
ObjectMath-An Object-Oriented Language
and Environment for Symbolic and Numerical
Processing in Scientific Computing

LARS VIKLUND AND PETER FRITZSON

Programming Environments Laboratory, Department of Computer and Information Science, Linkoping University,
S-581 83 Linkoping, Sweden

ABSTRACT

ObjectMath is a language for scientific computing that integrates object-oriented con
structs with features for symbolic and numerical computation. Using ObjectMath, com
plex mathematical models may be implemented in a natural way. The ObjectMath
programming environment provides tools for generating efficient numerical code from
such models. Symbolic computation is used to rewrite and simplify equations before
code is generated. One novelty of the ObjectMath approach is that it provides a com
mon language and an integrated environment for this kind of mixed symbolic/numeri
cal computation. The motivation for this work is the current low-level state of the art in
programming for scientific computing. Much numerical software is still being developed
the traditional way in Fortran. This is especially true in application areas such as ma
chine elements analysis, where complex nonlinear problems are the norm. We believe
that tools like ObjectMath can increase productivity and quality, thus enabling users to
solve problems that are too complex to handle with traditional tools. © 1995 by John Wiley

& Sons, Inc.

1 INTRODUCTION

The aim of the ObjectYiath (an object-oriented
mathematical language for scientific computing)
project is to develop a high-level programming en
vironment for scientific computing that supports
programming in equations instead of low-level
procedural programming. The high-level equa
tional representation also gives better chances to

Received March 1993
Revised April 1994

© 1995 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 4, pp. 229-250 (1995)
CCC 1058-9244/95/040229-22

utilize the inherent parallelism of a problem for
generating efficient code for parallel hardware.
There is a clear need for such tools because of the
way most scientific software is currently being de
veloped: in Fortran, the traditional way, manually
translating mathematical models into procedural
code and spending much time on debugging. We
believe that this abstraction level is far too low.

As an initial example application domain, we
have chosen machine element analysis. (A ma
chine element can loosely be defined as "some
important substructure of a machine.") This
work is done in close cooperation with SKF Engi
neering & Research Center B. V.,* which enables
us to apply the developed programming environ-

* Postbus 2350, 3430 DT Nieuwegein, The Netherlands.

230 VIKUJ'\D A:'\D FHITZSO:'\

ment to realistic problems, and get important
feedback and suggestions on design decisions and
problem-solving approaches.

This article is organized as follows: In Section 2
we describe our view on the software development
process in scientific computing, and motivate the
need for tools like ObjectMath. Section .3 de
scribes the ObjectMath modeling language and in
Section 4 an example of an ObjectMath model is
presented. Section 5 gives an oven-iew of how nu
merical code can be generated with Objeet:Vlath.
Section? presents related work. and Section 8 our
conclusions.

2 BACKGROUND

Our view of the software development process in
scientific computing is depicted iu Figure 1. The
input to the process is knowledge about the appli
cation domain in question, for instance knowledge
about machine elements, materials,. and geome
try. The first step is to formulate a mathematical
model describing the system being analyzed. To
prepare for implementation of a numerical pro
gram, the equations in the model are simplified
and rewritten svmbolicallv. Then the model is . .
translated into code in some programming lan
guage. or into input data for some existing mathe
matical software. Finally, after numerical experi
ments have been performed, the results are
usually visualized graphically to make them rnore
comprehensible. The program development pro
cess is highly iterative. Problems with the nunwri
cal implementation often arise, requiring changes
to the numerical program or eYen to the mathe
matical model. It might also be the case that the
numerical results do not correspond to practical

Application Domain Knowledge

+
Mathematical Model

+ Numerical Implementation

+ Numerical Solution

+ Graphical Presentation

FIGURE 1 The software development process in sci
entific computing.

experiments, which means that the model has to
be refined, which subsequently requires changes
in the numerical program.

The current practice in sofnvare modeling and
implementation for mechanical analysis can be
described as follows: Theory development is usu
ally done manually, using only pen and paper.
Equations are simplified and rewritten by hand to
prepare solving for the desired variables. This in
eludes a large number of coordinate transforma
tions, which are laborious and error prone to carry
out. To perform numerieal computations a pro
gram is written by hand, usually in Fortran. Exist
ing numerical subroutines might be used,. hut
large parts of the applications must still be imple
mented. Tools such as finite element analysis
(FE~t) or multibody systems analysis programs
can at best be used for limited subproblems as the
total computational problem usually is too com
plex. Frequently as much as 50-75°/t, of the total
time of a project is spent on writing and debuf(ging
Fortran programs [1 .

The ideal roo! for modeling and analysis in sci
entific computing should eliminate these low-level
problems and all~)W the designer to concentrate on
the modeling aspeetfi. :\me that we are not claim
ing the ability to eliminate the iteration in the de
velopment process, but with good tools each itera
tion cycle will be much quicker and the risk of
imroducing errors will be smaller. Some of the
properties of a good programming environment
for modeling and analysis in scientific computing
are:

l. The user works at a high leYPl of abstrac
tion.

2. :Vlodeling is done using formulate and equa
tions, with good structuring support (for in
stance object-oriented techniques).

3. Support for symbolic computation is pro
vided. Examples are symbolic simplification
of equations and automatic symbolic trans
formation between different coordinate sys
tems.

4. The environment should provide support
for numerical analysis. in particular genera
tion of code for parallel computers.

0. The environment should support changes in
the model. A new iteration in the develop
ment cycle should be as painless as possi
ble.

Symbolic computation capabilities. like those
provided by computer algebra systems [2], are es-

sential in a high-level programming environment
for scientific computing. By using a computer al
gebra system for the symbolic transformations
that traditionally were done by hand. one can
avoid a lot of tedious labor and reduce the risk of
introducing errors. Existing computer algebra sys
tems such as Y1acsyma [3], Reduce :4J .. \1aple
[5], or Mathematica [6] ean be a very useful part
of a programming enYironrnent for scientific com
puting, but they are not enough on their own. In
particular. structuring support for complex
models is too weak. Better support for combined
symbolic/numerical computation is also needed.
The lack of support for structuring of complex
models is also the main reason why systems like
ALPAL (which utilizes symbolic computation
to generate a numerical program for solving a sys
tem of partial differential equations) are unsuit
able for the kind of problems we are aiming at.

When working with the Ohje<,tMath system the
mathematical model is expressed directly in the
ObjectYlath language. Object-oriented techniques
provide a way of structurinf; the mathematical
model and facility reuse. The necessary symbolic
simplifications and transforrnations are then done
with computer support instead of with pen and
paper. Finally the ObjectY1ath code generator can
be used for generating numerical code, thus obvi
ating the need to program in low-level procedural
languages such as Fortran.

3 THE OBJECTMATH LANGUAGE

The Object:V1ath programming environment is
centered around the Object:V1ath language, which
is a hybrid language, combining object-oriented
constructs with computer algebra. This combina
tion makes it a suitable language for representing
and implementing complex mathematical models.
Formulae and equations can be written in a nota
tion that doselv resembles conventional mathe
matics, whereas the use of object-oriented model
ing makes it possible to structure the model in a
natural way.

\Ve have chosen to use an existing computer
algebra language, Ylathematiea, as a basis for Ob
jectYlath. One advantage of this approach is that
users who are familiar with the widespread Mathe
matica system can learn ObjectMath easily. The
relationship between Mathematiea and Object
Math can be compared with that between C and
C++. The C++ [8] programming language is
basically the C language augmented with dasses

OBJECT\IATII 231

and other object-oriented language constructs. In
a similar way, the ObjectYlath language can be
viewed as an object -oriented wrsion of the mathe
matica language. However, the ObjectYiath lan
guage emphasizes structured mathematical mod
eling more than operations on state. in contrast to
object-oriented programming languages such as
C++. The Objeet~1ath language has been, and
still evolving based on feedback from users.

The ObjectMath programming environment is
designed to be easy to use for application engi
neers, e.g., in mechanical analysis, who are not
computer scientists. It is interactive and include:; a
graphical browser for viewing and editing inheri
tance hierarchies. Other parts of the environment.
support routines for generation of numerical code
and visualization. A class library containing gen
eral classes is also available. Yiklund eta/. give an
overview of the Objeet~iath programming envi
ronment and its implementation [9].

