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Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual
method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the
Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with
both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for
the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through
Energy Finite Element Method (EFEM) and classical wave theory were compared to verify the EFEM model, which presented a
good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and
arrangement of piezoelectric patches on characteristics of system energy density distribution.

1. Introduction

The birth of intelligent structure system is due to the mutual
penetration of information science and engineering and
materials science. Piezoelectric intelligent structure, as one of
intelligent structures, is interpreted as light damping system
attached with piezoelectric materials on the surface. Based
on various advantages of piezoelectric materials, such as easy
measurement and control of input and output of the signals,
wide range of frequency response, both use of sensor and
actuator and so on, it has been largely applied in aerospace,
robot, information technology, IT, materials science, and
other high technologies. Many scholars have made deep
researches and gained rich achievements, and as a result,
active vibration control systems using piezoelectric materials
as distributed sensors and actuators (S/As) are becoming
more and more popular in recent years.

As the object of study, piezoelectric intelligent structure’s
dynamic modeling and optimal design of structure param-
eters are the problems we concerned about most. External
perturbation is always treated as pulse excitation to discuss
the suppression problems of system vibration. Obtaining

the system’s state-space equation through modal theory, the
optimal locations of piezoelectric sensors and actuators were
searched taking the smallest vibration energy as the objective
function [1]. In [2], governing equation was established
based on steady stimulation and then made an experimental
research on frequency response characteristic. In [3], the
boring bar vibration was controlled by using piezoelectric
materials; simulation results suggest that the control effect
was well.

The application of Finite Element Method (FEM) will
be involved when it needs to solve the analysis and design
problems of complex engineering structures. In recent years,
the FEM analysis for vibration control of piezoelectric
intelligent structures has become some research hotspot.
A piezoelectric smart structure model had been discussed
in [4], using the finite element theory. The finite element
dynamics equation of piezoelectric intelligent structure was
deduced in [5]. However, the application of FEM is generally
confined in relatively lower frequency domain, which is
resulted from a high sensitivity of the numerical calculation
to tiny alteration of structure parameters when the number
of elements in the FEM model becomes very great. Although
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Statistical Energy Analysis (SEA) has become a mature
method in energy flow analysis, and related commercial
software such as AutoSEA has been in use, it would face the
problem of insufficiency in modal density in relatively lower
frequency band. In addition, there is not mature theory of
structure in loss factor and coupling loss factor [6]. There
exists some middle frequency band in which either FEM
or SEA would not be credible. Compared with SEA, as an
energy analysis method based on wave theory, EFEM does
not have any request for structural modal density, and it is
more rigorous in describing the energy of system balance.
Thus, the EFEM would overcome both the disadvantages of
FEM and SEA in solving middle frequency problems and will
have a great development in resolving the structure vibration
and acoustic radiation problems [7].

In this paper, based on the transmission and equilibrium
relationship of vibration energy in beam-like structures, the
Galerkin weighted residual method was applied to equation
discretization. An equivalent transformation of feedback
element was suggested to develop the Energy Finite Element
model of a composite piezoelectric cantilever beam driven
by harmonic excitation on lateral direction, both systems
with and without time delay being studied. And the power
input estimation of harmonic excitation was discussed for
the resolution of Energy Finite Element function. Then the
energy density solutions of the piezoelectric coupling beam
through Energy Finite Element Method (EFEM) and classical
wave theory were compared to verify the EFEM model,
which presented a good accordance. Further investigation
was undertaken about the influence of control parameters
including the feedback gain and arrangement of piezoelectric
patches on characteristics of system energy density distribu-
tion.

2. Energy Finite Element Model of
Piezoelectric Cantilever System

2.1. System Model. Composite piezoelectric cantilever beam
is one of the most typical piezoelectric intelligent structures,
which is presented in Figure 1(a). In the demonstrated
system, series of piezoelectric material patches are grouped
in couples and attached symmetrically to a host beam, one
patch of each couple being used as an actuator and the other
a sensor. The host beam is excited by a harmonically varying
force with magnitude F0 which would cause a transverse
bending vibration. hp and hb represent the thickness of
piezoelectric patch and cantilever beam, respectively.

