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The effects of boundary conditions and defects on the buckling behavior of SWCNTs are investigated using a structural mechanics
model. Due to the application of carbon nanotubes in different fields such as NEMS, where they are subjected to different loading
and boundary conditions, an investigation of buckling behavior of nanotubes with different boundary conditions is necessary.
Critical buckling loads and the effects of vacancy and Stone-Wales defects were studied for zigzag and armchair nanotubes with
various boundary conditions and aspect ratios (length/diameter). The comparison of our results with those of the buckling of
shells with cutouts indicates that vacancy defects in carbon nanotubes can most likely be modeled as cutouts of the shells. Finally,
a hybrid vacancy defect and Stone-Wales defect are also developed, and their effect on the critical buckling loads is studied.

1. Introduction

In 1991, lijima [1] discovered carbon nanotubes, which be-
came the focus of many researchers. Due to the unique
properties of this phenomenal material in different domains,
many devices use carbon nanotubes for optimum function.
Therefore, the mechanical analysis of nanotubes must be
done for different boundary and loading conditions. Many
researchers have turned finite element and continuum meth-
ods. Odegard et al. [2] developed an equivalent-continuum
model to obtain the geometrical and mechanical properties
of truss links by equalizing the molecular potential energies
and mechanical strain energy of a representative continuum
truss model. Various finite element methods have been
applied for prediction of mechanical properties of carbon
nanotubes. One of them is a structural mechanics approach
developed by Li and Chou [3]. This model considers
a single-walled carbon nanotube as a geometrical frame-like
structure so that primary bonds between atoms act as load-
bearing beam members, while the carbon atoms are seen
as joints of these members. By linking structural mechanics
and molecular mechanics, they have obtained the sectional
property parameters of these beam members. Cao and

Chen [4] investigated the effects of chirality and boundary
conditions on the elastic properties and buckling behavior of
single-walled carbon nanotubes using atomistic simulations.
They also calculated the critical buckling strains for different
lengths and diameter. Their recent atomistic simulation
showed that the axial compressive buckling behaviors are
highly sensitive to the displacement increment used in the
numerical analysis, which may have contributed to the
contradictory results in the literature when different dis-
placement increments were used. They have also proposed
a new targeted molecular mechanics method to remove the
effect of displacement increment so as to achieve a better
understanding of the effects of tube length and diameter on
SWCNT buckling.

Due to the application of carbon nanotubes in various
industries such as NEMS, mechanical analysis of these nan-
otubes under different loading and boundary conditions is
necessary. Amongst these analyses, axial buckling is very
important. Thus, we have tried to predict the critical
buckling loads of single-walled carbon nanotubes. The
method employed for this analysis is a structural mechanics
approach. Different defects may exists in carbon nanotubes,
which have an effect on the critical buckling loads. Therefore,
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FIGURE 1: (a) A hexagonal unit cell, and (b) location of local coor-
dinates of each connector.

the influence of various vacancy and Stone-Wales defects is
also investigated in the analysis.

2. Simulation Method

2.1. Application of the Structural Model to SWCNTs. We
have proposed a structural mechanics method to model the
carbon nanotubes. The detailed derivation procedure for the
formulation and other features of this model can be found in
our previous work [5].

The total steric potential energy due to interactions be-
tween carbon atoms can be represented by [5]

Urotal = Uy + Ug + Uy + U, (1)

where u,, ug, uy, and u, are bond energies associated with
bond stretching, angle variation or bond bending, dihedral
angle torsion, and out-of-plane torsion, respectively.

In this model, Morse potentials are employed for stretch-
ing and bending potentials, and a periodic type of bond tor-
sion is applied for torsion and out-of-plane torsion interac-
tions

u, = De{[l - e’ﬁ(”’O)]z - 1}, (2)
uo = Sko(6— 001+ kxic@ - 6)'], ()
ug = %k¢[l+cos(n¢—¢o)], (4)
Uy = %kw[l+cos(nw—wo)]. (5)

As indicated in Figures 1(a) and 2, a nonlinear axial
spring is used for modeling of the angle variation interaction
between atoms. The relationship between changes in the
bond and the corresponding change in length of the spring
for small displacements can be expressed simply by (7) [6]

_2(AR)

AB ,
1o

ro = 0.142 nm. (6)

Therefore, we can simplify (3) to (7).

2 16
ug = 72k9(R - R0)2 |:1 + 4 ksextic(R - R0)4:| . (7)
o 1o
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The stretch force, the angle variation moment, the dihe-
dral angle torque, and out-of-plane torque can be obtained
from differentiations of (2), (7), (4), and (5) as functions of
bond stretch, bond angle, dihedral angle, and out-of-plane
angle variation, respectively:

F(r —ry)

= 28D, [1 - e B e hlrm), (8)

F(R - Ro)

= isz(R - RO) |:1 + 1746 (1 + 42)ksextic(R - R0)4:| >
0 o o
)

T (¢ — ¢o)
1 (10)
= 5k¢n sin(n¢ — ¢o),

T(w — wo)

X (1)
= Ekwn sin(nw — wyp).