3.1 Obiect-Oriented Modeling

:V1athematieal models used for analysis in scien.
tific computing are inherently complex in the
same way as other software [10]. One way to han
dle this complexity is to use object-oriented tech
niques. Wegner [11 defines the basic terminology
of object-oriented programming:

1. Objects are collections of operations that
share a state. These operations are often
called methods. The state is represented by
instance variables, which are accessible
only to the operations of the object.

2. Classes are templates from which objects
can be created.

3. Inheritance allows us to reuse the opera
tions of a class when defining new classes. A
subclass inherits the operations of its parent
class and can add new operations and in
stance variables.

l'\ote that Wegner's strict requirement regarding
data encapsulation is not fulfilled by object -ori
ented programming languages like C++ or Simula
[12], where nonlocal access to instance variables
is allowed.

:More importantly, although \Vegner's defini
tions are suitable for describing the notions of ob
ject-oriented programming, they are too restrictive
for the case of object-oriented mathematical mod
eling, where a class description may consist of a
set of equations that implicitly define the behavior

232 VIKLC~D Al"D FRITZSO:\'

of some class of physical objects or the relation
ships between objects. Functions should be side
effect free and regarded as mathematical func:
tions rather than operations. Explicit operations
on state may or may not be present.

Also, causality, i.e .. which variables are re
garded as input and which should be outpuL is
usually not defined by such an equation-based
model. There are usually many possible choices of
causality, but one must be selected before a sys
tem of equations is solved. If a system of such
equations is solved symbolically, the equations
are transformed into a form where some variables
are explicitly defined in terms of other variables. If
the solution process is numerical. it will compute
new state variables from old variable values, and
thus perform operations on the variables.

Below we define the basic terminology of ob
ject-oriented mathematical modeling:

1. An object is a collection of equations, math
ematical functions, and operations that are
related to a comnwn abstraction and rna\'
share a state.

2. Classes are templates from which objects
can be created.

3. Inheritance allows us to reuse the equa
tions. functions, and operations of a class
when defining objects and new classes. A
subclass inherits the definitions of its parent
class and can add new equations. func
tions. operations, and instance variables.

As previously mentioned. the primary reason to
introduce object-oriented techniques in mathe
matical modeling is to reduce complexity. Two
advantages of object orientation are:

1. It provides a way for grouping equations,
functions. and operations.

2. It allows us to reuse equations. functions,
and operations by means of inheritance.

To illustrate these ideas we will use examples
from the domain of mechanical analysis. \\-hen
working with a mathematical description that con
sists of hundreds of equations and formulae. for
instance a model of a complex machine element.
it is necessarv to structure the model. A natural
way to do this is to model machine elements as
objects. Physical entities, e.g .. rolling elements in
a bearing, are modeled as separate objects. Prop
erties of objects like these might include a surface

description, a normal to the surface. forces and
moments on the body. and a volume. These ob
jects might define operations such as finding all
contacts on the body, computing the forces on the
body or its displacement. and plotting a three
dimensional picture of the body.

Abstract concepts can also be modeled as ob
jects. Examples of such concepts are coordinate
systems and contacts between bodies. The coordi
nate system objects included in the Object\'Iath
class library define methods for transforming
points and vectors to other coordinate systems.
Equations and formulae describing the interac
tion between different bodies are often the most
complicated part of problems in machine element
analysis. This makes it practical to encapsulate
these equations in separate contact objects. One
advantage of using contact objects is that we can
substitute one mathematical contact model for
another simply by plugging in a different kind of
contact object. The rest of the model remains
completely unchanged. ~When using such a model
in practice, one often needs to experiment with
different contact models to find one that is exact
enough for the intended purpose, yet still as com
putationally efficient as possible. The Object:VIath
class librarv contains several different contact
classes.

The use of inheritance facilities reuse of equa
tions and formulae. For example. a cylindrical
roller element can inherit basic properties and op
erations from an exisiting general cylinder class.
refining them or adding other properties and oper
ations as necessary. Inheritance may be viewed
not only as a sharing mechanism. but also as a
concept specialization mechanism. This provides
another powerful mechanism for structuring com
plex models in a comprehensive way. Iteration cy
cles in the design process can be simplified by the
use of inheritance, as changes in one class affect
all objects that inherit from that class. :VIultiple
inheritance facilitates the maintenance and con
struction of classes that need to combine different
orthogonal properties.

The part-of relation is important for modeling
objects that are composed of other objects. This is
very common in practice. 1\" ote that the notions of
composition of parts and inheritance are quite dif
ferent and are orthogonal concepts. Inheritance is
used to model specialization hierarchies. whereas
composition is used to group parts within con
tainer objects while still preserving the identity of
the parts. Thus, composition has nothing to do

with specialization. Sometimes these concepts are
confused and inheritance is used to implement
composition. However, in our opinion this should
be avoided as it is conceptually wrong and usually
makes the model harder to understand. Also .. note
that multiple inheritance cannot replace composi
tion if an object contains several parts that are
instances of the same class, a situation that occurs
frequentlv.

One way to treat encapsulation is to make the
instance variables of an object accessible only to
the operations of the object itself. For instance, in
Smalltalk-80 [13] operations are always accessi
ble from outside the object whereas the instance
variables are never accessible from the outside.
However, there are other models of encapsulation,
e.g. the one of C++ where the programmer speci
fies for each operation ancl instance variable
whether it should be completely inaccessible from
outside the object (private), accessible only to

subclasses of the class in which it is defined (pro
tected), or accessible from everywhere (public). A
similar design choice was made for the Object
Math language.

Object-oriented techniques make it practical to
organize repositories of reusable software compo
nents. All classes have a well-defined interface
that makes it possible to use them as black boxes.
Inheritance allows us to specialize existing classes
and thereby reuse them, even if thev do not ex
actly fit ou~ needs as they are. The. Object.Math
class library is one example of such a software
component repository. lt contains general classes,.
for instance different contact classes and classes
for modeling simple bodies such as cylinders and
spheres.

Note that the ObjecfMath view of object orien
tation for use in mathematical modeling is very
different from the Smalltalk view of object orienta
tion of sending messages between (dynamically)
created objects. An ObjectMath model is primarily
a declarative mathematical description, which al
lows analysis and equational reasoning. For these
reasons, dynamic object creation at run-time is
usually not interesting from a mathematical mod
eling point of view. Therefore, this is not sup-

OBJECT\IATH 233

ported by the ObjectMath language. Also, there
have been no requests for such features from the
current industrial users of Object~lath. However.
variable-sized sets of objects are provided by Ob
jectMath, which for example can be used to repre
sent a set of similar rollers in a bearing or a set of
electrons around an atomic: nuclei.

3.2 ObiectMath Classes and Instances

In this section we use a number of small examples
to explain Object"Math language constructs such
as CLASS, INSTANCE, and PART and their use
to express inheritance, composition, and object
creation. A formal definition of the syntax can be
found in the Appendix 1. Here we focus on the
object-oriented parts of the ObjectYiath language.
The rest of the language .. i.e., the Ylathematica
subset, is described in detail in r 6 j.

A CLASS declaration declares a class that can
be used as a template when creating objects. Ob
jectMath classes can be parameterized. Classes
mav inherit from one or several other classes. Ob
jects are then declared with an INSTAN(.J..,' decla
ration. The INSTANCE declaration is the onlv
way to create an object, i.e., objects cannot be
created dynamically at run-time. as mentioned
above.

In a traditional sense, the ObjectMath IN
STANCE declaration is both a declaration of a
class and a declaration of one object (instance) of
this dass. This makes the declaration of classes
with singleton instances compact. A similar mech
anism exists in the BETA programming language
[14]. It is possible to inherit from classes implicitly
declared by an ObjectY1ath INSTANC'E declara
tion, just as from classes declared with a CLASS
declaration. The bodies of Object.Math CLASS
and INSTANCE declarations eontain formulae
and equations . .\1athematica syntax is used for
these.