Figure 1(b) shows the vibration energy inflow and out-
flow of cubic element, in which q and πdiss represent power
flow through cubic element and the energy dissipated by
damping, respectively, and Qin is the energy input from
external. At each point of the structure, the instantaneous
energy balance equation is given by [8]

∂e

∂t
= −∂q

∂x
− πdiss + Qin, (1)

where ∂e/∂t is the variation ratio of energy density to time.
The time-averaged value of q, πdiss, and e, that is, 〈q〉,

〈πdiss〉, and 〈e〉, could be related as

〈
q
〉 =

(
c2
g

ηω

)

· d〈e〉
dx

, 〈πdiss〉 = ηω〈e〉. (2)

By substituting expression (2) into (1), the energy bal-
ance equation is written as
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ηω
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·
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d2〈e〉
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)

+ ηω〈e〉 = 〈Qin〉, (3)

where cg = 2(ω2EI/ρA) is the group velocity of bending wave
and η is the damping loss factor.

2.2. Energy Density Control Equations without Feedback.
When the feedback does not exist, the harmonic excitation
is the only energy source in the system. Equation (3) could
be discretized by Galerkin weighted residual method:

K (n)e(n) = P(n) + Q(n), (4)
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(6)

where the superscript (n) denotes the nth discretizednodes,
K(n) is a coefficient matrix related to stiffness and mass, P(n)

is the power flow at corresponding node, Q(n) is the external
energy input, and N(x) is the lagrange linear interpolation
basic function.

For solving expression (4), coupling relationship among
elements needs to be solved. Suppose the numbers of two
adjacent elements are i and i + 1 and τ(i,i+1) and γ(i,i+1)

represent transmission and reflection coefficient between
coupling nodes:

〈
q−
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(7)

The node input power flow for each element is
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Combine expressions (7) and (8):
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, (9)

where α(i,i+1) = 0.5τ(i,i+1)/γ(i,i+1).
As an example, the piezoelectric beam is divided into four

units as shown in Figure 2 according to the classification rule
of energy finite element, in which unit 2 is a piezoelectric
beam element, and others are base beam elements. Substitute
expression (7) into (9):
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Figure 1: Piezoelectric cantilever system model and energy flow balance.
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Figure 2: Element Finite Element model of cantilever beam system.
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From expression (10), if the material parameters of the
base beam and piezoelectric beam elements are known,
the energy density of each node could be obtained after
measuring or calculating the input power of system.

2.3. Transformation of Feedback Element

2.3.1. Ideal System without Time Delay. Equation (10) is
deduced without consideration of the feedback element
performed by the piezoelectric actuator and sensor. In the
negative feedback control model, the piezoelectric actuator
would exert a resistance moment to suppress the vibration
of host beam according to the vibration response signal
picked up by the piezoelectric sensor. In this situation, the
active control moment would become a second energy source
besides the harmonic exciting force. However, assuming an
ideal system in which the transmission of feedback signal
and the rapid reaction of the actuator were all instant, that
is, there were not any time delay in the feedback control
element; an equivalent transformation could be adopted
to match the effect of feedback control with some simple
modification of system parameters.

In most conditions, the attached piezoelectric patches
should not be very long in size, and the electric charge
Qa(x, t) generated by the piezoelectric sensor under a
bending deformation of the host beam could be expressed
as

Qa(t) =
∫ x+l

x
bd31

(
Epε1

)
dx

= 1
2
d31Ephbb

[
w2,x(x + l, t)−w2,x(x, t)

]

.= 1
2
d31Ephbblw2,xx(t),

(11)

where b, d31, ε1, and Ep represent width, piezoelectric strain
constant, and elasticity modulus of piezoelectric element, x
and x+ l are coordinates of the piezoelectric patch’s two ends,
w2,xx is the curvature of the composite beam.

For a proportional feedback control, the bending
moment ma(t) supplied by the piezoelectric actuator is
decided by

ma(t) = KmUa(t) = Km

Cp
Qa(t) = Kw2,xx(t), (12)

where Km is a transfer coefficient, Cp is the capacitance of
the piezoelectric sensor, and K = 0.5d31EphbblKm/Cp is total
feedback gain.

Taking into account the dynamic balance of moments,
when a feedback control went into action, the internal
bending moment M in the composite beam would be

M
(
jω
) =Ma

(
jω
)

+ EI
(
1 + jη

)
W2,xx

(
jω
)

= [K + EI
(
1 + jη

)]
W2,xx

(
jω
)
.

(13)
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Table 1: Parameters of piezoelectric cantilever beam.

