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ABSTRACT 

In this article we describe the systematic development of two implementations of the 
Jacobi eigensolver and give their initial performance results for the MIT /Motorola 
Monsoon dataflow machine. Our study is carried out using MINT, the MIT Monsoon 
simulator. The functional semantics with respect to array updates, which cause excessive 
array copying, have led us to an implementation of a parallel "group rotations" algorithm 
first described by Sameh. Our version of this algorithm requires O(n3) operations, 
whereas Sameh's original version requires O(n4) operations. The convergence of the 
group algorithm is briefly treated. We discuss the issues involved in rewriting the algo
rithm in Sisal, a strict, purely functional language without explicit !-structures. © 1996 

John Wiley & Sons, Inc. 

1 INTRODUCTION 

A fundamental strength of functional languages 
is their ability to express the implementation of 
parallel algorithms closely following their mathe
matical formulation in a machine-independent 
fashion. This combined with their ability to express 
parallelism at the function, loop, and instruction 
levels provides strong arguments for the use of 
functional languages and development of func
tional algorithms for parallel computing. As func
tional languages provide a gateway to novel multi
threaded machine architectures [ 6], they are of 
interest to computational scientists and designers 
of numerical algorithms for these machines. Id 
[11] and Sisal [9] are languages with such po
tential. 
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An ultimate goal of parallel programming lan
guage design should be the efficient mapping of 
programs onto parallel hardware. Functional lan
guages have yet to provide general evidence that 
they can achieve sufficient levels of performance. 
Some recent results of optimizing compilation for 
Sisal are beginning to demonstrate this capabil
ity [3]. 

In this article, we present the design and analysis 
of a numerical algorithm, the Jacobi eigensolver, 
initially written in the functional dataflow language 
Id [ 1, 8, 10 ]. The programming constructs are 
functional, but we are using explicit !-structures in 
implementing array computations, exploiting the 
extra expressive power that !-structures bring to a 
deelarative language. !-structures are data struc
tures with built-in element-level synchronization, 
implemented with tag bits. Each element of an 
!-structure can be written only once. Element reads 
before writes are deferred until the write occurs. 
We have not used Id features that allow nondeter
minism in parallel programs. In particular, muta
ble arrays (called M-structures in Id) that allow 
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parallel updating of array elements, causing time 
dependence and hence nondeterminism, are not 
used. We discuss the issues involved in rewriting 
the algorithm in Sisal, a strict functional language 
without explicit I -structures. 

Algorithms for eigensolvers represent an import
ant class of numerical software typically found in 
standard Fortran system libraries. The Jacobi al
gorithm exhibits an interesting matrix calculation 
where the ordered update of each matrix element 
is governed by a sequence of previously computed 
updates. From the description of this algorithm 
given below, the computational use and organiza
tion of the data are initially seen to be a challenging 
task for implementation in a functional language. 

We show that a functional implementation 
taken directly from the specifications of the numer
ical algorithm is marred by an intolerable amount 
of work caused by useless data copying required 
to maintain functional semantics. A second imple
mentation, which avoids useless copying by per
forming more real work in one step, is of the same 
order of total work complexity as the original se
quential algorithm and provides a higher degree 
of parallelism. This turns out to be an improved 
version of an algorithm that was designed for the 
ILLAC-IV [13]. 

2 THE JACOBI EIGENSOLVER 

Given a symmetric N X N matrix A, the eigenvalue 
problem is the determination of eigenvectors x and 
eigenvalues A defined by 

Ax= Ax. (1) 

Any standard reference on numerical methods 
[12] will provide several methods for determining 
the solution to this problem. One such method, 
known as the Jacobi algorithm, uses two-dimen
sional rotations applied successively to each off
diagonal element of the matrix A. When the rota
tions are done systematically. A converges to a di
agonal matrix, thereby producing both the eigen
vectors and the corresponding eigenvalues. The 
"plane" or Jacobi rotation is described by an "or
thogonal" transformation matrix Rpq, in which all 
diagonal elements are unity except for the two ele
ments c located at RPP and Rqq, and all off-diago
nal elements are zero except for s and -s located 
at Rpq and R'IP, respectively. The rotation is de
fined by the values e (eosine) and s (sine) with 

respect to a free angular parameter cf>. A rotation 
is performed by the matrix product 