As an example of a simple ObjectYiath class we
consider a class Coordinate System that
models a statie coordinate svstem that mav be ro-. .
tated and translated in an arbitran' wav:

CLASS CoordinateSystem(Reference, A, Rl INHERITS AbstractCoordinateSystem
InverseA := Inverse[A];
FromGlobal := Append[Reference'FromGlobal, this];

END CoordinateSystem;

234 VIKLUI'\D A:\'D FRITZSO'\i

This class inherits from the class Abstract
CoordinateSystem that defines transformation
operations. Parameters to this class are the refer
ence coordinate svstem relative to which this coor
dinate system is defined (Reference) , the rota
tion matrix A, and the translation vector R. The
parameters are specified when instantiating an
object or inheriting from the class. InverseA is
an instance variable that denotes the inverse of
the rotation matrix. It is defined in the most gen
eral way, by calling a function for calculating the
inverse of a matrix. FromG1oba1 denotes a list of
coordinate system objects that form a path from
the global system to this system. 1'\otice the use of
the reserved word this which denotes the object
itself.

A coordinate system defined by three succes
sive rotations around the axes, with no transla
tion, can be represented by an instance of the spe
cialized class Trans1atedCoordinateSystem:

PART declaration cannot add new definitions to
the class inherited from. Instead an extra subclass
would have to be introduced should this be de
sired. The reason for this limitation is that we
think it keeps the models cleaner and encourages
reuse.

CLASS ThreeSegBody(cRef)
INHERITS GeomBody(cRef)
PART sRl INHERITS RotationSeg(cg);
PART sC INHERITS RotationSeg(cg);
PART sLl INHERITS RotationSeg(cg);

END ThreeSegBody;

A CLASS or J]'v'STA?v'C'E declaration can list sev
eral parents as multiple inheritance is allowed.
An example of this is the following declaration
of a set of instances. bW, which model the rollers
in a bearing. It inherits from both the class

CLASS Trans1atedCoordinateSystem(Reference, R)
INHERITS CoordinateSystem(Reference, IdentityMatrix[3], R)

InverseA := IdentityMatrix[3];
END Trans1atedCoordinateSystem;

All basic definitions such as A, R, etc., are inher
ited from CoordinateSystem. The rotation ma
trix and its inverse are simply identity matrices.
The general definition of InverseA can thus be
replaced with a specialized version that is compu
tationally more efficient and stable.

A set containing an undetermined number of
objects can be created from one INSTANCE
declaration by adding an index variable in brack
ets to the instance name. This allows for the crea
tion of a number of nearly identical objects, e.g.,
the rolling elements in a rolling bearing. To repre
sent differences between such objects. functions
(methods) that are dependent on the index of the
instance can be used. The implementation makes
it possible to do symbolic computations where the
number of elements in the set is left unspecified.

Composition is expressed with PART declara
tions. These are similar to INSTA,VCE declara
tions but are located inside a CLASS or IS
STANCE declaration. The effect of a PART
declaration is to create objects inside other ob
jects. The class ThreeSegBody, taken from a
model of a rolling bearing. exemplifies this. lt con
sists of three objects of the class RotationSeg
name sRl, sC, and sLL respectively. 1'\ote that a

ThreeSegRo11er that defines the geometry of a
roller consisting of three segments and from the
class DynRo11er that defines the dynamic behav
ior of a roller.

INSTANCE bW[j] INHERITS
ThreeSegRo11er(cB), DynRo11er(cB, cG)

END bW [j];

The inheritance graph is linearized depth firsL left
to right. In the example above this means that if
there are conflicts between inherited definitions
because they define the same name, definitions
from ThreeSegRo11er will override definitions
from DynRo 11 er.

There is no language support for enforcing en
capsulation in the version of ObjectYlath that is in
use. However, we are currently implementing a
new version of the language that has been ex
tended with several features, among them a
scheme for encapsulation. For each operation or
instance variable it is possible to specify that it is
not accessible at all from outside the object: ac
cessible, but not assignable. from outside the ob
ject; and accessible and assignable from outside
the object.

This scheme is more fine grained than the ones
found in most other object-oriented languages as
it separates between access and assignment. It is
also possible to specify that the operation or in
stance variable should be accessible, and possibly
assignable, from specific objects but not from
other places in the model. A similar feature is
found in the Eiffel language [15]. Experiences
with modeling in Object.\lath have showed that
such a flexible way of specifying encapsulation is
desirable in object-oriented mathematical model
ing. In particular, it is quite common that a vari
able should be accessible from several objects but
assignable only from one particular object (e.g ..
for initialization.)

4 A MODEL OF A ROLLING BEARING

In this section we exemplify the Object.\hth lan
guage by describing a two-dimensional dynamic
model of a cylindrical rolling bearing. This model
has been developed as a test case for the Object
Math code generator and is a reimplementation of
a simulation model that had been previously im
plemented in C++ by SKF. The intention is that
the performance of the generated code should be
directly compared with the performance of the
handwritten code. The bearing consists of an
outer and an inner ring and a single roller. How
ever, the model can easily be extended to include
an arbitrary number of rollers. Figure 2 shows the
geometry of the bearing. The z-axis is pointing
inwards in the picture and the coordinate system

X

y

FIGURE 2 Geometry of the bearing.

OBJECTMA TH 235

FIGURE 3 Classes in the bearing model.

is right oriented. Angles are measured clockwise
from the x-axis.

All the bodies (the two rings and the roller) are
defined in a global coordinate system. In this par
ticular model the inner ring is fixed: Its origin co
incides with the origin of the global coordinate
system (GCS). The position and rotation of the
outer ring are inputs to the problem to be solved.
We are mainly interested in the motion of the
roller that can be described bv a svstem of ordi
nary differential equations. The class hierarchy of
the model is shown in Figure 3.

As shown in Figure 3 we use the same graphical
representation as in the graphical editor in the
ObjectMath programming environment. The ar
rows represent inheritance and the PART relation
is shown by drawing the boxes representing the
parts inside the oval representing the class they
belong to. For comparison, in Appendix 2 the
same structure is shown using Coad and Your
dons OOA notation.

As can be seen in Figure ::L the object that
models the contacts between the rings and the
roller is a part of the object representing the roller.
An alternative would be to view the contact objects
as parts of the bearing object, together with the
rings and the roller. One advantage of modeling
the way shown in Figure 3 is that it makes it some
what easier to extend the model to include an ar
bitrarv number of rollers.

The abstract class SpinningElement models
an object (not necessarily a physical body) that ro-

236 VIKLl:'ID Al\D FRITZSO!\

tates. This class introduces two instance vari
ables: Origin and Turn that denote the origin
and rotation of the object relative to the global
coordinate system. The actual definitions of these
are given in subclasses inherited from Spin
ningElement (cf. virtual member functions in
C++ or deferred routines in Eiffel).

CLASS SpinningElement
Origin;
Turn;

END SpinningElement;

A local coordinate system is modeled by the class
CoordinateSystem that inherits from Spin
ningElement. The most important attribute of
this class is a function for transforming a vector,
point, or velocity between the local and the global
coordinate system and vice versa. This function is
called Transform. For instance .. to transform a
velocity v, given in the local coordinate system
represented by an object C, to the global system
one would write: C'Transform[v, from, ve
locity].

Actually, only the vector transformation is used
in this particular model, but the class is designed

to be general so that it can be reused in other
models. Pattern matching is used when defining
the Transform function as can be seen below.
This is just a matter of personal taste: one could
equally well use If expressions instead.
The parameter t of the CoordinateSystem
class denotes the time and the instance variable
vOrigin denotes the velocity of the origin of the
coordinate svstem.

CoordinateSystem is inherited from bv the
class ContactSystem, which defines Origin
and Turn (which were introduced but not defined
in the class SpinningElement) for a local coor
dinate system. Two such coordinate systems are
used for modeling each contact between two
bodies. Thus, this class also defines the force and
torque in the local coordinate system as well as in
the global coordinate system (by calling the func
tion Transform defined in the superclass). Pa
rameters to this class are bodyl, which denotes
the body for which the calculations are done as
well as body2, the other body involved in the con
tact. Another parameter is contact, which de
notes the object modeling the whole contact, an
instance of the class Contact described on the
following page.

