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Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel
pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different
locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class
purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a
boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random
Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template
matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-
known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method
achieves state-of-the-art or competitive performance.

1. Introduction

Pedestrian detection is an important instant of object detec-
tion. Because of its direct applications in surveillance, intelli-
gent traffic systems, and assisted living [1, 2], it has attracted
lots of attention. However, detecting pedestrians with high
requirements of real-world applications is still a challenging
task due to large intraclass variations caused by different
views and articulated poses, partial occlusion, and changes
in illumination. In recent years, a number of methods have
been proposed to get robust and applied detection. They can
be roughly classified into 3 categories, that is, works built
on holistic model [3–7], part/patch-based approaches [8–16],
and detectors using multiple feature channels and boosted
classifier [17–22].

The first category methods take the whole pedestrian as
input and make decisions by SVM or template matching. In
2005, Dalal and Triggs [3] proposed Histograms of Oriented
Gradients (HOG) feature to encode information of an entire
pedestrian, and the detector was trained on HOG features
using linear SVM. Since then, some variations [4] and

combinations [5, 6] have been proposed to improve the
detection performance. In [7, 23], Dominant Orientation
Templates (DOT) are used for fast feature calculation, and a
holistic detection is defined by template matching. Holistic
methods can detect pedestrian fast and accurately in simple
scenes; however, the detection performance decreases sharply
when the appearance of pedestrian changes due to multiple
factors, such as illumination, views, and poses.

The second category methods have two different imple-
mentations, that is, Deformable Parts Model (DPM) based
[8–11] and Implicit Shape Model (ISM) based [12–16]. DPM
[8] and its varieties [9–11] extend thework in [3]withmultiple
local parts and spatial configurations of these parts by latent
SVM. This kind of methods significantly improves detection
performance in cluttered scenes. However, the process is
time-consuming and some properties of local parts, such as
number and size, should be predefined. ISM based methods
[12, 13] use small, local image patches to vote for object center
with the generalized Hough transform [24]. Hough Forests
[14–16] extend the standard Random Forest [25] for learning
the codebook of ISM. ISM based methods have been widely
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Figure 1: Examples of pedestrians with different intraclass variations. The red boxes show representative local templates under these
conditions.

used for detecting facial feature points [26] and body joints
for human pose estimate [27]. However, they get limited
success on pedestrian detection because of dense sampling
and enormous, scattered votes for the whole human.

The last category methods assemble multiple weak clas-
sifiers by boosting algorithm [28]. Each weak classifier is
defined by a selected feature channel [17, 18] or a representa-
tive exemplar [19]. Particularly, tree structured detectors [20–
22] can not only assemble multiple weak classifiers, but also
model intraclass subcategories as different branches of the
tree. Methods based on tree structured classifiers are good
for multiview, multipose pedestrian detection and can obtain
very fast detection with cascade architecture [29]. However,
the weak classifier cannot divide the sample space optimally
because the feature selector and split function used are too
simple.

In this paper, we absorb the advantages of approaches
mentioned above and try to solve some key problems of
pedestrian detection, as shown in Figure 1. It is obvious that
all pedestrians are hard to be divided by a holistic property;
however, some representative local templates with small
varieties can be found. Generally, they are the main parts
of a human, such as head, left/right hand, and left/right leg.
Motivated by this observation, we propose a new pedestrian
detection method which combines multiple weak classi-
fiers built on local templates by means of Random Forest.
The templates are adaptively generated with different sizes
and different locations in positive exemplars. The splitting
functions in the forest are learned by the joint use of
template selector and template matching. A weak classifier
consists of splitting functions in one depth of the forest.
To improve classification accuracy, all weak classifiers are
assembled by a boosting-like algorithm [21, 28] with the
weights of samples updated iteratively.When aweak classifier
is added, the depth of the forest increases until it reaches the
predefined maximum depth. For fast calculation, the local
template is represented by Dominant Orientation Template
(DOT) feature [23]. During detection, a sliding window is
passed through each tree, and the final decision is made by
averaging estimations of all trees in the forest. To accelerate

the detection process, we propose to use cascade detection
architecture.