(2) 

This rotation can be shown to preserve the eigen
values of A and to allow for a simple recovery of 
the eigenvectors. A Jacobi rotation (p. q) changes 
only the p and q rows and columns of A. Solving 
Equation 2 we get: 

I _ ( :2 2) ( apq - c - s a1"1 + sc aPP - aqq) 

(3) 

(4) 

(5) 

(6) 

(7) 

where r # p, r # q. The Jacobi method defines the 
choice of the free angular parameter cp such that 
a 1

!''1 = 0. Given this choice of cp, the corresponding 
values of a

1
rp' fl

1
rq' a

1
PP' and a

1
qq can be evalu

ated. It is important to notice that elements zeroed 
under this method are likely to be unzeroed as a 
result of a subsequent transformation applied to 
a different off-diagonal element. Fortunately, it 
can be shown that by systematic application of 
the Jacobi method, the off-diagonal elements will 
converge to zero. Section 5 discusses convergence 
issues. We now replace Equations 3-6 with 

(8) 

(9) 

(10) 

(11) 

where t = tancf> and T (=tan~) is defined by 

s 
T=='--

1 + c 

Using the property that the matrix A is symmetric. 
the pattern of element updates as induced by the 
similarity transformation RT:l.'iAR.1 _:; is depicted in 
Figure 1. These updated elements are denoted by 
a 1 with the (3. 5) element zeroed by the appropriate 
choice of cf>. When elements are zeroed in a strict 
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FIGURE 1 Elemental updates induced by RT3.:;AR3.5. 

cyclic order, the convergence of this method is qua
dratic for nondegenerate eigenvalues (i.e., eigen
values that are not identical). Because the matrix 
A is symmetric, one sweep of the Jacobi method 
is applied to n (n - 1 )/2 distinct off-diagonal ele
ments. Furthermore, each rotation requires O(n) 
operations, so that the total computational com
plexity is of order n 3 for each sweep. 

31MPLEMENTATIONS 

3.1 A Row Maior Order Implementation 

ln the following implementations of the Jacobi al
gorithm, A stands for the input matrix, D for the 
diagonal elements that will be converted into eigen
values by a number of rotations, and V stands for 
the matrix that will be converted from an identity 
matrix into the matrix of eigenvectors. 

A sequential implementation of Jacobi's algo
rithm performs sweeps of rotations around points 
in the upper triangle in row major order, until the 
sum of the absolute values of the upper triangle of 
the matrix is sufficiently small. In the following 
sketch of the main program, some of the details 
concerned with not rotating around a point that is 
relativelv small are left out: 

while 
abs_sum_up_triangle A > epsilon do 
next A, next V, next D = 
{ for p <- 1 to (N-1) do 

next A, next V, next D 
{ for q <- (p+1) to N do 

next A, next V, next D = 
Rotate A V D p q 

finallyA, V, D}; 
finally A, V, D} 

finally A, V, D} 
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The while and/or loops in the above code have 
the standard meaning. A nextified value, such as 
next A, receives a new value for A in every loop 
iteration. The finally construct yields the last value 
produced in a loop. The function Rotate does the 
actual work. Rotate computes the values for s = 

simp, t =simp/ cosf/>, and T = s/ (1 +c), as defined 
in the previous section, and with these values it 
creates next versions of A, V, and D. In the follow
ing sketch of function Rotate, only the creation of 
the next value of A using Equations 8 and 9 is 
considered (Equations 1 0 and 11 are used in the 
computation of next D), and again complications 
considering small values are left out: 

def Rotate A p q = { % compute s and tau 
def e8 p1 p2 = p1 S*(p2+tau*p1); 
def e9 p1 p2 = p2 + S*(p1-tau*p2) 

in {matrix ( (1, N), (1, N)) of 
I [i,j] A[i,j] II i <- 1 toN; j <- 1 

[i, p] 