A nonlinear connector is considered for modeling of the
stretching and torsional interactions and a nonlinear spring
for modeling of the angle variation interaction (see Figure 2).
Carbon atoms in ABAQUS are modeled by a discrete rigid
sphere so that connector elements between toms are adjoined
to reference points at the center of the sphere and a local
coordinate is set at the center of each atom (see Figures 1(b)
and 2). This local coordinate is a combination of a Cartesian
coordinate for stretching and a rotational coordinate for
torsion. The X-direction of these coordinates is in the
connector direction, and the Z-direction is vertical to the
central axis of the nanotube. Because we can only use a
linear spring in the CAE space of ABAQUS, by changing the
linear spring command to a nonlinear spring command in
the input file, and by applying the nonlinear data for F(AR)
versus AR using (9), we can apply the bond bending spring
to the model. For applying bond stretch and torsion forces
to the connectors, we can apply the nonlinear stiffnesses in
three directions (X, Y, Z) directly. For stretching stiffness in
the X-direction, we can obtain the nonlinear data for F(Ar)
versus Ar by (8), and for torsional stiffness in X-direction, we
can obtain the nonlinear data for T'(A¢) versus A¢ by (10).
For torsional stiffness in the Y direction, we can obtain the
nonlinear data for T'(Aw) versus Aw by (11).

Here, we take E = 1170GPa and v = 0.196 for the
Young’s modulus and Poisson’s ratio of single-walled carbon
nanotubes, respectively. As shown in our previous work, we
used k, = 800 nN/nm, kg = 1.42nN/nm - Rad 2, ke =k, =
0.0418 nN.nm, which are consistent with the values reported
in the literature. This structural model was successfully
used for predicting the mechanical properties and axial
buckling behavior of single-walled carbon nanotubes. It is
employed here for the bending buckling of single-walled
carbon nanotubes.
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FIGURE 2: Spring and connector elements corresponding to the interactions of carbon atoms. (a) The angle variation interactions, (b) the

stretching and torsional interactions, and (c) total interactions [5].
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Figure 3: Comparison the present results to results of the continuum model with the critical buckling load curves for (a) fixed ends, (b)

simply supported, and (c) free end boundary conditions.

3. Results and Discussion

3.1. Buckling of Perfect Single-Walled Carbon Nanotubes. The
critical buckling loads are predicted by a new structural
model. Zigzag (12,0) and armchair (7,7) SWNTs with various

lengths were employed for this study. Figure 3 shows the
critical buckling loads for different aspect ratios (L/d) of
nanotubes with different boundary conditions ((a) fixed
ends, (b) simply supported, and (c) free end). The results for
fixed ends boundary conditions were shown in our previous
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FIGURE 4: Normalized critical buckling load curves and comparison between mode shapes of buckling of present model and those from
continuum model for (a) fixed ends, (b) simply supported, and (c) free end boundary conditions.

work. However, the curve for the critical buckling loads
versus aspect ratios of nanotubes for fixed ends boundary
conditions is exhibited just for comparing in this paper.

With increasing nanotube length, shell and then Euler
modes will occur. When the Euler buckling mode appears,
the critical buckling load follows from the Euler equation.
Therefore, we can calculate the critical buckling loads by
Euler equations easily for sufficiently long carbon nanotubes.
It should be noted that with decreasing bonds on the ends of
nanotubes, shell mode shapes will occur at shorter lengths.
Therefore, we can also use the Euler equation for shorter
nanotubes. Meanwhile, the results of the present work are
compared with those from a simple continuum mechanics
model in ABAQUS.

The mode shapes according to displacement counters
also are represented in Figure 3 for (a) fixed ends, (b) simply
supported, and (c) free end boundary conditions, respec-
tively. For simply supported boundary condition, the nan-
otube ends are pinned and can rotate about the axis lies
in the planes at the ends of the nanotube. As shown in
Figure 3, for nanotubes with the same length, the mode
shapes are different. With decreasing the degrees of freedom

in boundary conditions, carbon atoms will move less freely.
Therefore, this will lead to the local buckling (shell buckling
mode) of CNTs and postpone the global buckling (Euler
buckling mode). This is the reason of increasing in the
critical buckling load for fixed-fixed boundary condition in
comparison to other boundary conditions. Therefore, the
mode shapes and the critical buckling loads depend on the
boundary conditions as well as the nanotube length. When
the shell mode occurs, the boundary conditions do not affect
the critical buckling loads.