The proposed detection method is evaluated on two
well-known pedestrian datasets: TUD pedestrian and INRIA
pedestrian, where it achieves state-of-the-art or competitive
performance. Our method is on par with the most successful
part-based detection system [8]; however, far less design
complexity and computation complexity are needed.

The major contributions of our method can be summa-
rized as follows:

(i) We define multiple adaptive local DOT templates
with different sizes anddifferent locations to represent
the parts of a pedestrian.

(ii) We learn each splitting function in the forest based on
template selector and template matching.

(iii) We use a boosting-like algorithm to update the
weights of the training samples in a layer-wise fash-
ion.

The rest of this paper is organized as follows. Section 2
describes some related works. Section 3 gives an overview of
ourmethod. Section 4 introduces the proposedmethod. And
Section 5 describes the usage of our method, followed by the
implementation details and experimental results in Section 6.
Section 7 presents our conclusions and future work.

2. Related Work

The most related approaches to ours are the works based
on DPM [8–10] which extend the rigid HOG template and
SVM approach of [3] with deformable parts and multiple
components. In those methods, each deformable part is
explicitly defined by a local template and a relative offset
vector with respect to the object center. The intraclass vari-
ation is captured by dividing the training data into multiple
components according to the aspect ratio. The final decision
is made by the scores of each template matching minus a
deformation cost that depends on the relative position of each
part. Nevertheless, the DPM has some disadvantages because
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(i) different models have to be trained for each component
and (ii) the explicit definitions of local templates and their
relative offset vectors are complicated and time-consuming.
In contrast, we have a singlemodel that captures the intraclass
variability by different branches of the tree. Furthermore, the
local parts can be shared between different components, and
the position relations between different parts are represented
implicitly during assembly.

Some methods [20, 30–32] build on a similar Boosting
framework for learning the object models. The influential
work on Integral Channel Features [32] computes several
feature channels, including color, gradient magnitude, and
orientation quantized gradients, which is similar to the DOT
feature used in our method. However, the weak classifiers
in those methods are only defined by the selected feature
channels, and they have not sufficiently made use of the
advantages of DPM which has shown state-of-art results on
several challenging datasets. In addition, with multiple tree
structured classifiers in Random Forest, the weak classifier in
ourmethod fully considersmultiple splits defined by different
local templates, which is more robust to various intraclass
variations.

Random Forest has attracted a lot of attention in com-
puter vision. Schulter et al. [21, 22] propose a newAlternating
Decision Forest (ADF) classifier for object detection. All trees
in the forest are treated as a whole, and the forest is con-
structed by alternating between training a single depth of the
forest and updating the weights of samples for the next depth
until the same stopping criterion as in standard Random
Forest is reached. Ourmethod adopts a similar way; however,
the split function of the forest in ours is defined by local
template matching instead of single feature comparison. Yao
et al. [33] propose that each node in the forest selects a rect-
angular region and applies a linear SVM onto the regions of
all samples for splitting. Although multiple features are used,
the matching of local regions represented by DOT feature
can be computed rapidly by bitwise operations. Tang et al.
[7] present a new pedestrian detection method combining
Random Forest and DOT feature to achieve fast detection;
however, the DOT feature is used for representing holistic
template which has been proven inflexible for detecting
object with intraclass variations.

3. Overview of Our Method

In this section, we give an overview of our method. As
shown in Figure 2, it mainly contains extractingDOT feature,
generating adaptive local templates and constructing the
forest in a layer-wise manner with splitting function defined
by template matching.

The first step of our method includes data preparation
and DOT feature extraction. The training images denoted
as Im = {𝑖𝑚

𝑖
, 𝑙
𝑖
}

𝑁

𝑖=1
, where 𝑖𝑚

𝑖
is a training sample and 𝑙

𝑖
is

the class label of the sample (−1: negative, 1: positive). For
each tree 𝑇

𝑘
, a training set with 𝑁 images is sampled in

Im by means of bootstrap [34]. Similarly, an exemplar set is
randomly sampled from Im+ (positive samples in Im) with
much smaller size than that of Im+. With these two sample

sets prepared for 𝑇
𝑘
, the corresponding DOT feature set for

training set and exemplar set are denoted as 𝐷
𝑘
= {𝑥
𝑖
, 𝑙
𝑖
}

𝑁

𝑖=1

and 𝑄
𝑘
= {𝑞
𝑚
}

𝑀

𝑚=1
, respectively. Figure 2(a) illustrates the

basic process of extracting DOT feature.
With the data prepared above, the training process begins.