[i, p] 

[ i, j l 

I [p, j 1 

I [i, j 1 

[i, q] 
[p, q] 
[i, q] 

I [i, qJ 
I [ i, j 1 

I [p, j 1 
I [ i, j 1 

I [q, j 1 

I [ i, j 1 

} } ; 

to p-1 
e8 A[i,p] A[i,q] IIi<- 1 to p-1 
A[i,p] II i <- p toN 
A[i,j] II i <- 1 to p-1; j <- p+l 
to q-1 
e8 A [p, j l A [j, q] II j <- p+l 
to q-1 
A [i, j] II i <- p+1 to N; j <- p+1 
to q-1 
e9 A[i, p] A[i, q] i <- 1 to p-1 
0.0 
e9 A[p, i] A[i, q] i <- p+1 
to q-1 
A[i, q] i <- q to N 
A [i, j] i <- 1 to p-1; j <- q+1 
to N 
e8 A[p,j] A[q, j] II j <- q+1 to N 
A [i, j] II i <- p+1 to q-1; 
j <- q+1 to N 
e9 A[p, j] A[q, j] II j <- q+1 
to N 
A [i, j] II i <- q+1 to N; j <- q+1 
to N 

The above ld code uses an array comprehension 
in which the dimensionality and bounds of the 
array are first defined, followed by a number of 
region definitions. A region definition of the form 

I [target] = expression II generators 

is equivalent to the loop 

for generators do array[target] = expression. 
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A generator of the form 

indicates a nested loop. 
This first implementation closely follows the 

mathematics of the Jacobi transformation and 
allows for the natural exploitation of parallelism. 
The problem is that this algorithm is too inefficient. 
To update O(n) elements in A, Rotate performs 
O(n2 ) work, most of which is just copying. This 
makes a sweep [involving 0 (n2 ) rotations] an 0 (rz-+) 
operation, which is one order of magnitude too 
high. A nonfunctional solution to this copying 
problem would be to use updatable (mutable) 
structures (M-structures in Id). This forces the pro
grammer to leave the functional model of compu
tation and rely on time-dependent and nondeter
ministic constructs. It is our view that these 
constructs should be used as much as possible at 
the compiler leveL and as little as possible at the 
source code level. Examples of this approach are 
the build-in-place and update-in-place optimiza
tions performed by the Sisal compiler [3]. 

3.2 Sameh's Parallel Group Rotations 

A more parallel and at the same time more space 
efficient implementation of the Jacobi algorithm 
allows several rotations to be performed concur
rently. A group of rotations (p 1 , q1) . . . (pk, qd 
is valid if each point (p1, q1 ) occupies its own row 
and column in the upper triangle of A. Clearly 
there cannot be more than Lrz/2j rotation points in 
a group. In a parallel rotation based on all rotation 
points of such a group, each element in the result
ing matrix is affected by at most two rotation 
points. A set of groups partitions the upper triangle 
of a matrix if all points in the upper triangle are 
included in exactly one group. In [13] Sameh de
fines a minimal number of 2n - 1 groups of maxi
mal size Ln/2j. These groups are essentially anti
diagonals which wrap around the matrix 
boundaries. Sameh's group definition can be di
rectly translated into the following function 
MakePQs: 

def MakePQs n = 
{ m =floor( float (n+1)/2.0); 

PQs = 2D_I_array ( (1, 2*m-1), (1, n)) in 
for k <- 1 to 2*m-1 do 

if k <= (m-1) then 
{ for q <- (m-k+1) to (n-k) do 

p = if ( ( (m-k+;I.) <= q) 
and (q <= (2*m-2*k)) 

} 
} ; 

else 

then ( (2*m-2*k+1) -q) 
else if ( ( (2*m-2*k) < q) 

and (q<=(2*m-k-1)) 
then ( (4*m-2*k) -q) 
else n; 