Length Section area A Moment of inertia I Elasticity modulus E Density ρ

Beam Lb = 0.5 Ab = 4e − 5 Ib = 1.33e − 11 Eb = 2.06e11 ρb = 7.8e3

PZ (Case 1) La = 0.1 Aa = 2e − 5 Ia = 1.67e − 12 Ea = 0.7e11 ρa = 7.75e3

PZ (Case 2) La = 0.05 Aa = 1e − 5 Ia = 2.08e − 13 Ea = 0.7e11 ρa = 7.75e3

The above equation is expressed in frequency domain,
where Ma and W2,xx are the Fourier transforms of ma and
w2,xx, respectively.

The revelation of (13) is that an attendance of negative
feedback control would be equivalent to an increase of the
flexural rigidity of the composite beam by K .

2.3.2. Discussion of Systems with Time Delay. Time delay,
which is caused by the transmission and processing of feed-
back signals and reaction inertia of actuators, is inevitable
in all kinds of active control systems. Time delay would
result in complicated dynamic characteristics. The following
is a qualitative analysis of the influence of time delay to the
modeling method investigated here.

When a time delay is taken into consideration, the
expression (12) should be written in the following descrip-
tion:

ma(t) = Kw2,xx(t − τ). (14)

Assuming the system is in a harmonic vibration style,
making a Fourier transform to the above equation would
result in

Ma
(
jω
) = Ke− jωτW2,xx(ω)

= KW2,xx(ω)
[
cos(ωτ)− j sin(ωτ)

]
.

(15)

Substitute the above equation into (13),

M
(
jω
) =

{
[EI + K cos(ωτ)] + EI · j

[
η − K sin(ωτ)

EI

]}

×W2,xx
(
jω
)
.

(16)

Comparing (16) with (13), one could conclude that

(1) if ωτ � 1, that means cos(ωτ) ≈ 1 and sin(ωτ) ≈ 0,
(16) and (13) are actually the same and time delay
could be neglected;

(2) if ωτ is great enough to be counted, a feedback
control accompanying time delay would be equal to a
change of flexural rigidity by K cos(ωτ), and a change
of damping loss factor by −K sin(ωτ)/EI ;

(3) from the viewpoint of rigidity improvement, time
delay would not be expected. The feedback control
would more or less produce a positive effect when
0 < ωτ < π/2. But if ωτ is too great to exceed
π/2, in the range of π/2 < ωτ < 3π/2, the feedback
control would produce a worsen effect than it comes
into action before. And this might lead to a negative

rigidity if the feedback gain K was great enough,
which would be the worst situation that the system
would become unstable;

(4) if there was any possibility that one might benefit
from a time delay, the benefit might lie in an
equivalent increase of damping loss factor when π <
ωτ < 2π, which has been presented in the second
part of (16), and this might be helpful to vibration
damping. But there would also be a risk that negative
damping might appear if improperly controlled, and
the system stability would be destroyed.

2.4. Input Power of the Piezoelectric Cantilever Beam Using
Two Different Calculation Methods. In order to solve expres-
sion (10), the input energy Qin should be determined at first.
Qin here denotes the energy intensity input by the external
excitation to the system and is specifically defined as the
time-averaged power input in a vibration period.

For steady harmonic vibration, Qin can be expressed as

Qin(ω) = ω

2π

∫ 2π/ω

0
Re(F) · Re(V)dt

= 1
2
|F||V | cosϕ = 1

2
|F|2 Re

(
1
Z

)

= 1
2
|V |2 Re(Z),

(17)

where F = F(t)e jωt, V = V(t)e jω(t+ϕ), and Z is the impe-
dance of the structure at the excitation point.

The estimation of Qin could be performed by modal
method or infinite beam method.

2.4.1. Modal Method. For beam structures as shown in
Figure 1, the displacement response function is

w(x, t) = F0e
jωt

∞∑

r=1

Yr(x0)Yr(x)
Mr
[
ω2
r

(
1 + jη

)− ω2
] , (18)

where x0 are the coordinates of the exciting force, and the
beam end and Yr(x) and Mr are the modal shape function
and modal mass of the beam, respectively.

Thus, the input power could be calculated by

Qin = 1
2
|F|2 Re

(
1
Z

)

= 1
2
|F|2 Re

⎛

⎝ jω
∞∑

r=1

Yr(x0)Yr(x)
M0
[
ω2
r

(
1 + jη

)− ω2
]

⎞

⎠.