CLASS CoordinateSystem(t) INHERITS SpinningElement
(* Transformation matrix from local to global system *)

X { Cos[Turn[[3]]], Sin[Turn[[3]]], 0 };
Y := { -Sin[Turn[[3]]], Cos[Turn[[3]]], 0 };
z := { 0, 0, 1 };
TransformationMatrix :=Transpose[{ X, Y, Z }J;

vOrigin Dt [Origin, t]; (* velocity of origin *)

Transform[a_, from, type_]
TranslateAfter[TransformationMatrix. a, from, type];

Transform[a_, to, type_]
TranslateAfter[Transpose[TransformationMatrix] . a, to, type];

SetAttributes[Transform, HoldAll];

TranslateAfter[a_,
TranslateAfter[a_,
TranslateAfter[a_,

dir_, vector]
dir_, point]
dir_, velocity]

TranslateAfterl[a, dir,
TranslateAfterl[a, dir,
TranslateAfterl[a, dir,

TranslateAfterl[a_, from_, trans_] a+ trans;
TranslateAfterl[a_, to, trans_]

a- Transpose[TransformationMatrix] trans;

END CoordinateSystem;

{0, 0, 0}];
Origin] ;
vOrigin];

OBJECTMATH 237

CLASS ContactSystem(body1, body2, contact, t) INHERITS CoordinateSystem(t)
(* In GCS *)

RO :=body2'0rigin- body1'0rigin;
R01 : body2'rsign * RO; (*radius direction*)
R02 : -body1'rsign * body2'rsign * RO; (* coordinate system direction*)
Origin := contact'CP;
{* First axis pointing towards the body *)
Turn:= ArcTan[R02[[1]], R02[[2J]] * {0, 0, 1};
vBodyG := Dt[body1'0rigin, t]; (*velocity of body1 in GCS *)
vRotG := Transform[vRot, from, vector]; (*velocity of rotation *l
vContG := vBodyG + vRotG; (* velocity of the contact *)
vRe1 := vContG- contact'vCP; (*velocity of body relative contact point *)
ForceG := Transform[Force, from, vector];
TorqueG := Transform[Torque, from, vector];

(* Scalars *)
fi :=ArcTan[R01([1]], R01[[2])]; (*rotation angle*)
(* radius with sign, depends on whether the surface is concave or convex *)
sradius := body1'rsign * body1'Radius[fi- body1'Turn[[3]]];
lever := sradius + contact'Delta I 2;
TorqueRoll :=Roll[contact'ForceCollision, vSum[[2)]] ;

{* In local coordinate system, but fixed *)
vRot: CrossProduct[Dt[body1'Turn, t], {-lever, 0, 0}];
vBody Transform[vBodyG, to, vector];
vCont := vBody + vRot; (* velocity at contact point on the body1 *)

(* In local coordinate system *l
vsum :=Transform[contact'vSumG, to, vector] 11 Simplify;
Force := { contact'ForceCollision, contact'ForceSlip, 0 } II Simplify;
TorqueSlip := CrossProduct[{-lever, 0, 0}, Force];
Torque := TorqueSlip + {0, 0, TorqueRoll };

(* Internal *)
(* F vertical force, v horisontal speed, returns torque *)
Roll[F_, v_] := F * 21*10'-7 * SmoothSign[v];

END ContactSystem;

As mentioned above, a contact between two
bodies is modeled by the class Contact. An ob
ject of this class consists of two parts of the class
ContactSystem, one for each of the two bodies
involved in the contact. Most of the mathematics
for the contact is contained in this class. For in
stance, the instance variables ForceColl is ion

~LASS Contact(body1, body2, t)

and ForceSlip represent the force resulting from
the collision between the bodies and friction be
tween the bodies, respectively. In this particular
model, the force ForceCollision is approxi
mated with zero when the gap between the bodieR
is larger than zero.

PART RoRi INHERITS ContactSystem(body1, body2, this, t);
PART RiRo INHERITS ContactSystem(body2, body1, this, t);

(* Scalars *)
(* distance between the origins of the bodies, with sign *)
dist : body1'rsign * body2'rsign * Norm['RoRi'RO] II Simplify;

238 VIKLLl\D Al'\D FRITZSO:\'

Delta:= dist- ('RoRi'sradius + 'RiRo'sradius);
ForceElastic :=Elastic[Delta, body1'rsign * body1'radius, Infinity,

body1'rsign * body2'radius, Infinity];
ForceCollision : SqueezeFactor{ vDelta([1]] J * ForceElastic;
ForceSlip :=Slip[Forcecollision, vDelta[[2]]];

(* In GCS *)

(* contact point *)
CP := ('RiRo'lever * bodyl'Origin + 'RoRi'lever * body2'0rigin) 1 dist;
vCP := Dt[CP, t]; (*velocity of the contact point*)
(* sum of the relative velocity of the two bodies *)
vSumG := 'RoRi'vRe1 + 'RiRo'vRe1;

(* In GCS, but moving as RoRi and RiRo *)
(* In the RoRi and RiRo systems *)
vDelta: 'RoRi'vCont + 'RiRo'vCont 11 Simplify; (*symmetry*)

(* Internal *)
(* constants *)

Emod := 226*10'9;
CDry := 8*10'-1;
MuO 1*10'-1;
gamma = 8*10'3;
(* d gap, r1, r2 radii, returns vertical force *)
Elastic[d_, rx1_, ryl_, rx2_, ry2_J := 0 I; d > 0;
Elastic[d_, rxl_, ry1_, rx2_, ry2_J :=
2' (312) 13 * Emod 1 (1lrxl + 11ry1 + 1lrx2 + 11ry2) * (-d)' (312) I; d <= O;
(* v vertical speed, returns approx 1 *)
SqueezeFactor[v_] : 1 CDry * SmoothSign[v];
(* F vertical force (>= 0), v horisontal speed, returns horisontal force*)
Slip[F_, v_J := MuO * SmoothSign[v, gamma] * F;

END Contact;

Properties that are common for all bodies in the
model are collected in the class Body. The func
tion Radius defines the radius of the body as a
function of the angle from the x-axis. In the class
Body it is a constant, but as we will see, it might be

CLASS Body(tl INHERITS SpinningElement
Origin { R[t] * Cos[Fi[t]], R[t] *
Turn= { 0, 0, T3[t] };
Radius[ang_] radius;
radius;
Mass;
Inertia
Force;
Torque;

Mass * radius"2 I 2;

g = 981*10'-2;
ForceExternal := { -g *Mass, 0, 0};

redefined in subclasses of Body. The instance
variable rhs denotes the righthand sides of the
ordinary differential equations for the body. As
usual, the class parameter t denotes the time.

Sin[Fi [t]], 0 };

h1 := { Cos[Fi[t]], Sin[Fi[t]], 0}. Force I Mass+ R[t] * Fi'[t] • 2;
h2 ({ Cos[Fi[t]], -Sin[Fi[t]], 0}. Force I Mass

- 2 * F i' [t J * R' [t]) I R [t] ;
h3 Torque [[3]] I Inertia;
rhs := { h1, h2, h3 };

END Body;

OBJECT.\1ATH 239

The class Ring is a specialization of the class Body. Here Radius is redefined; a sinus wave is
added to the base radius to model imperfections in a real ring.

CLASS Ring(contact, t) INHERITS Body(t)
Radius[ang_] radius+ Awaves * Sin[waves * ang];
Awaves;
waves;
Force := contact'RiRo'ForceG + ForceExternal;
Torque := contact'RiRo'TorqueG;

END Ring;

The class Roller is also a specialization of the class Body. It contains the two objects modeling
the contacts with the outer and inner ring.

CLASS Roller(or, ir, t) INHERITS Body(t)
PART Or INHERITS Contact{this, or, t);
PARTIr INHERITS Contact{this, ir, t);
Force := Ir'RoRi'ForceG + Or'RoRi'ForceG + ForceExternal;
Torque:= Ir'RoRi'TorqueG + Or'RoRi'TorqueG;

END Roller;

Finally, the class Bearing models a complete beming consisting of an outer ring (Or), an inner ring
(Ir), and a roller (Ro).