(i,j) =if p < q then (p,q) 
else (q, p); 

PQs[k,i] = (i,j); PQs[k,j] ( i' j) 

{ for q <- (4*m-n-k) to (3*m-k-1) do 
p = if ( q < (2*m-k+1) ) 

} ; 

then n 
else if ( (2*m-k+1) <= q) 

and (q<=(4*m-2*k-1)) 
then ( (4*m-2*k) -q) 
else ((6*m-2*k-1)-q); 

(i,j) =if p < q then (p,q) 
else (q, p); 

PQs[k,i] = (i,j); PQs[k,j] = (i,j) 

{for i <- n to 2*m-1 do PQs[k,2*m-k] = 
(0, 0)} 

finally PQs 

The following are Sameh's groups for n = 5 and 
n = 6: 

2 4 1 3 

1 3 5 

n=5 5 2 

4 

2 4 1 3 5 

1 3 5 4 

5 2 3 
n=6 

4 2 

1 

Observe that for odd n, in the example rz = 5, 
Sameh's group numbers start at L(n - 1 )/2j and 
increment (modulo n) with L(rz - 1)/2j in both 
row and column directions, and that for even rz a 
last column is added with groups n down to 1. We 
have a proof for this observation in general [2], 
which is beyond the scope of this article. Thus 
MakePQs can be simplified, especially if we sepa
rate the cases for odd and even n: 



def MakeOddPQs n = 

{ m = div (n-1) 2; 

}; 

PQs 2D_I_array ((1,n), (1,n)) 
in {for p <- 1 to n do 

{for q <- p+1 to n do 
h (mod (m*p + m*q- 2*ml n ); 
k = if (h 0) then n else h; 
PQs [k, p] (p, q); PQs [k, q] = 

(p, q)}; 
PQs[p,n+1-p) =(0,0) 
finally PQs} 

def MakeEvenPQs n = 
{ m = div (n-1) 2; dn = n-1; 

}; 

PQs 2D_I_array ( (1, dn), (l,n)) 
in {for p <- 1 to dn do 

{for q <- p+1 to dn do 
h (mod (m*p + m*q- 2*ml dn}; 
k = if (h == 0) then dn else h; 
PQs [k, p] (p, q); PQs [k, q] 
(p, q) } ; 

PQs[p,n]=(n-p,n); PQs[p,n-p] 
(n-p,n) 
finally PQs} 

We have left the definition of PQs in MakeOdd
PQs and MakeEvenPQs in the form of a side-ef
fecting loop, as an array comprehension would 
force us to compute k twice, for index expression 
[k,p] and for [k, q]. 

3.3 Implementing the Group Rotations 

Sameh uses the groups defined in the previous 
section to create an orthogonal transformation Qk 
for each group, consisting of sines and cosines of 
the various <f>s that occupy disjoint elements of 
the transformation matrix, and then performs the 
transformation using a matrix product given in 
Equation 2. As there are 2n - 1 groups, this 
method requires O(n) matrix multiplications, 
which renders the complexity of one sweep to be 
O(n4

). 

We now present a new, demand-driven, imple
mentation of the parallel group rotations algorithm 
that requires only O(n3) operations. Instead of 
forming a transformation matrix and performing 
a matrix product, we register with each element in 
the transformed matrix A' the two corresponding 
rotations that affect it and perform those rotations 
in row major order, guaranteeing that for the two 
elements modified by the same rotations, the rota
tion orders are the same. 
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We will derive this algorithm in two transforma
tion steps from the row major implementation. In 
the first transformation step we turn the row major 
implementation function Rotate into the demand
driven form RotDemand in which the effect of one 
rotation point (p, q) is computed for each element 
of the result army. 

def RotDemand A p q = 
{% compute s and tau 
def es pl p2 = pl- S*(p2+tau*pl); 
def e9 fl f2 = p2 + s*(p1-tau*p2) in 
{matrix ( (l,N), (l,N)) of 
I £i, j 1 = 