Firstly, a few adaptive local templates with different sizes and
different locations are generated for each exemplar set 𝑄

𝑘
,

as shown in Figure 2(b). With the generated local templates,
the splitting function at a node in the tree 𝑇

𝑘
is defined by

a selected template and template matching with samples at
this node. Given a threshold, the samples can be split into
two subsets according to the matching results. The optimal
splitting function is found by maximizing the class purity
of the divided subsets. Each tree is constructed by splitting
the samples recursively until one of the stopping criterions is
reached.

To improve classification accuracy, we propose to train
the forest in an iterative, layer-wise manner, like boosting
algorithm. The iterations are indexed with the current depth
of forest 𝑑 = 1, . . . , 𝑑max, as shown in Figure 2(c). To this
end, we define the weight vector of training samples for 𝑇

𝑘

in depth 𝑑 as𝑊𝑑
𝑘
, 𝑘 = 1, . . . , 𝐾. It is set uniformly in the first

depth and updated iteratively. The class distribution of each
node is estimated based on labels and weights of samples.
With these definitions, the iterations begin. In iteration 𝑑, we
firstly find the optimal split functions of nodes in each tree𝑇

𝑘
.

Then, the samples at each node are split into two child nodes
according to the learned splitting functions. Thirdly, a newly
weak classifier consisting of the learned splitting functions
is added to the trained boosting classifier 𝐹

𝑑−1
. Finally, we

use the trained boosting classifier 𝐹
𝑑
to update the weights

of samples in depth 𝑑 + 1 by minimizing a global loss. After
all iterations, the training process is finished.

For pedestrian objection, we adopt standard sliding
window method in test image. Each window represented by
DOT feature is passed through each tree in the trained forest.
The final decision is made by averaging estimations of all
trees. To accelerate the detection process, we adopt cascade
detection architecture to reject negative window as early as
possible.

4. Proposed Method

In this section, we firstly introduce some basic concepts and
elements of Random Forest [25] since our method is built on
Random Forest. Then, we propose a novel splitting function
built on adaptive local DOT template. Finally, we give the
definition of weak classifier in our method and describe how
to assemble multiple weak classifiers in layer-wise fashion by
boosting algorithm.

4.1. Introduction to Random Forest. Standard Random Forest
[25] is an ensemble of 𝐾 randomized binary decision trees
{𝑇
𝑘
(𝑥)}

𝐾

𝑘=1
: 𝑋 → 𝑌, which describe a nonlinear mapping

from 𝑍-dimensional feature space𝑋 = 𝑅𝑍 to label space 𝑌 =
{−1, 1} (although the Random Forest is inherently multiclass,
we only consider the binary for pedestrian detection). Given
a sample 𝑥 ∈ 𝑋, each tree returns a score defined by class
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Figure 2: (a) Illustration of DOT feature extraction and matching, (b) proposed template selector, and (c) training the forest in a layer-wise
manner.

probability distribution 𝑝
𝑘
(𝑦 | 𝑥); the final class label 𝑦∗ ∈ 𝑌

is obtained via maximizing the total average score of𝐾 trees:

𝑦

∗
= argmax 1

𝐾

𝐾

∑

𝑘=1

𝑝
𝑘
(𝑦 | 𝑥) . (1)

Random Forest assembles multiple trees by means of
bootstrap [34]. The trees in forest are constructed indepen-
dently fromeach other by recursively splitting samples at each
node such that the class-label purity of samples reaching the
newly created child node increases, until one of the following
stopping criterions ismet: (1) the depth of node is equal to the
maximal one; (2) the number of samples reaching the node is
too small; (3) the class-label purity of samples reaching the
node is high enough.

Generally, a splitting function is parameterized by two
values, a selected feature dimension 𝜑, and a threshold 𝜏. The
splitting function is then written as

𝑠 (𝑥; 𝜑, 𝜏) =

{

{

{

0 if 𝜑 (𝑥) > 𝜏

1 otherwise,
(2)

where 𝑠(𝑥; 𝜑, 𝜏) defines which child node the sample 𝑥
reaches.