CLASS Bearing
PART Or INHERITS Ring(Ro'Or, this);
PARTIr INHERITS Ring(Ro'Ir, this);
PART Ro INHERITS Roller(Or, Ir, t);
t; (* Time *)

END Bearing;

The Bearing class can then be used when defining a particular bearing by assigning values to the
instance variables:

INSTANCE Bearing1 INHERITS Bearing
clearance = -10*10'-6;
Ro'radius = 5*10'-3;
Ro'rsign 1; (* surface out from center *l
Ro'Mass = 2*10'-3;
Ir'Fi[t_] = 0;
Ir'R[t_] 0;
Ir'T3[t_] = 0;
Ir'radius = 30*10'-3;
Ir'rsign 1; (* surface out from center *)
Ir'Awaves = 5*10'-6;
Ir'waves
Ir'Mass =
Or'Fi[t_]
Or'R[t_]
Or'T3[t_]

9;
Infinity;
= 0;

2*10'-6;
= 10*t;

(* the outer ring is displaced *)

Or'radius = 'Ir'radius + 2 * 'Ro'radius +clearance;
Or'rsign -1; (* surface towards center *)
Or'Awaves = 10*10'-6;
Or 'waves 5;
Or'Mass = Infinity;

END Bear ing1;

240 VIKLUND AND FRITZSON

The model can now be used for simulating the
bearing, i.e., solving the system of ordinary differ
ential equations given by Bl 'Ro 'rhs. For simple
cases it is possible to solve the equations in
Mathematica, hut in general it is necessary to use
the code generation facilities of Object:Ylath to
generate numerical code that can be used for sim
ulations outside :\fathematica. This is further dis
cussed in the next section.

Typically one or several special classes in an
ObjectMath model are used for collecting methods
that perform calculations using the model. One
such method might for instance trigger the sym
bolic simplification of the equations in the bearing
model and then use a built-in Mathematica fum>
tion to simulate rotating the bearing for a certain
period of time.

5 NUMERICAL COMPUTATION
WITH OBJECTMATH

Analyzing a mathematical model expressed in
ObjectMath also involves performing numerical
computations. The :Yiathematica system can be
used for some of these calcualtions. However,
there are problems with this approach. Mathe
matica code is interpreted and cannot be executed
as efficiently as programs written in compiled lan
guages such as Fortran, C, or C++. This is a seri
ous drawback, particularly when doing mostly nu
merical computations in realistic applications. We
also want to be able to use existing, highly opti
mized, special-purpose numerical routines. Thus,
an important tool in the ObjectMath programming
environment is a code generator that generates
numerical code from ObjectMath models. For a
typical application, symbolic computation is
heavily used to rewrite and simplify equations be
fore code is generated (cf. Fig. 1).

The user interface of the code generator con
sists of a number of ObjectMath routines that can
be called either from an ObjectMath model or in
teractively. These routines can be divided into two
groups: (1) the function level interface that pro
vides routines for generating code from variables
and functions and (2) the system level interface
that provides routines for generating code from
whole systems of equations.

The function level interface (described in Sec
tion 5.1) is currently being used for industrial ap
plications whereas the system level interface (de
scribed in Section 5.2) is still under development
within our group.

Currently C++ is used as the target language
by the function level routines and Fortran bv svs
tem level routines. We are working on combining
and generalizing the two parts of the code genera
tor so that either of them can generate both C++
and Fortran.

5.1 Code Generation from
ObiectMath Functions

The function level interface of the Object:Vlath
code generator provides routines for declaration
and for code generation. By calling the declaration
routines, the user supplies the code generator with
infom1ation about the types of variables and func
tions. Then the generation routines can be called
to generate code for functions.

The code generator takes advantage of the fact
that pure functions like sin, cos, and tan are de
void of side effects to eliminate common subex
pressions that the C++ compiler cannot optimize.
Note that it is necessary to eliminate all common
subexpressions (even if the compiler can handle
the ones involving only arithmetic operators) so
that we do not miss any opportunities for further
optimizations. Temporary variables that hold the
results of subexpressions are introduced. Thus,
the code generator must derive the type of each
subexpression. Even without the common subex
pression elimination this would be necessary be
cause the expressions otherwise may become so
large that the compiler cannot handle them.
(Many compilers seem to have a built-in hard limit
on the size of expressions.)

As an example, consider the following Object
Math expression, a vector of length 3. The vari
able B ' t is a scalar (denoting time) whereas both
B' Ro 'R and B' Ro 'Fi are functions that retun1 a
scalar.

{ Cos[B'Ro'Fi[B't]] * B'Ro'R[B't],
B'Ro'R[B't] * Sin[B'Ro'Fi[B't]],
0 }

The code generator generates the following code
for computing the expression above:

II Declarations
double Tmp_721;
double Tmp_722;
double Tmp_723;
double Tmp_724;
double Tmp_725;
double Tmp_726;

doubleVec3 Tmp_727;
II Compute expression
Tmp_721 B_Ro_Fi(B_t);
Tmp_722 cos(Tmp_721);
Tmp_723 B_Ro_R(B_t);
Tmp_724 Tmp_722*Tmp_723;
Tmp_725 sin(Tmp_721);
Tmp_726 Tmp_723*Tmp_725;
SetArray3(Tmp_727,Tmp_724,Tmp_726,0);
II Return result
return (Tmp_727) ;

In this small example the onlv common subex
pressions are the calls to the functions B 1 Ro 1 R
and B 1 Ro 1 F i. The results of these calls are stored
in the temporary variables Tmp_ 721 and
Tmp_ 723 .. respectively. For complicated expres
sions in realistic applications, the common subex
pression elimination often reduces the size of the
generated code by a magnitude or more.

There are actuallv two different routines for
generating code for functions. The first one trans
lates an Object.Ylath function definition into a cor
responding function in the target language. The
second one evaluate,.; the ObjectMath function
symbolically and then generates a function that
computes the resulting expression. \'\.ith this func
tionality, symbolic computation can be used to

synthesize parts of the numerical code. C sers have
fine grain control over this process as they can use
certain ObjectMath functions to determine which
parts of the expressions should be evaluated.

Different numerical program,.; can be generated
from the same ObjectMath model depending on
how much information we supply before generat
ing and compiling the code. If numerical values
are assigned to ObjectMath variables before code
generation, symbolic simplification usually results
in a more efficient. but less general. program. This
can be viewed as a form of partial evaluation.

Both routines mentioned above have the limita
tion that the Object.\1ath function body or expres
sion (after evaluation) must only consist of a cer
tain language subset. This subset includes:

1. Those of the operators that correspond to

C++ operators. The arguments to these
functions might be both scalars and vectors
or matrices, as the C++ classes we use
overload most operators.

:2. Functions that have appropriate definitions
in the standard mathematical library, e.g ..
trigonometric functions and logarithms.

3. Common functions that operate on vectors

OBJECTMATH 241

and matrices, e.g., dot product, transposi
tion, and inverse.

4. Most control structures, e.g., If, While,
and For expressions.

5. Function calls, including functions with
multiple return values.

However, there are many built-in Object.Math
functions that are not included in the allowed lan
guage subset, most notable all functions that do
symbolic computations. This limitation might be
slightly troublesome as it is not always obvious
which operators will be present after evaluating an
expression syumbolically. The code generator is
now and then being extended to handle a larger
language subset when this becomes necessary.

5.2 Code Generation from Systems of
ObjectMath Equations

Although the function level interface to the code
generator can be used for generating large parts of
an application, it is usually necessary to handwrite
some glue code that implements the data flow be
tween the generated functions and the chosen
solver. Also, the function level code generation
routines generate sequential code as there usually
are few possibilities for parallelization on this
level. (Of course there might be possibilities to ex
ploit. for instance, vector parallelism within a
function, but such parallelizations are performed
by the compiler used for compiling the generated
code. not by the Object.Yiath code generator.) To
produce a parallel program the user must usually
introduce the parallelism in the handwritten glue
code, e.g., by writing code that calls several of the
generated functions in parallel. Obviously, this
makes the glue code much more complex.

The routines supplied by system level interface
of the code generator can generate a complete nu
merical simulation program from a system of Ob
jectMath equations. This process is depicted in
Figure 4. Apart from freeing the user from imple
menting the necessary glue code. this higher level
of abstraction opens up many possibilities for the
code generator to perform automatic paralleliza
tions. This is an important property as one of the
main problems in extracting parallelism from ap
plication programs written in languages such as
Fortran is the low level of abstraction.