} ; 

if (j == p) 

then e8 A[i,p] A[i,q] 
else if (j == q) 

then if (i < p) 
then e9 A[i,p] A[i,q] 
else e9 A[p,i] A[i,q] 

else if (i == p) 
then if (j < q) 

then e8 A[p,j] A[j,q] 
else e8 A[p,j] A[q,j] 

else if (i == q) 
then e9 A[p,j] A[q,j] 
else A[i,j] 

II i <- 1 to N-1; j <- i+1 to N 
} 

In the second step of the transformation, we 
allow each element of a result matrix to be affected 
by two rotation points as defined by Sameh's 
groups. For this we define a table PQs where row 
PQsk defines the k1

h group rotation, such that 
PQs [ k, i] and PQs [ k,j] contain the points affecting 
A'[i,j]. A tuple (0,0) in PQs[ k,i] signifies that there 
is no rotation in row or column i in group k. The 
assignments to array elements of PQs in the func
tions MakePQs, and also in MakeOddPSs and 
MakeEvenPQs accomplish the creation of PQs, 
which is constant throughout the computation, 
and is created once. The PQs arrays for n = 5 and 
n = 6 are: 

(14) (23) (23) (14) (00) 

(12) (12) (35) (00) (35) 

n=5 (15) (24) (00) (24) (15) 

(13) (00) (13) (45) (45) 

(00) (25) (34) (34) (25) 
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(14) (23) (23) (14) (56) (56) 

(12) (12) (35) (46) (35) (46) 

n = 6 (15) (24) (36) (24) (15) (36) 

(13) (26) (13) (45) (45) (26) 

(16) (25) (34) (34) (25) (16) 

A parallel group rotation now involves the com
putation of the s, t, and T values associated with all 
points in the group, and one array comprehension 
defining A'. The function GroupRot presents this 
process, again with complications concerning 
small elements of A left out. Notice the strong simi
larity between rot1 and RotDemand. The differ
ence is that in rot1 we need to create arrays of T 

and s values. This takes O(n) operations. Each 
element of A' is computed with a constant number 
of operations, so creating A' takes O(n2 ) opera
tions. Consequently, a sweep takes 0 (n3

). Further
more, all n 2 elements of A' can be computed in 
parallel, and no needless copying is performed. 

def GroupRot A V D PQs k N = { 
Ts, Taus, Ss = MakeTsTausSs A D PQs k N in 
{ matrix( (1,N), (1,N)) of 
I [i, j 1 = 

{p1,q1,p2,q2 = 

{p1,q1 = PQs[k,i]; p2,q2 = PQs[k,j] 
in if (p1<p2) then p1,q1,p2,q2 

else p2,q2,p1,q1} 
in if (p1 == 0) 

then rot1 A Taus Ss i j p2 q2 
else if ((p1 == i) and (q1 j)) 

then 0.0 
else rot2 A Taus Ss i j p1 q1 
p2 q2} 

IIi <- 1 to N-1; j <- i+l to N 
} 

} ; 

def rot1 A Taus Ss i j p q = 
def e8 p1 p2 = p1- Ss[p]* 

(p2+Taus [p] *P1); 
def e9 f1 f2 = p2 + Ss[p]* 

(p1-Taus[p]*p2) in 
if (Ss[p] == 0.0) 
then A [i, j l 
else if (j == p) 

then e8 A[i,p] A[i,q] 
else if (j == q) 

then if (i < p) 
then e9 A[i,p] A[i,q] 
else e9 A[p,i] A[i,q] 

else if (i == p) 
then if (j < q) 

} ; 

then e8 A[p,j] A[j,q] 
else e8 A[p,j] A[q,j] 

else if (i == q) 
then e9 A[p,j] A[q,j] 
else A[i,j] 

def rot2 A Taus Ss i j p1 q1 p q 
{ def re8 r1 c1 r2 c2 = 

} ; 