With an effective wall thickness of 0.34 nm for SWCNTT5,
we cannot model them with continuum shell models because
the Euler mode will occur too early. An equivalent wall thick-
ness for the continuum shell model that predicts the critical
buckling load and the corresponding mode shapes correctly
are needed. In Figure 3, we have compared the present results
to those of the simple continuum model. The value of
the effective thickness for the nanotube is 0.066 nm [7]. In
conclusion, it can be seen that the results of this continuum
model are in acceptable agreement with the present model.
When the shell buckling mode occurs, the critical buckling
loads from continuum model are more than those from
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FIGURE 5: Critical buckling loads of defective nanotubes with various aspect ratios for (a) Zigzag and (b) Armchair.
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FIGURE 6: Scheme view of hybrid and Stone-Wales defects in zigzag and armchair nanotubes.

present model, but when the Euler buckling mode occurs, the
critical buckling loads from the continuum model are lower
than those from the present model. This point shows that the
adopted thickness for the continuum model is ideal.

3.2. Buckling of Defective Single-Walled Carbon Nanotubes.
Vacancies result from missing carbon atoms in the CNT
walls. The defects included are single vacancies (one atom
missing) and two opposite single vacancies (two atoms
missing). By removing the carbons atoms from nanotube, all
of interactions (springs and connectors) between bonds will
remove. All of the defects are situated in the middle of the
nanotube.

Normalized critical buckling load graphs for various
lengths of zigzag and armchair nanotubes and boundary
conditions are shown in Figure 4. Nanotubes include single
vacancy defects at the middle of the nanotube. As indicated
in Figure 4, the vacancy defects have a very weak effect on the
critical buckling loads when the Euler mode occurs.

Defects are generated in the synthesizing process, and
they can also be caused by mechanical manipulation. The
most typical structural defects are Stone-Wales defects [8].

Stone-Wales defects in carbon nanotubes are generated
under the certain conditions. These topological defects are
regions in a crystal where the normal chemical bonding envi-
ronment is topologically different from the surroundings.
The carbon nanotubes contain regions where the number of
atoms in a ring is different from six, while the total number
of atoms remains the same. Stone and Wales showed that
a dipole consisting of a pair of 5-7 rings can be created
by rotating the C—C bond in a hexagonal network by 90°.
As shown in Figure 5, in this rotation, four hexagons are
changed into two heptagons and two pentagons.

Unlike the vacancy defects in which bonds have been
removed, the carbon bonds in Stone-Wales defects will not
remove but will rotate. This defect is in the middle of the
nanotube.

The critical buckling loads were obtained for nanotubes
including a Stone-Wales defect and two opposite Stone-
Wales defects with fixed ends boundary conditions (see
Figure 6).

Stone-Wales defects do not have a significant effect on
the critical buckling loads, and even two opposite Stone-
Wales defects barely decrease the critical buckling loads.
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FiGUure 7: Influence of the hybrid defect on the mode shape of a
zigzag (12,0) nanotube for various lengths.

As mentioned above, Euler modes will occur at shorter
lengths when bonds decrease and the effect of defects on
the critical buckling loads also therefore decreases. Therefore,
Stone-Wales defects do not affect the critical buckling loads
under the other boundary conditions in general.

The mode shapes of nanotubes with Stone-Wales defects
are same as those of perfect nanotubes. At the length of
1.988 nm, Stone-Wales defects do change the mode shape,
however.

3.3. Compound of Vacancy and Stone-Wales Defect. A hybrid
vacancy defect and Stone-Wales defect was developed, and
its effect on the critical buckling loads was studied. Vacancies
result from missing carbon atoms in the CNT walls. This
can happen when CNTs are subjected to irradiation. When
missing carbon atoms occur exactly on the Stone-Wales
defect, a hybrid defect may be created in the nanotube. The
configuration of this hybrid defect is shown in Figure 5. In
this defect, one carbon atom is missing from atoms included
in a Stone-Wales defect. The effect of this defect on the
critical bucking loads was investigated and compared with
those of single vacancy defects (see Figure 6). It can be seen
that the hybrid defect decreases the critical buckling loads
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more than single vacancy defects do, though two carbon
atoms are missing in both of them. In addition, the mode
shapes of defective nanotubes with a hybrid defect at the
middle of the nanotubes are illustrated in Figure 7. The
mode shapes due to the hybrid defect and vacancy defect are
approximately the same.

4. Conclusion

The effects of vacancy and Stone-Wales defects as well as
boundary conditions on the axial buckling behavior of
carbon nanotubes were studied via a structural model. We
proposed a hybrid vacancy/Stone-Wales defect, and its effect
on the critical buckling loads was investigated. From these
investigations, the following results can be concluded.

(1) An effective thickness of 0.066 nm is suitable for per-
fect and defective nanotubes with a diameter of
0.95 nm and different boundary conditions.

(2) Stone-Wales defects have a weak effect on the critical

buckling loads under the critical boundary condition
of fixed ends.

(3) With decreasing bonds from the boundaries of nan-
otubes, the Fuler mode occurs earlier, and the effect
of vacancy defects decreases.

(4) Hybrid defects decrease the critical buckling loads
more than single vacancy defects.
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