Sometimes it is not convenient to express the
whole problem to be solved as a system of equa
tions. In these cases the two interfaces to the code

242 VIKLCND Al\'D FRITZSO-"'

Runtime
System &
Solver

Visualization
Tool

FIGURE 4 Generating a numerical simulation program with Object~lath.

generator can be combined. The equations given
as input to system level routines may contain
function calls that are not evaluated before code
generation. Instead the function level routines are
used to generate code from these functions. Thus.
pure mathematical equations can be combined
with functions that are more naturallv (or more
efficiently) expressed imperatively.

The ObjectY1ath code generator generates par
allel programs from systems of ordinary differen
tial equations. In the future it will be extended to
handle other classes of problems. A standard (se
rial) ODE solver is used and the righthand sides of

the equations are evaluated in parallel. A simple
supervisor-worker scheme is currently used to
schedule the computation of the tasks (see Fig. 5)
and some communcation analvsis is needed to
find out which data should be distributed. The
generated code is linked with a small run-time
system that contains special-purpose communi
cation routines and a dvnamic scheduler that
schedules the tasks on the available processors.

Andersson and Fritzson [16] discuss parallel
code generation from Object~ath models in more
detail and also give some performance measure
ments.

Workers

FIGURE 5 The supenisor-worker model of task
scheduling.

6 STATE OF THE IMPLEMENTATION

The ObjectMath programming environment cur
rently runs on Sun workstations (running Solaris 1
or 2) under the X window system. It includes a
graphical browser for viewing and editing inheri
tance and composition hierarchies, the Gnu
Emacs editor for editing ObjectMath equations
and formulae, as well as the ObjectY1ath compiler
and the code generator discussed in the previous
section. Figure 6 shows the overall structure of the
environment. The compiler generates Mathe
matica code, which is sent to the Mathematica
system for symbolic computation.

Version 3 of the Object:Vlath environment is in
regular use on real problems at SKF ERC. It is
also used for experiments at a few academic sites.
The code generator in this version does not have a
system level interface and only generates serial
C++ code. Version 4 of the system., which fea
tures a complete rewrite of the compiler and the
new code generator that generates parallel code, is
currently in use within our group and will soon be
released to external users.

7 RELATED WORK

Object-oriented modeling has been used in a
number of different application areas, for in
stance, control theory [17], chemistry [18], bioi-

OBJECTMA. TH 243

ogy [19], and mathematical modeling in general
[20]. This is not surprising as object orientation
appears to be a natural approach for modeling the
world.

The object-oriented language constructs found
in Object.\1ath are fairly conventional with the ex
ception of the proposed scheme for specifying en
capsulation that seems rather novel. There are
potential problems associated with using simple
linearization to handle conflicts that arise from
multiple inheritance. Some of these problems
could probably be solved with more sophisticated
rules for prioritizing the parent classes, e.g., the
partial ordering used in CLOS [21]. However, in
our experience conflicts of this kind seldom occur
in practice. Thus, it seems unnecessary to add
extra complexity to the language just to handle
them.

A number of computer algebra systems with
object-oriented features have been developed
during recent years. One of the best known is the
AXI0.\1 system [22J, a descendant of SCRATCH
PAD [23], which has a type system that in some
sense is object-oriented, even though the language
constructs provided are different from the ones
usually found in object-oriented languages. An
other example is the Mathematiea-inspired sys
tem AlgBench [24], which extends the pattern
matching of Mathematica to inheritance-based
unification. All of these systems (except Object
Math) focus on using object-oriented techniques
for implementing symbolic and algebraic routines,
i.e., object-oriented programming rather than on
object-oriented modeling.

An example of a system that aims at solving the
same problem as the ObjectYiath programming
environment, but with a somewhat different ap
proach, is the Sinapse program synthesis system
[25]. The work on Sinapse emphasizes automa
tion based on domain-specific knowledge. The
user might describe the problem to be solved as a
symbolic model using application-specific key
words. The symbolic model is at an even higher
level of abstraction than a mathematical model for

Graphical
Editor

Numerical Program

FIGURE 6 Structure of the Objecti'vlath environment.

244 VIKLUND A'ID FRITZSO:\

the problem. Obviously, this is only possible for
the rather limited domain which the system has
enough knowledge about. The user may also sup
ply a mathematical model.. but there seems to be
little structuring support for such models, even
though the knowledge base of the system is orga
nized with object-oriented techniques.

In the ObjectMath project we take the view that
user interaction is acceptable in all steps in the
software development cycle, if it is necessary to
produce efficient programs. Thus. we have been
able to build a general system that can handle
problems from different application domains, but
produces an executable program in a semiauto
matic rather than a fullv automatic fashion.
Sinapse is implemented in :Vlathematica and in
cludes a code generation package called
MathCode [26], which seems quite similar to the
function level part of the Object.\•fath code gen
erator.

Other related systems are object-oriented simu
lation languages and syO:ltems such as Dyrnola [27·:
and Omola [28:,. These systems focus on auto
matic transformation of systems of equations
without user interaction. Our view is that although
such automatic transformations certainly art> very
usefuL the possibility to manually specify trans
formation that Object:Vlath provides i:-; necessary
for efficient solution of complex problems in some
application areas (e.g., mechanical analysis.) ~ei
ther Dymola nor Omola currently support,; p:ener
ation of parallel code. Another difference is that
these modelin~ languages only allow CljlWtions.
no functions or operations. Our experience shows
that .. when working with complex models there are
often small parts that haYe to be expressed proce
durally rather than mathematically. somethin~

that is possible in Ohject.\lath. If one needs to do
the :-;ame thing when working with Dymola. for
instance, one has to write the procedural code in
an ordinary pro:rrammin~ languaf!e,. compile it
separately. and link it to the simulation program.
Because of the svmbolic transformations done bY . .
the Dymola system. the user mi~ht also be forced
to supply another routine that calculates the in
verse of the external routine. Obviously thi,.; might
be very complicated to do efficiently in some
eases.

The SI\IL.\B environment [29] is another system
that is quite similar to Dymola and Omola. How
ever, the Sr.\tLAB modeling language is not object
oriented. Many of the ideas behind the SmL.\B ap
proach seem to be very similar to the ideas behind
ObjectMath .. even though there are a number of
differences between the systems. One is obviously

that the StMLAB language is not object-oriented,
another is that SI.\tLAB, just as Dymola and Omola,
focuses on totally automatic transformations. A
successor to St\ILAB is CH.\1'\S ['30], a language for
programming with algebraic-topology mathemati
cal objects. It is interesting to note that the CHAI'>S
implementation uses ~1athematica for symbolic
computations.

8 CONCLUSIONS

There is a strong need for good high-level tools for
program development in scientific computing. Ex
perience from using Object\Iath in an industrial
environment shows that the Object:Vlath system is
a useful tool that can satisfy part of this need. So
far we have mainly focused on the modeling phase
of the development process for scientific software.
In our experience, the combination of the object
oriented paradigm and mathematical modeling is
suitable for this kind of modeling. The semantic
gap between the system being modeled and the
Object:V1ath model is small. This results in models
that are relatively easy to develop. well structured.
and understandable for application experts .. even
if they are not also Object.\fath experts. The Ob
ject\1ath language has eYOlved based on feedback
from users. For instance. multiple inheritance and
composition were added to the language because
we discovered that these features were necessarv
to model complex systems in a systematic way.

Symbolic computation appears to be an essen
tial capability in high-level systems for scientific
computing. ,,.hole problems can almost never be
solved symbolically. but support for simplification
and autornatic transformations are verv time sav
ing and can improve the quality of the produced
software as the probability of introducing errors i,.;
far less than if such calculations are done bv
hand. \\'e have also seen that the complexity of
realistic models in mechanical analysis makes it
essential that the system allows the user to supply
extra information to guide thf' analysis. Even if it
is sometimes possible to generate numerical pro
grams totally automatically. it is desirable to take
advantage of the extensiYe application domain
knowledge of the engineer using the system. Thus.
advanced problems can be solved more effi
ciently. Once the extra solution and transforma
tion steps have been supplied. the transformation
from high-level model down to executable numer
ical code is automatic. Although the Object:\'lath
system already includes some support for numeri-

cal implem entation and visualization, much work
remains to be done in these areas .

REFERENCES

(1] P. Fritzson and D. Fritzson, " The need for high
level programming support in scientific comput
ing applied to mechanical analysis," Comput.
Structures, vol. 45, pp. 387-395, 1992. Also as
Tech. Rep. LiTH-IDA-R-91-04 , Department of
Computer and Information Science, Linkoping
University, S-581 83 Linkoping, Sweden.