{g = rot1 A Taus Ss r1 c1 p1 q1; 
h = rot1 A Taus Ss r2 c2 p1 q1 
in g-Ss[p]*(h+g*Taus[p]) }; 

def re9 r1 c1 r1 c2 = 
{g = rot1 A Taus Ss r1 c1 p1 q1; 
h = rot1 A Taus Ss r2 c2 p1 q1 

in h+Ss[p]*(g-h*Taus[p])} in 
if (Ss[p] == 0.0) 
then rot1 A Taus Ss i j p1 q1 
else if (j == p) 

then re8 i p i q; 
else if (j == q) 

then if (i < p) 
then re9 i 
else re9 p 

else if (i == p) 
then if (j 

p i 
i i 

< q) 
then re8 p 

q 
q 

j 
else re8 p j 

else re9 p j q j 

j 
q 

4 PRELIMINARY MONSOON 
PERFORMANCE 

p 
j 

This section provides some preliminary perfor
mance results. A more complete study of the per
formance of the algorithms, written in Id and Sisal 
and running on parallel platforms, still needs to 
be done. The run-time behavior of Jacobi algo
rithms is highly data dependent. Also, the conver
gence rate is dependent on the order in which the 
rotations take place. Section 5 discusses conver
gence issues further. The order of the rotations 
differs in the two implementations, and thus the 
number of rotations and sweeps needed to con
verge may differ. This is exemplified by Table 1, 
which contains simulation results of both Jacobi 
implementations, run fora matrix A with 1.0 on the 
diagonal and A[i,j] = i + j off the diagonal. "lnstr" 
stands for the number of instructions executed, 
''Rots'' for the number of rotations performed, and 
"Sweeps" for the number of sweeps performed. 
The diagonal elements in this particular type of 
input matrix are smaller than the off-diagonal ele
ments, which give rise to relatively slow conver-



Tablet. Monsoon Performance of the 
Algorithms 

Row Major Order Group Rotations 

lnstr lnstr Sweeps 
n * 1000 Rots * 1000 (Rots) 

4 133 21 84 4(24) 
6 527 64 313 4(60) 
8 773 72 866 5(140) 

10 1769 132 1928 5(225) 
12 4295 261 3367 5(330) 
14 7144 359 6492 6(546) 
16 11248 476 9791 6(720) 

gence. Notice that the row major order algorithm 
performs many fewer rotations than the group ro
tation algorithm, but that the group rotation algo
rithm still executes fewer instructions most of the 
time (except in cases n = 8 and n = 1 0). Clearly, a 
more thorough study of the convergence character
istics of the two algorithms is needed; however, 
that is beyond the scope of this article. The next 
section provides an outline of the convergence 
proof for these algorithms. 

5 NUMERICAL CONVERGENCE 

The convergence of the Jacobi method is depen
dent on the ordering of the rotations applied to 
each of the off-diagonal elements of the matrix. 
With (n(n- 1 ))/2)! ways of choosing the updating 
order for the Jacobi method, it is important that a 
particular class of rotation orderings can be guar
anteed to converge. One such ordering is the cyclic 
row major ordering, in which the first rotation in 
the sweep is (1,2). Forsythe and Henrici [41 have 
proved the convergence of the cyclic row major 
ordering algorithm via the following theorem: 

THEOREM: Let a sequence of Jacobi transforma
tions be applied to a symmetric matrixA. Further, 
let the angle cf>k be restricted as follows: 

If the off-diagonal elements are annihilated using 
a cyclic row major ordering, then this Jacobi 
method converges. 

