interchangeable: p = 2m - 2k
+ 1 - q implies that q = 2m - 2k + 1
- p. This coincides with our intuition: A
rotation point (p,q) touches rows and col
umns p and q, so rows and columns play
interchangeable roles. This allows us to per
form the two assignments in one loop body
in M akePQs. However, this is not necessary.
We can also perform one assignment per
loop body and run the loop for all points in
PQs, which is what we need to do in a strict
loop order implementation of MakePQs.

n. If n is even, the assignments top are the same
as for n - 1 except that an extra assignment
p = n occurs for q n - k (4m - n - k =
n - k). This implies that PQs for even n is
equal to PQs for n - 1, except that it gets
(n - k,n) in an extra n-th column and in po
sition (k,n - k), which has (0,0) for n - 1.

III. All loop bodies are independent, so they can
be run in any order, hence also in strict loop
order.

The Sisal implementation of MakePQs follows.

type pair
type table

record[x,y: integer];
array[array[pair]]

function compq(k,q,n: integer returns pair)
let pp :=mod (n- 2*k- q + 2, n);

p if pp = 0 then n else pp end if;
in if q < p then record pair[x:q; y:p]

else record pair[x:p; y:q]
end if

end let
end function

function MakePQs(n: integer returns table)
if n = 2 * (n/2) % even
then fork in 1, n-1 cross q in l,n

returns array of
if (q = n-k) I (q = n)

then record pair [x: n-k; y:n]
else compq(k,q,n-1)
end if

end for
else for k in 1,n cross q in l,n

returns array of
if (q n-k+l)
then record pair [x: 0; y:O]
else compq(k,q,n)
end if

end for
end if

end function

JACOBI EIGENSOL VER 119

The code is dearly simpler than the original
MakePQs, and much more efficient than an imple
mentation that builds an intermediate array with
unordered rows and reorders these in a second
sweep.

7 CONCLUSIONS AND FUTURE WORK

In this article we have discussed the design of a
functional parallel implementation of the Jacobi
eigensolver. We have demonstrated that the Jacobi
method, although initially encumbered by the
functional semantics of nondestniCtive array up
dates, is efficiently expressible in the functional
paradigm. Without relaxing the fundamental
single-assignment semantics of functional lan
guages, an efficient implementation was possible
by resorting to parallelism at the algorithmic level,
so that copying of array elements could be elimi
nated. Nonstrictness was explicitly used in only
one function of the original Id program, and this
could be avoided by reordering the creation of the
array elements.

In future work we will compare the actual paral
lel performance of the code against the perfor
mance expected from analyzing its algorithmic
specification. This approach was first used as a
metric for comparing the computational complex
ity of sequential and parallel Fortran implementa
tions [7]. We will compare the row order and group
rotation algorithms with respect to their instruction
efficiency and parallelism in both Id and Sisal on
stock and experimental hardware. We will study
the effect on efficiency and parallelism of explicit
updates in place using mutable arrays in Id for
the row order algorithm and compare this to the
automatic update in place optimizations available
in SisaL We will also study the effect of storing vs.
recomputing elements of the PQs table.

ACKNOWLEDGMENTS

John Feo (LLNL) pointed out the four approaches
to strict loop order array creation, and wrote the
strict loop order Sisal version of theM akePQs func
tion. This work is supported by a grant from Motor
ola Inc. and in part by NSF grant MIP-9113268.

REFERENCES

[1] Arvind, R. A. Ianucci, Instruction Set Definition
for a Tagged Token Dataflow Machine. LCS,
MIT, 1983.

120 BOHM AND HIROMOTO

[2] A. P. W. Bohm and R. E. Hiromoto, "A functional
implementation of the Jacobi eigensolver," TR 93-
106, Colorado State University, Fort Collins, CO,
Tech. Rep. CSU TR 93-106, 1993.

[3] D. Cann, "Retire Fortran? A debate rekindled,"
CACM, vol. 35, pp. 81-89, Aug. 1992.

[4] G. E. Forsythe and P. Henrici, ''The cyclic Jacobi
method for the principal values of a complex ma
trix, Trans. Am. Math. Soc., vol. 94, pp. 1-23,
1960.

[5] D. A. Garza and A. P. W. Bohm, "Uniqueness and
completeness analysis of array comprehensions,''
Proceedings of the First International Static Anal
ysis Symposium, SAS94, Namur, Belgium,
Springer LNCS 864, 1994, pp. 193-207.

[6] J. R. Gurd, A. P. W. Bohm, andY. M. Teo, "Per
formance issues in dataflow machines," Future
Generation Computer Systems, vol. 3, pp. 285-
297, 1987.

[7] J. J. Lambiotte, Jr., and R. Voigt, "The solution
of tridiagonal linear systems on the CDC STAR-
100 computer," ACMTrans. Math. Software, vol.
1,pp. 308-329,1975.

[8] Motorola, Inc., Id World User's Manual. Motorola,
MCRC, Cambridge, MA, 1992.

[9] J. R. McGraw, S. K. Skedzielewski, S. J. Allan,
R. R. Oldehoeft, J. Glauert, C. Kirkham, W. Noyce,
and R. Thomas, SISAL: Streams and Iteration in a
Single Assignment Language: Reference Manual,
Version 1.2., Manual M-146, Rev. 1, Livermore,
CA: Lawrence Livermore National Laboratory,
March 1985.

[10] D. R. Morais, ID World: An environment for the
development of dataflow programs written in ID,
Tech. Rep. MIT LCS TR-365, May 1986.

[11] R. S. Nikhil, !d (Version 90.0) Reference Manual.
TR CSG Memo 284-1, MIT LCS, 1990.

[12] W. H. Press, et a!., Numerical Recipes: The Art
of Scientific Computing. Cambridge, MA: Cam
bridge University Press, 1986.

[13] A. H. Sameh, "On Jacobi-like algorithms for a
parallel computer, Math. Comput., vol. 25, pp.
579-590, 1971.

[14] G. Shroff and R. Schreiver, "On the convergence
of the cyclic Jacobi method for parallel block order
ings, SIAM]. Matrix Anal. Appl., vol. 10, pp.
326-346, July 1989.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