(19)
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2.4.2. Infinite Beam Method. Considering a bilateral infinite
beam excited by a harmonic force at point x0 = 0,
the displacement response in frequency domain could be
obtained according to the wave theory:

Wi(x,ω) = Ci1e
− jλix + Ci2e

−λix + Ci3e
jλix + Ci4e

λix, (20)

where C1, C2, C3, and C4 are determined by the shear
equilibrium conditions as below:

F0

2
− EI

∂3w

∂x3

∣
∣
∣
∣∣
x=0

= F0

2
+ EIK3

B

(− jC3 + C4
) = 0(x = 0−),

(21)

F0

2
+ EI

∂3w

∂x3

∣
∣
∣∣
∣
x=0

= F0

2
+ EIK3

B

(− jC1 + C2
) = 0(x = 0+),

(22)

KB
(
jC3 + C4

) = 0, −KB
(
jC1 + C2

) = 0(x = 0). (23)

Solving the simultaneous equations (21)∼(23),

C1 = jC2 = C3 = jC4 = − j
F0

4EIK3
B

. (24)

Thus, the input impedance of bilateral infinite beam at
the excitation point is

Zs = F0e jωt

∂w(0, t)/∂t
= 2ρACB

(
1 + j

) ≈ 2.67ρA
√
Clh f

(
1 + j

)
.

(25)

Similarly, the input impedance of unilateral infinite beam
could also be deduced:

Zd = F0e jωt

∂w(0, t)/∂t
= 2ρACB

(
1 + j

) ≈ 0.67ρA
√
Clh f

(
1 + j

)
.

(26)

The input power of infinite beam could then be acquired
by (17).

Figure 3 shows the results of modal method and infinite
beam method. It could be found that the latter is the
average value of modal solution over modal density. Figure 4
presents the influence of the damping loss factor on the
input power. Increasing the damping will reduce the size
of each peak in the input power curve, but the sizes of
other regions will increase. Figure 5 compares input power
curves under different elastic modulus. It can be observed
that reducing elastic modulus will lead to the movement of
peaks to lower frequency region. This is because the beam’s
vibration modals have been excited earlier after the drop of
the stiffness. Reducing the beam density would bring about a
similar result as that of increasing the elastic modulus, which
is shown in Figure 6.

3. Numerical Analysis

A concrete example of the system in Figure 2 is investigated.
The physical parameters are listed in Table 1.

The EFEM model would be verified through a compar-
ison with the result from a wave theory which has been
deduced in the appendix. As a first stage, Table 2 gives a
comparison between natural frequencies of the composite
piezoelectric cantilever beam calculated by wave theory and
ANSYS, respectively. It could also be found that the natural
frequencies are little higher than those of the host beam after
the path of piezoelectric elements.

3.1. Comparison of EFEM and Exact Solutions by Wave Theory.
Figure 7 gives a comparison between the energy density
calculated by EFEM and the wave theory in the appendix.
The average value of wave solution over the beam length, or
in other words, EFEM solution is a time-averaged and space-
averaged energy density. Figure 7 also indicates an excellent
identity in the results of EFEM and wave method. In Figure 8
different feedback gain is applied in the wave method and the
effect of feedback control is evaluated through the variation
of vibration amplitude. A careful comparison of Figures 8
and 9(a) could further verify the coincidence of EFEM and
wave theory.

3.2. The Influence of Variation of System Parameter on the
Distribution of Energy Density. Figure 9 is an investigation
about the influence of variation of system parameters on
distribution of system energy density along the piezoelectric
cantilever beam by FFEM solution. As can be seen in
Figure 9(a), increasing the feedback gain can reduce the
energy density value of the beam. By comprehensive compar-
ison of Figure 8 with Figure 9(a), one can still conclude that
the energy density and vibration amplitude are equivalent in
describing vibration level. However, the energy density, on
account of having been space averaged, is more recapitulative
in vibration evaluation. And the EFEM could be utilized to
deal with more complex engineering structures than classical
wave method.