Building on this theorem, Shroff and Schreiver 
[ 14] introduce the notions of "cyclic wavefront" 
orderings, and "weak equivalent ordering" to 

JACOBI EIGENSOL VER 117 

prove that a modulus ordering of the form 

1 2 3 4 

3 4 5 

5 1 

2 

converges. In the modulus ordering, rotations are 
sequenced according to their group number l(p,q ), 
where l(p,q) = ((p + q - 3) mod n) + 1 for odd 
n, and /(p,q) = ((p + q- 3) mod n- 1) + 1 for 
even n. Inside a group, the rotations are sequenced 
according to row major ordering. Shroff and 
Schreiver show that, if an ordering X can be trans
formed into the modulus ordering by a permuta
tion of the array indices, then X gives rise to a 
converging Jacobi algorithm. As an example, for 
N = 6, the permutation of the array indices 
(123456) ~ (135246) transforms Sameh's order
ing, when taking symmetry into account, into mod
ulus ordering: 

2 4 1 3 5 

1 3 5 4 

5 2 3 

4 2 

1 

with index permutations: 

(12) ~ (13) 

(13) ~ (15) 

(35) ~ (54)~ (45) 

(45) ~ 

(46) ~ 

(24) 

(26) 

transforms into: 

1 2 3 4 5 

3 4 5 1 

5 1 2 

2 3 

4 
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6 A STRICT FUNCTIONAL 
IMPLEMENTATION OF 
GROUP ROTATIONS 

In ld's array comprehensions, the tar~et of a cer
tain array element expression can he explicitly 
specified in a re~ion definition: 

I [target] = expression II generators 

Moreover, ld's }-structures allow array-element 
assignments A [ i] = u to he scattered over the pro
gram. Thus, in Id there is no relation between the 
process defining an array element and the place
ment of that element. As ld data structures are 
nonstrict, it is not even necessary that all elements 
of an array be defined. It is in general not decidable 
whether an Id array is uniquely defined. i.e., all 
elements are defined at most once, or completely 
defined, i.e., all elements are defined exactly once. 
For array comprehensions with linear expressions 
defining the array dimensions, array-element tar
gets. and bounds of the generators, uniqueness 
and completeness can he checked [ 5]. 

In contrast, the strict functional programming 
language Sisal allows array creation in a loop only 
monolithically and in an implicitly defined order: 
loop body (it, ... , in) of an n-deep nested loop 
defines element (it, ... , i") of an n-dimensional 
array. For example 

fori in ll,ul cross j in l2,u2 
returns array of f(i,j) 

end for 

creates a two-dimensional array with bounds 
((/1,u1), (/2,u2)), and/(i,j) at position (i,j). We call 
this the strict loop order property of Sisal, which 
statically guarantees that arrays are uniquely and 
completely defined. This property allows efficient 
array allocation and creation at the cost of some 
loss in expressiveness. As an example, translating 
the ld functions Grouprot, rot!, and rot2 into Sisal 
is straightforward, whereas translating the ld func
tion MakePQs into Sisal is not. as it relies on a 
nonmonolithic computation of one I -structure (in 
this case scattered over three loops), and side-ef
fecting assignments with computation of the tar
get index. 

There are four approaches in Sisal to create 
arrays such as PQs, where there is no direct relation 
between the order of creation and the place in 
the array. 

1. Devise a new implementation of the algo
rithm that adheres to strict loop ordering. 
This often requires a more thorough under
standing of the algorithm being imple
mented, and often helps the programmer to 

come to a more elegant solution of the prob
lem. It turns out that it is possible to change 
MakePQs so that it adheres to the strict 
loop order. 

2. Create the array in a sequential loop by sub
sequent array updates of the form: 

PQs : = old PQs [k, i: tuple] [k, j: tuple] 

relying on the update in place optimization of the 
Sisal compiler to create only one array and perform 
destructive updates. In this form the creation of 
the array is completely sequential. 

3. The second approach can sometimes be 
made more parallel when rows (or more gen
erallv, suharravs) can he created in parallel 
and . concaten~ted together, exploiting the 
build-in-place optimization. This can be 
done for ;v/akePQs, as the elements are 
placed in the correct rows, but not in the 
strict loop order inside a row. 