[2] J. H . Davenport, Y. Siret, and E . Toumier, Com
puter Algebra-Systems and Algorithms for Alge
braic Computation. :'\Jew York: Academic Press,
1988.

(3] Symbolics Inc ., MACSYMA Reference Guide.
Symbolics Inc. , 1985.

(4] A. C. Hearn, REDUCE-3 User 's l'vlanual, Version
3.3. Santa Monica, CA, The Rand Corporation ,
Publication CP78 (7 178), 1987.

(5) B. W. Char, K. 0 . Geddes, G. H . GonneL B. L.
Leong, M. B. Monagan, and S. M. Wan, Maple
V Language Ref erence Manual. New York:
Springer-Verlag, 1991.

(6] S. Wolfram, Mathematica-A System for Doing
Mathematics by Computer, 2nd ed. Redwood
City: Addison-Wesley, 1991 .

[7] G. 0 . Cook, Jr. , " ALPAL, a program to generate
physics simulation codes from natural descrip
tions, " Int.]. Mod. Ph.ys., vol. 1 , pp. 1-51,
1990.

[8) M. A. Ellis and B. Stroustrup, The Annotated
C+ + Reference Manual. Reading: Addison-Wes
ley, 1990.

(9) L. Viklund, J. Herber , and P. Fritzson, " The im
plementation of ObjectMath-a high-level pro
gramming environment for scientific computing,' '
in Compiler Construction-4th International
Conference, CC '92, vol. 641 of Lecture Notes in
Computer Science, U. Kasten s and P. Pfahler,
Eds. New York: Springer-Verlag, 1992, pp. 312-
318.

(10) G. Booch, Object Oriented Design with Applica
tions. Redwood City: Benjamin /Cummings ,
1991 .

(11] P. Wegner, " Concepts and paradigms of object
oriented programming," OOPS lvlessenger, vol. 1 ,
pp. 87, Aug. 1990.

(12) SIS, Box 3295, Stockholm, Sweden, SIMULA
Standard, 1987. Swedish Standard SS 63 61 14 .
ISBN 91-7162-234-9.

[13] A. Goldberg and D. Robson, Smalltalk-80: The
Language and its Implementation . Reading: Ad
dison-Wesley, 1983.

(14] B. B. Kristensen , 0 . L . Madsen, B. Moller-Peder
sen , and K. Nygaard , " The BETA programming
language," in Research Directions in Object-Ori-

OBJECTMATH 245

ented Programming, B. Shriver and P. Wegner ,
Eds . Boston, MA : MIT, 1987 , pp. 7-48.

(15) B. Meyer, Eiffel: The Language . New York: Pren
tice Hall, 1992 .

[16) N. Andersson and P. Fritzson, "Generating par
allel code from object oriented mathematical
models, in Proc. of the Fifth A CM SIC PLAN Sym
posium on Principles and Practice on Parallel
Programming, July 1995, pp. 48-57.

[17) F. E . Cellier, B. P. Zeigler, and A. H. Cutler,
"Object-oriented modeling: Tools and tech
niques for capturing properties of physical sys
tems in computer code, in Proc. of the IFAC Sym
posium Computer Aided Design in Control
Systems. July 1991 , p. 1.

[18) P. C. Piela, T. G. Epperly, K. M. Westerberg, and
A. W. Westerberg, "ASCEND: An object-ori
ented computer environment for modeling and
analysis: The modeling language, Comput. Chern.
Eng., vol. 12, pp . 53-72, 1991.

[19] C. Pierret-Golbreich, " Object-centered knowl
edge representation for modelling in biology," in
International Symposium on AI, E:r:pert Systems
and Languages in Modeling and Simulation ,
June 1987, p. 281.

(20] T. W. Page, Jr. , S. E. Berson , W. C. Cheng, and
R. R. Muntz, "An object-oriented modeling envi
ronment," in OOPSLA '89 Conference Proc. ,
1989, p. 287.

(21) D. G. Bobrow, L. G. DeMichiel , R. P. G. S. E .
Keene, G. Kiczales , and D. A. Moon, " Common
Lisp object system specification, " ANSI X3J1 3
Document 88-002R, American Standards Insti
tu te, Washington , DC, June 1988.

(22) R. D. Jenks and R. S. Sutor, AXIOM-The Scien
tific Computation System. New York: Springer
Verlag, 1992.

[23] R. D. Jenks, R. S. Sutor, and S. M. Watt,
"Scratchpad II : An abstract datatype system for
mathematical computation," in Mathematical
Aspects of Scientific Software , vol. 14 of The IMA
Volumes in Mathematics and Its Applications ,
J. R. Rice, Ed. New York: Springer-Verlag, 1988,
pp. 157-182.

[24) G. Grivas and R. E. Maeder, Matching and unifi
cation for the object-oriented symboli c computa
tion system AlgBench , in Design and Implemen
tation of Symbolic Computation Systems, vol.
722 of Lecture Notes in Computer Science, A.
Miola, Ed. New York: Springer-Verlag, 1993, pp.
164-176.

(25) E. Kant, " Synthesis of mathematical modeling
software, " IEEE Software, vol. 10, pp. 30-41 ,
May 1993.

(26) E . Kant, F. Daube, W. :\1acGregor, and J. Wald ,
"MathCode: A code generation package for
Mathematica ," draft , October 1990.

(27] H . Elmqvist, " Object-oriented modeling and au
tomatic formula manipulation in Dymola , in
SIMS'93, Applied Simulation in lndustry-Proc.

246 VIKLL."\D A:"JD FRITZSOJ\"

of the 3.5th SIMS Simulation Conference, June
1993.

[28] S. E. Mattsson, M. Andersson, and K. J. Astrom,
"Object-oriented modelling and simulation." in
CADforControlSystems, D. A. Linkens. Ed. :\ew
York: Marcel Dekker.. 1993, pp. 31-69.

[29] R. S. Palmer and J. F. Cremer, "SimLab: Auto
matically creating physical systems simulators,"
Cornell Lniversity, Ithaca. ~y, Computer Sci<~nre
Tech. Rep. TR92-1246, 1992.

(30] R. S. Palmer, "Chain models and finite element
analysis," Cornell Lniversity, Ithaca. i\Y, Com
puter Science Tech. Rep. TR94-1406. 1994.

[31] J. Heering, P. R. K. Hendriks, P. Klint, and .1.
Rekers, "The syntax definition formalism SOF
reference manuaL., ACM SJGPLAN Notices. vol.
14, pp. 43-75, ~ov. 1989.

[32] P. Coad and E. Yourdon, Ot~;ect-Oricnted Ana{r
sis, ~ew York: Prentice HalL 1991.

[33] I. Jacobsson, M. Christcrsson, P. Jonsson, and G.
Overgaard, Object-Oriented Software Engineer
ing-A Use Case Driven Approach. Wokingham:
Addison-Wesley, 1992.

SDF Specification of the ObiectMath Syntax

%% ObjectMath

exports

sorts

APPENDIX 1: OBJECTMATH SYNTAX

The syntax of the Object:Yiath language is defined
using the syntax definition formalism SD F [~11].
The sorts sections of the specification declare
the names of domains or non terminals used in the
other sections. In the lexical syntax section
the rules of the lexical syntax are given, whereas
the context-free syntax section defines the
concrete and abstract syntax. The SDF context
free rule (function):

"CLASS" CLASS_NAME INHERITS
-> CLASS_HEAD

corresponds to the following BJ\'F rule:

<CLASS_HEAD> :: = "CLASS"'
<CLASS_NAME> <INHERITS>

Finally, in the priori ties section relations be
tween rules in the context-free svntax are defined
as well as the associativity of g;oups of different
operators.