Figure 9(b) shows the energy density distribution when
the piezoelectric patch is located at different positions. It
seems that the active control would be more effective if the
piezoelectric patches were fixed near the clamped end of the
cantilever beam. Figure 9(c) shows the alteration of energy
density distribution when the length of piezoelectric element
is altered, and it presents that a bit longer piezoelectric
patch might be more beneficial to vibration suppression.
Figure 9(d) compares the situation that two pairs of piezo-
electric patches are attached discretely to the host beam with
only one pair of piezoelectric patches being used. Obviously,
lower energy density could be achieved in the former
situation. And it could be realized that the beam segments
having been patched with piezoelectric elements have lower
energy density than other unpatched beam segments, and a
more satisfied control effect would be expected if more pairs
of piezoelectric patches were applied.

4. Summary and Conclusions

The research in this paper is focused on the modeling and
analysis of active vibration control system of the composite
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Figure 3: The input power of modal method and infinite beam method.

Table 2: Natural frequency of the system before and after the patch of piezoelectric elements.

Mode number 1 2 3 4 5

Natural frequency of host beam (wave theory)/Hz 13.55 84.94 237.8 466.1 770.4

Natural frequency of host beam (FEM)/Hz 13.55 84.94 237.8 465.9 770.2

Natural frequency of piezoelectric beam (FEM)/Hz 15.25 92.19 250.7 480.4 784.2
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piezoelectric beam based on Energy Finite Element Method.
It should be pointed that environment noise, signal trans-
mission error, and other uncontrollable factors might cause
more or less departure of theoretical model from the practice,
which is difficult to forecast now. However, through the
theoretical and numerical analysis in this work, it could be
proved that the EFEM is of application value in dealing with
similar systems and it could be concluded that

(1) the EFEM gives a time-averaged and space-averaged
value of energy density at the conjunction node
between discretized beam elements. It could be
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Figure 5: Influence of stiffness on the input power.

equally efficient as classical wave method or other
mature method such as FEM and SEA in vibration
evaluation, but the method would be more suitable
for dealing with complex engineering structures
associating broad frequency band;

(2) in modeling the piezoelectric intelligent beam, the
feedback gain could be equivalent to an extra increase
of the flexural rigidity of the composite beam seg-
ment; that is, greater feedback gain would provide
greater reduction of system vibration level, whereas
the introduction of time delay would bring about
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complicated situations. In general, both rigidity
modification and damping modification should be
taken into consideration, and attention should be
paid to potential problems on negative rigidity and
damping;

(3) numerical analysis indicates that proper design of
system configuration parameters would be essential
in order to achieve the best control efficiency, and
how to find the optimal system parameters would
be of significant value to be explored further. For
the piezoelectric cantilever beam as studied in this
paper, the control efficiency would be raised by
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arranging the piezoelectric patches near-clamped-
end in position, a bit longer in size and multipled in
number.

Appendix

Wave Solution of Energy Density of
Piezoelectric Beam System

Referring to Figure 2, investigate a host beam symmetrically
attached with a pair of piezoelectric patches. As a general
discussion, supposing the excitation force is exerted at node
6, the whole beam would consequently fall into 4 segments,
which are partitioned at nodes 2, 4, and 6, and are serially
numbered as 1∼4.

Let wi(x, t) (i = 1, 2, 3, 4) represent the lateral displace-
ment of each beam segment, and EbIb, ρbAb, EpIp and ρpAp

represent the bending rigidity and mass density per unit
length of the host beam and the piezoelectric patch.

For beam segments without piezoelectric patches, that
is, segments 1, 3, and 4, we have the bending vibration
equations:

ρbAbwi,tt + EbIbwi,xxxx = 0, (i = 1, 3, 4). (A.1)

For segment 2, in the feedback control mode, the
governing equation is

(
ρbAb + 2ρpAp

)
w2,tt +

(
EbIb + 2EpIp

)
w2,xxxx −ma,xx = 0.

(A.2)
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Figure 9: Influence of variation of system parameters on energy density distribution by EFEM.

Letting λ4
1 = λ4

3 = λ4
4 = ω2ρbAb/EbIb and λ4

2 = ω2(ρbAb +
2ρpAp)/(EbIb + 2EpIp), after Fourier transformation, (A.1)
and (A.2) are rewritten as

Wi,xxxx(x,ω) + λ4
i Wi(x,ω) = 0, (i = 1, 2, 3, 4). (A.3)

The general expression of Wi(x,ω) would be

Wi(x,ω) = Ci1e
− jλix + Ci2e

− jλix + Ci3e
− jλix

+ Ci4e
− jλix, (i = 1, 2, 3, 4).