Each node chose the best splitting functionΩ∗ = (𝜑∗, 𝜏∗)
out of random sampled set by maximizing class-label purity
defined by

𝐼 (Ω) =
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(3)

where 𝑆𝐿 and 𝑆𝑅 are the sets of samples which reach the left
and right child node, respectively, according to 𝑠(𝑥; Ω). | ⋅ |
denotes the size of a set, and 𝐻(⋅) measures the class-label
purity of a sample set. In this paper, we use negative entropy
to calculate𝐻(⋅), which is defined as

𝐻(𝑆) = ∑

𝑐∈{−1,1}

𝑝 (𝑐 | 𝑆) log (𝑝 (𝑐 | 𝑆)) . (4)

Here, 𝑝(𝑐 | 𝑆) is the probability for class 𝑐, estimated by the
ratio of positive or negative samples in 𝑆.

4.2. ANovel Split FunctionwithAdaptive LocalDOTTemplate.
The key point of Random Forest based detector is to design
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a fast and effective splitting function. As discussed in [25],
a nonlinear hyperplane outperforms axis-aligned ones. In
this section, we propose a novel splitting function which
is defined by adaptive local DOT template and nonlinear
template matching.

The prerequisite of the proposed splitting function is to
compute DOT feature. As described in [35], we firstly give a
brief introduction aboutDOT feature extraction in this paper.
DOT feature is a block based descriptor, and each 7×7 pixels
block encodes the discretized gradient orientations of the 7
strongest gradients into one byte. With a defined threshold,
the first bit indicates whether this block is uniform, and the
7 dominant orientations are quantized into the remaining
7 bits. In order to make the matching invariant to small
local deformations, 2𝐷 translations in the range [−3, +3] for
each block are considered. Figure 2(a) gives an illustration of
computing DOT feature. In order to tolerate changes caused
by colors and illuminations, similar to [7], we also encode
the HSV color space in the similar way; that is, each block
encodes the discretized H value of the 7 strongest V into one
byte. The final binary representation of each block is 16-bit
descriptor formed by concatenating dominant orientations
descriptor and dominant colors descriptor. For simplifica-
tion, we call the representation built on two mentioned
DOT-based descriptors DOT feature. The similarity of DOT
template and training image described by DOT feature is
defined by bitwise AND operations.

We suppose that all training images can be partitioned
into 𝑂 × 𝑃 overlapping blocks, and each block is encoded
as 16-bit DOT feature. 𝑆 = {𝑥

𝑖
, 𝑙
𝑖
}

𝑁
𝑠

𝑖=1
is the DOT training

set at a node in tree 𝑇
𝑘
. 𝑄
𝑘
= {𝑞

𝑚
}

𝑀

𝑚=1
is the DOT

exemplar set of 𝑇
𝑘
, and each 𝑞

𝑚
is a holistic DOT template

since it describes a whole pedestrian. The adaptive local
DOT template is generated using a local template selector
illustrated in Figure 2(b). The basic idea is as follows. Firstly,
an exemplar 𝑞

𝑚
is randomly selected in𝑄

𝑘
.Then, an adaptive

local DOT template Γ is generated by randomly selecting a
rectangular region including 𝐵 × 𝐶 contiguous blocks in 𝑞

𝑚
.

The top-left coordinate of Γ is denoted as (𝑢, V), and the width
𝐵 ∈ [1, 𝐿] and height 𝐶 ∈ [1, 𝐿] are randomly generated with
the predefined maximum size 𝐿. Note that the coordinate
here is based on blocks.

With the selected adaptive local template Γ and configura-
tionΠ = (𝑢, V, 𝐵, 𝐶), 𝑆 is divided by comparing local template
Γ with local DOT features of all training samples, and each
local DOT feature is computed according to configurationΠ.
Therefore, the splitting function in (2) becomes

𝑠 (𝑥; Γ, Π, 𝜏) =

{

{

{

0 if 𝜒 (Γ, 𝑥 (Π)) > 𝜏

1 otherwise,

𝜒 (Γ, 𝑥 (Π)) =

𝐵

∑

𝑏=1

𝐶

∑

𝑐=1

Δ (Γ
𝑏,𝑐
⊗ 𝑥 (Π)𝑏,𝑐

) .