MODEL MODEL-HEAD MODEL_BODY PACKAGES
GLOBAL_DECL OBJ_DECL CLASS_DECL INST_DECL
CLASS_HEAD CLASS_NAME CLASS_END INST_HEAD
INST_NAME INST_END INHERITS OBJ_BODY
COMP __ EXPR EXPR EXPRl LIST QUOTE VAR
PAT_TEST BLANK PATTERN TAG SLOT SYMB
FILE_NAME !NT REAL STRING DIGIT
STRING_ELEM COMMENT_ELEM

lexical syntax
[\t\n\r]
"(*" COMMENT_ELEM* "*)"
~ (*]

"*" - [) l
[0-9]

DIGIT+
DIGIT* "·" DIGIT+
DIGIT+ II II DIGIT*
~ [\ "]
"\\\""
"\"II STRING_ELEM* "\""
[a-zA-Z' $) [a-zA-Z 1 $0-9] *
[I]*

->
->
->
->
->
->
->
->
->
->
->
->
->

LAYOUT
LAYOUT
COMMENT _ELEM
COMMENT _ELEM
DIGIT
!NT
REAL
REAL
STRING_ELEM
STRING_ELEM
STRING
SYMB
QUOTE

SYMB BLANK
BLANK
ft H

11 • "

If H

H H

"#"
"#" INT
"::fl:#:"
"::fl:#:"
II •. II

fl •• !!

INT
SYMB
STRING

context-free syntax
MODEL_HEAD MODEL_BODY
"MODEL" SYMB ";II

PACKAGES GLOBAL_DECL OBJ_DECL*
"PACKAGES" { STRING 11

, II }+ ";II

COMP_EXPR
CLASS_DECL
INST_DECL
CLASS_HEAD OBJ_BODY CLASS_END
"CLASS" CLASS_NAME INHERITS
SYMB II (II { SY1\I!B II ' II }+ II) II

SYMB
"END" SYMB ";"
"END" ";II
INST_HEAD OBJ_BODY INST_END
"INSTANCE" INST _NAME INHERITS
SYMB II [II SYMB " J II
SYMB
"END" INST_NAME
"END" ";"

H . H

'

"INHERITS" SYMB "(" LIST ")"
II INHERITS" SYMB

COMP_EXPR
{ EXPR II;" }+
{ EXPR ";" }+ "." '

EXPR ">>" FILE_ NAME
EXPR ">>>" FILE_NAME
EXPR "=" EXPR
EXPR H: :::: H EXPR
EXPR " A " EXPR
EXPR n "'. = H EXPR
SYMB n I:" EXPR " II

SYMB "I: II EXPR n. ="
EXPR H= If

SYMB "I: " EXPR II

SYMB " : : = II SYMB
STRING"::=" SYMB
SYMB "· · =."

"

EXPR
EXPR

OBJECniATH 247

-> PATTERN
-> PATTERN
-> BLANK
-> BLANK
-> BLANK
-> BLANK
-> SLOT
-> SLOT
-> SLOT
-> SLOT
-> TAG
-> TAG

-> MODEL
-> MODEL_HEAD
-> MODEL_BODY
-> PACKAGES
-> PACKAGES
-> GLOBAL_DECL
-> OBJ_DECL

> OBJ_DECL
-> CLASS_DECL
-> CLASS_HEAD
-> CLASS_NAME
-> CLASS_NAME
-> CLASS_END
-> CLASS_END
-> INST_DECL
-> INST_HEAD
-> INST_NAME
-> INST_NAME
-> INST_END
-> INST_END
-> INHERITS

> INHERITS
-> INHERITS
-> OBJ_BODY

> COMP_EXPR
-> COMP_EXPR

> COMP_EXPR
-> EXPR

> EXPR
> EXPR {right}
> EXPR {right}

-> EXPR {right}
-> EXPR {right}

> EXPR
-> EXPR
-> EXPR
-> EXPR

> EXPR
> EXPR
> EXPR

248 VIKLCI\D A.\ID FRITZSO!\'

STRING"::= II

EXPR II I I" EXPR
EXPR 11 & 11

EXPR 11 += 11 EXPR
EXPR "-= 11 EXPR
EXPR II*= II EXPR
EXPR II I= II EXPR
EXPR 11 1. II EXPR
EXPR "II. II EXPR
EXPR "->" EXPR
EXPR 11

: >" EXPR
EXPR "I; II EXPR
SYMB II : II EXPR
EXPR II II

EXPR II

EXPR "II"
II

EXPR II && II EXPR
11 ! II EXPR
EXPR "== II EXPR
EXPR "=! = 11 EXPR
EXPR "==" EXPR
EXPR II ! = II EXPR
EXPR "> 11 EXPR
EXPR "< 11 EXPR
EXPR ">= 11 EXPR
EXPR 11 <=" EXPR
EXPR "+II EXPR
EXPR II- II EXPR
EXPR "*" EXPR
EXPR "I II EXPR
11 +" EXPR
11
-" EXPR

EXPREXPR
EXPR II ' II EXPR
EXPR II II EXPR
EXPR "**" EXPR
EXPR II ' II EXPR
EXPR "1@ 11 EXPR
EXPR "I I@" EXPR
EXPR "@@"
EXPR II~ II EXPRl II~ II EXPRl

EXPRl
EXPRl II@" EXPRl
EXPRl "++ 11

EXPRl 11 -- 11

"++" EXPRl
"--

11 EXPRl
QUOTE
EXPRl II[" LIST "]II
EXPRl "[["LIST"]]"
VAR
VAR 11 ?" VAR
SYMB
PATTERN

-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> PATTERN
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPR
-> EXPRl
-> EXPRl
-> EXPRl
-> EXPRl
-> EXPRl
-> EXPRl
-> EXPRl
-> EXPRl
-> EXPRl
-> VAR
-> VAR
-> VAR

{left}

{right}
{right}
{right}
{right}
{left}
{left}
{right}
{right}
{left}

{left}
{left}

{left}
{left}
{left}
{left}
{left}
{left}
{left}
{left}
{left}
{left}
{left}
{left}

{left}
{right}
{left}
{left}

{right}
{right}
{right}

{right}

SYMB TAG -> VAR
!NT -> VAR
REAL -> VAR
n (n LIST ") " -> VAR
u {" LIST H} fl -> VAR
SLOT -> VAR
STRING -> VAR
{ COMP_EXPR " " }* -> LIST ,
STRING -> FILE_NAME
SYMB -> FILE_NAME

priorities
"("LIST")"-> VAR <
{"CLASS" CLASS_NAME INHERITS -> CLASS_HEAD,

"INSTANCE" INST_NAME INHERITS -> INST_HEAD}

priorities
{ right: "="
"I/" <

"· " A== II II':=" } <

EXPR "&" > EXPR <
{right:"+=","-=" "*" "/="} <
{ left: "/. ", "//." } <
{ right: "->", ": >" } <
"/;" <
SYMB ": " EXPR - > PATTERN <
{ EXPR " II -> EXPR, EXPR II " -> EXPR } <
"II" <
"&&" <
II! II EXPR > EXPR <
{ left: II == ==" " I=" } <
{ left: " ==H H! ", ">", "<tt, ">==n, n<==" } <
{ left:

{ left:

EXPR
EXPR
EXPR
EXPR

"+"
"-"
If*"
"/"

EXPR - > EXPR,
EXPR -> EXPR } <

EXPR - > EXPR,
EXPR -> EXPR } <

"+" EXPR > EXPR <
" II EXPR > EXPR <
EXPR EXPR - > EXPR <
"." <
"**" <
EXPR "!" > EXPR <
EXPR " ! ! " - > EXPR <
{ right: "!@", "I!@", "@@" }

priorities
"@" <
EXPRl "+ + " - > EXPRl <
EXPRl "- " -> EXPRl <
" + + II EXPRl - > EXPRl <
"--" EXPRl -> EXPRl <
EXPRl "[" LIST "]" -> EXPRl <
EXPRl " [[" LIST "]]" -> EXPRl <
EXPRl QUOTE - > EXPRl

OBJECT~ATH 249

250 VIKLUND Al\"D FRITZSOl\"

APPENDIX 2: OOA DIAGRAM OF THE
BEARING MODEL

This is the same class structure as in Figure :3,
drawn using the OOA notation by Coad and Your
don [32]. The only important difference between
the OOA notation and the ObjectMath notation is

that in OOA a component (part) might belong to

several aggregates, whereas an ObjectMath part
always belongs to exactly one aggregate. Note that
some other object-oriented notations, e.g., the
one used in OOSE [33~, take the same view as
ObjectMath on this issue.

Spinning Element Bearing

A 2 1

I
Coordinate System Body

A
1 11

Ring Roller

l
Contact

~ ~
1

Contact System

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