4. Create an intermediate arrav of (value.in
dex) tuples in any order. followed by a forall 
loop that places the values in the array by 
searching in the intermediate array. This 
very general approach exploits all available 
parallelism. but is costly in instruction count 
and space usage as a search is involved and 
an intermediate array is built. In our case 
the intermediate array would have the cor
rect row order but not the correct element 
order per row. Also, it would not be neces
sarv to store the row index i with the element 
(p,q), as an element (p.q) of the intermedi
ate array must he placed in both positions 
(k,p and k.q) of the final array PQs. 

The design of the Sisal function MakePQs 1s 
based on the following observations. 

I. If n is odd. then 
1. The branches assigning p = n are never 

taken, as 2m - k - 1 = n - k and 4m - n 
- k =2m- k + 1. 

2. All other expressions in different conditional 
branches assigning a value to p are equal 
modulo n. The different expressions in the 



various conditional branches guarantee that 
the value assigned top lies between 1 and n. 

3. p and q are interchangeable: p = 2m - 2k 
+ 1 - q implies that q = 2m - 2k + 1 
- p. This coincides with our intuition: A 
rotation point (p,q) touches rows and col
umns p and q, so rows and columns play 
interchangeable roles. This allows us to per
form the two assignments in one loop body 
in M akePQs. However, this is not necessary. 
We can also perform one assignment per 
loop body and run the loop for all points in 
PQs, which is what we need to do in a strict 
loop order implementation of MakePQs. 

n. If n is even, the assignments top are the same 
as for n - 1 except that an extra assignment 
p = n occurs for q n - k (4m - n - k = 
n - k). This implies that PQs for even n is 
equal to PQs for n - 1, except that it gets 
(n - k,n) in an extra n-th column and in po
sition (k,n - k), which has (0,0) for n - 1. 

III. All loop bodies are independent, so they can 
be run in any order, hence also in strict loop 
order. 

The Sisal implementation of MakePQs follows. 

type pair 
type table 

record[x,y: integer]; 
array[array[pair]] 

function compq(k,q,n: integer returns pair) 
let pp :=mod (n- 2*k- q + 2, n); 

p if pp = 0 then n else pp end if; 
in if q < p then record pair[x:q; y:p] 

else record pair[x:p; y:q] 
end if 

end let 
end function 

function MakePQs(n: integer returns table) 
if n = 2 * (n/2) % even 
then fork in 1, n-1 cross q in l,n 

returns array of 
if (q = n-k) I (q = n) 

then record pair [x: n-k; y:n] 
else compq(k,q,n-1) 
end if 

end for 
else for k in 1,n cross q in l,n 

returns array of 
if (q n-k+l) 
then record pair [x: 0; y:O] 
else compq(k,q,n) 
end if 

end for 
end if 

end function 
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The code is dearly simpler than the original 
MakePQs, and much more efficient than an imple
mentation that builds an intermediate array with 
unordered rows and reorders these in a second 
sweep. 

7 CONCLUSIONS AND FUTURE WORK 

In this article we have discussed the design of a 
functional parallel implementation of the Jacobi 
eigensolver. We have demonstrated that the Jacobi 
method, although initially encumbered by the 
functional semantics of nondestniCtive array up
dates, is efficiently expressible in the functional 
paradigm. Without relaxing the fundamental 
single-assignment semantics of functional lan
guages, an efficient implementation was possible 
by resorting to parallelism at the algorithmic level, 
so that copying of array elements could be elimi
nated. Nonstrictness was explicitly used in only 
one function of the original Id program, and this 
could be avoided by reordering the creation of the 
array elements. 

In future work we will compare the actual paral
lel performance of the code against the perfor
mance expected from analyzing its algorithmic 
specification. This approach was first used as a 
metric for comparing the computational complex
ity of sequential and parallel Fortran implementa
tions [7]. We will compare the row order and group 
rotation algorithms with respect to their instruction 
efficiency and parallelism in both Id and Sisal on 
stock and experimental hardware. We will study 
the effect on efficiency and parallelism of explicit 
updates in place using mutable arrays in Id for 
the row order algorithm and compare this to the 
automatic update in place optimizations available 
in SisaL We will also study the effect of storing vs. 
recomputing elements of the PQs table. 
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