(5)

Here, 𝑥(Π) is the local DOT feature in training sample 𝑥
with configuration Π; 𝜒 is the matching function of DOT
feature; ⊗ is the bitwise AND operation; Γ

𝑏,𝑐
and 𝑥(Π)

𝑏,𝑐
are

16-bit DOT feature for a block at location [𝑏, 𝑐] in Γ and

𝑥(Π), respectively; Δ is used for counting the number of
1 in 16-bit matching result. That is to say, the similarity is
measured by the number of matched dominant orientations
and dominant colors in Γ and 𝑥(Π). The optimal split is
parameterized by Ω∗ = (𝑢

∗
, V∗, 𝐵∗, 𝐶∗, Γ∗, 𝜏∗), which is

optimized by maximizing class-label purity of each division.
Algorithm 1 gives an overview of the optimization process.

With the proposed adaptive local DOT template, the
splitting function is not only robust to small local transfor-
mations, but also very fast to evaluate since the matching
function can be further sped up using SSE operations, similar
to [35]. More importantly, each tree in the forest provides
both discriminative and complementary local information
for classification.

4.3. Assembling Weak Classifiers with a Global Loss. The tree
structured methods typically take the splitting function in
each depth as a weak classifier, and multiple weak classifiers
are assembled with boosting algorithm [19–21, 28]. In order
to make full use of the complementary information provided
by multiple trees, we generalize this idea to Random Forest
based method. To this end, the forest is treated as a whole
and constructed in layer-wise fashion. Each layer is indexed
with current depth of the forest 𝑑. The split functions in
one depth of the forest constitute a weak classifier. For
assembling multiple weak classifiers with boosting method,
we introduce a global loss. Suppose that the boosting classifier
𝐹
𝑑
consisting of the first 𝑑 weak classifiers has been trained.

It gives a predication about the class distribution of each
sample. The new (𝑑 + 1)th weak classifier 𝑓

𝑑+1
is learned and

added by minimizing the global loss computed by 𝐹
𝑑
. With

a weak classifier added, the forest grows until it reaches the
maximum depth.

As described in Section 3, the forest includes 𝐾 trees
with maximum depth 𝑑max. Each tree 𝑇

𝑘
has a training set

𝐷
𝑘
= {𝑥

𝑖
, 𝑙
𝑖
}

𝑁

𝑖=1
and an exemplar set 𝑄

𝑘
= {𝑞
𝑚
}

𝑀

𝑚=1
. To

obtain the final boosting classifier, the training procedure of
boosting runs 𝑑max times. Different from standard Random
Forest, the samples in our method are weighted and their
weights are updated in each depth. The initial weight vector
of each 𝐷

𝑘
is set uniformly in 𝑑 = 1, denoted as 𝑊1

𝑘
=

[𝑤

1

𝑘,1
, 𝑤

1

𝑘,2
, . . . , 𝑤

1

𝑘,𝑁
], and 𝑤𝑑

𝑘,𝑖
is the weight of the 𝑖th sample

in𝐷
𝑘
with current depth 𝑑. With weighted samples, the class

distribution of a node used in (4) should take the weights into
account. It is defined as

𝑝 (𝑐 | 𝑆


) =

∑

|𝑆


|

𝑟=1
𝛿 [𝑙
𝑟
= 𝑐] ⋅ 𝑤

𝑟

∑

|𝑆|

𝑟=1
𝑤
𝑟

, (6)

where 𝑆 is a sample set, 𝑤
𝑟
is the weight of 𝑟th sample in 𝑆,

and 𝛿[𝑙
𝑟
= 𝑐] is an indicator function which returns 1 if 𝑙

𝑟
= 𝑐

and 0 otherwise. Then the class distribution of each node in
the first layer can be computed by (6).