(A.4)

Substituting the boundary conditions of each beam
segments into the above equation and defining

Ci
+ = [Ci1,Ci2]T , Ci

+ = [Ci1,Ci2]T ,

Ci
− = [Ci3,Ci4]T , e+

i (x) =
[
e− jλix 0

0 e−λix

]

,

e−i (x) =
[
e jλix 0

0 eλix

]

,



Advances in Acoustics and Vibration 9

λ+
Wi =

[
1 1
− jλi −λi

]

, λ−Wi =
[

1 1
jλi λi

]

,

λ+
Fi = EiIiλ

2
i

[
−1 1
jλi −λi

]

, λ−Fi = EiIiλ
2
i

[
−1 1
− jλi λi

]

.

(A.5)

The coefficients Cij (i, j = 1, 2, 3, 4) could be resolved
through the following equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12 O O O O O O
A21 A22 A23 A24 O O O O
A31 A32 A33 A34 O O O O
O O A43 A44 A45 A46 O O
O O A53 A54 A55 A56 O O
O O O O A65 A66 A67 A68

O O O O A75 A76 A77 A78

O O O O O O A87 A88

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C+
1

C−1
C+

2

C−2
C+

3

C−3
C+

4

C−4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
F
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(A.6)

where O is a 2 × 2 null matrix, 0 a is 2 × 1 null vector, F =
[ 0 F0 ]T , and

A11 = λ+
W1, A12 = λ−W1,

A21 = λ+
W1e+

1 (l1), A22 = λ−W1e−1 (l1)

A23 = −λ+
W2e+

2 (l1), A24 = −λ−W2e−2 (l1),

A31 = λ+
F1e+

1 (l1),

A32 = λ−F1e−1 (l1),

A33 = K
[
λ+
W2e+

2 (l1)− λ+
W2e+

2 (l1 + l2)
]− λ+

F2e+
2 (l1),

A34 = K
[
λ−W2e−2 (l1)− λ−W2e−2 (l1 + l2)

]− λ−F2e−2 (l1),

A43 = λ+
W2e+

2 (l1 + l2),

A44 = λ−W2e−2 (l1 + l2), A45 = −λ+
W3e+

3 (l1 + l2),

A46 = −λ−W3e−3 (l1 + l2),

A53 = K
[
λ+
W2e+

2 (l1)− λ+
W2e+

2 (l1 + l2)
]− λ+

F2e+
2 (l1 + l2),

A55 = λ+
F3e+

3 (l1 + l2),

A54 = K
[
λ−W2e−2 (l1)− λ−W2e−2 (l1 + l2)

]− λ−F2e−2 (l1 + l2),

A56 = λ−F3e−3 (l1 + l2),

A65 = λ+
W3e+

3 (l1 + l2 + l3),

A66 = λ−W3e−3 (l1 + l2 + l3),

A67 = −λ+
W4e+

4 (l1 + l2 + l3),

A68 = −λ−W4e−4 (l1 + l2 + l3),

A75 = λ+
F3e+

3 (l1 + l2 + l3),

A76 = λ−F3e−3 (l1 + l2 + l3),

A77 = −λ+
F4e+

4 (l1 + l2 + l3),

A78 = −λ−F2e−4 (l1 + l2 + l3),

A87 = λ+
F4e+

4 (l1 + l2 + l3 + l4),

A88 = λ−F4e−4 (l1 + l2 + l3 + l4),

(A.7)

where li (i = 1, 2, 3, 4) is the length of the ith beam segment.
Finally, after every Cij (i, j = 1, 2, 3, 4) is determined, the

energy density of the ith beam segment is given by

〈ei〉 = ρiAiω2

2

×
{
|Ci1|2e2k2x + |Ci2|2e−2k1x + |Ci3|2e−2k2x

+ |Ci4|2e2k1x

+ 2
[
Re
(
Ci1C

∗
i3

)
cos 2k1x + Im

(
Ci1C

∗
i3

)
sin 2k1x

]

+2
[
Re
(
Ci2C

∗
i4

)
cos 2k2x + Im

(
Ci2C

∗
i4

)
sin 2k2x

]}
,

(A.8)

where k1 and k2 represent the real and imaginary parts of the
complex wavenumber of the corresponding beam segment.

The demonstrated method could be easily extended to
systems with multiple piezoelectric patches.
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