With the initial weights and class distributions, the
splitting function of each node in depth 𝑑 = 1 can be
learned by Algorithm 1. Suppose the forest with current
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Input:
Samples at a node in 𝑇

𝑘
: 𝑆 = {𝑥

𝑖
, 𝑙
𝑖
}

𝑁
𝑠

𝑖=1

Exemplar set of 𝑇
𝑘
: 𝑄
𝑘
= {𝑞
𝑚
}

𝑀

𝑚=1

Block size of each sample: 𝑂 × 𝑃
Maximum size of local template: 𝐿

Output:
Optimal splitting parameter: Ω∗ = (𝑢∗, V∗, 𝐵∗, 𝐶∗, Γ∗, 𝜏∗)

(1) Initialization: 𝑢∗, V∗, 𝐵∗, 𝐶∗, Γ∗, 𝜏∗, 𝐼∗ = −∞
(2) for each 𝑞

𝑚
∈ 𝑄
𝑘
do

(3) for 𝑖𝑡𝑒𝑟1 = 1 to max𝐼𝑡𝑒𝑟1 do
(4) Randomly generate configuration:

Π = (𝑢, V, 𝐵, 𝐶), 𝑢 ∈ [1, 𝑂], V ∈ [1, 𝑃], 𝐵, 𝐶 ∈ [1, 𝐿]
(5) Generate adaptive local DOT template Γ in 𝑞

𝑚
according to Π

(6) Calculate the maximum and minimum value of 𝜏:
𝜏max = max{𝜒(Γ, 𝑥

𝑖
(Π)), 𝑥

𝑖
∈ 𝑆}

𝜏min = min{𝜒(Γ, 𝑥
𝑖
(Π)), 𝑥

𝑖
∈ 𝑆}

(7) for 𝑖𝑡𝑒𝑟2 = 1 to max𝐼𝑡𝑒𝑟2 do
(8) Randomly select a threshold 𝜏 ∈ [𝜏min, 𝜏max]

(9) Divide samples at 𝑆 into two subset:
𝑆

𝐿
= {𝑥
𝑖
∈ 𝑆 : 𝜒(Γ, 𝑥

𝑖
(Π) ≥ 𝜏}

𝑆

𝑅
= {𝑥
𝑖
∈ 𝑆 : 𝜒(Γ, 𝑥

𝑖
(Π) < 𝜏}

(10) Calculate class-label purity 𝐼 by (3)
(11) if 𝐼 > 𝐼∗
(12) 𝐼

∗
= 𝐼

(13) 𝑢

∗
= 𝑢, V∗ = V, 𝐵∗ = 𝐵, 𝐶∗ = 𝐶, Γ∗ = Γ, 𝜏∗ = 𝜏

(14) end if
(15) end for
(16) end for
(17) end for

Algorithm 1: Learning splitting function with local template selector.

depth 𝑑 ∈ [1, 𝑑max] has been trained. It can be considered
as a boosting classifier, written as

𝐹
𝑑
(𝑥
𝑖
; Θ
𝑑
) =

𝑑

∑

𝑡=1

𝛽 ⋅ 𝑓
𝑡
(𝑥
𝑖
; 𝜃
𝑡
) . (7)

Here, 𝑓
𝑡
(𝑥
𝑖
; 𝜃
𝑡
) is the weak classifier in depth 𝑡; the trained

boosting classifier and each weak classifier are parameterized
by Θ
𝑑
and 𝜃
𝑡
, respectively; 𝛽 is shrinkage factor [28]. 𝐹

𝑑
can

be estimated by the trained forest with depth 𝑑:

𝐹
𝑑
(𝑥
𝑖
; Θ
𝑑
) =

𝐾

∑

𝑘=1

1

𝐾

𝑝 (𝑐 = 1 | 𝑆
𝑘,𝑑
) , (8)

where 𝑆
𝑘,𝑑

is a sample set at a node where 𝑥
𝑖
is routed by tree

𝑇
𝑘
in depth 𝑑. If 𝑑 < 𝑑max, 𝑓𝑑+1(𝑥𝑖; 𝜃𝑑+1) will be trained and

added to 𝐹
𝑑
in depth 𝑑 + 1. The assembled strong boosting

classifier becomes

𝐹
𝑑+1
(𝑥
𝑖
; Θ
𝑑+1
) = 𝐹
𝑑
(𝑥
𝑖
; Θ
𝑑
) + 𝑓
𝑑+1
(𝑥
𝑖
; 𝜃
𝑑+1
) . (9)

As discussed in [21, 28], training the new weak classifier
can be written as global loss minimization problem:

arg min
𝜃
𝑑+1

𝑁

∑

𝑖=1

loss (𝑙
𝑖
; 𝐹
𝑑
(𝑥
𝑖
; Θ
𝑑
) + 𝑓
𝑑+1
(𝑥
𝑖
; 𝜃
𝑑+1
)) , (10)

where loss(⋅) is a differentiable loss function;Θ
𝑑
is parameter

set fixed already; and 𝜃
𝑑+1

is parameter set to be trained in
depth 𝑑 + 1. The minimization problem can be solved by
updating the weights of samples in each tree with depth 𝑑+1:

𝑤

𝑑+1

𝑘,𝑖
=











𝜕loss (𝑙
𝑖
, 𝐹
𝑑
(𝑥
𝑖
; Θ
𝑑
))

𝜕𝐹 (𝑥
𝑖
)











. (11)

With the updated weights of samples in depth 𝑑 + 1, 𝜃
𝑑+1

including parameters of each split function in 𝑓
𝑑+1

can be
learned by Algorithm 1.

In this paper, the nonconvex tangent loss function pro-
posed by Masnadi-Shirazi et al. [23] is adopted. It is defined
as

loss (𝑙
𝑖
, 𝐹
𝑑
(𝑥
𝑖
; Θ
𝑑
)) = (2 arctan (𝑙

𝑖
⋅ 𝜌 (𝑥
𝑖
)) − 1)

2
,

𝜌 (𝑥
𝑖
) = tan (𝐹

𝑑
(𝑥
𝑖
; Θ
𝑑
) − 0.5) .

(12)

Although any differentiable loss function can be used, the
tangent loss function is proven more robust to label noise.
With the tangent loss function defined above, (11) becomes

𝑤

𝑑+1

𝑘,𝑖
∝

{

{

{

8 (1 − 𝐹
𝑑
(𝑥
𝑖
; Θ
𝑑
)) if 𝑙

𝑖
= 1

8𝐹
𝑑
(𝑥
𝑖
; Θ
𝑑
) if 𝑙

𝑖
= −1.

(13)
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Input:
Number of trees: 𝐾
Maximum depth: 𝑑max
Training set for each tree:𝐷

𝑘
= {𝑥
𝑖
, 𝑙
𝑖
}

𝑁

𝑖=1

Template set for each tree: 𝑄
𝑘
= {𝑞
𝑚
}

𝑀

𝑚=1

(1) Initialize weights for samples of each tree:
𝑊

1

𝑘
= (𝑤

1

𝑘,1
= 1/𝑁, . . . , 𝑤

1

𝑘,𝑁
= 1/𝑁)

(2) Compute class distribution of root node of each tree by (6)
(3) for 𝑑 = 1 to 𝑑max do
(4) Check stopping criterions for nodes in depth 𝑑
(5) Split nodes in depth 𝑑 by Algorithm
(6) Update weight 𝑤𝑑

𝑘,𝑖
by (13) for each sample in each𝐷

𝑘

(7) Calculate class distribution of newly created nodes in depth 𝑑 + 1 by (6)
(8) end for

Algorithm 2: Procedure of assembling weak classifiers.

When the weak classifier in 𝑑max has been trained, the
construction of the forest stops. The training procedure is
summarized in Algorithm 2.

5. Detecting Pedestrian with Proposed Method

In order to detect objects, we adopt a standard slidingwindow
method in test image represented by DOT feature. Given a
test window𝜔, it is passed through each tree𝑇

𝑘
in the trained

forest according to the learned split parameters of each node,
until reaching a leaf node Leaf

𝑘
in 𝑇
𝑘
. The score of window 𝜔

estimated by 𝑇
𝑘
is computed by class distribution of Leaf

𝑘
,

which is calculated by (6) with 𝑐 = 1. The final score of
window 𝜔 estimated by the forest is defined by averaging all
scores obtained by trees in the forest:

Score (𝜔) = 1
𝐾

𝐾

∑

𝑘=1

𝑇
𝑘 (
𝜔) , (14)

𝑇
𝑘 (
𝜔) = 𝜋 (𝑐 = 1 | Leaf𝑘) . (15)

The test window 𝜔 is classified as a pedestrian if Score(𝜔)
exceeds the detection threshold 𝜉 which is found during the
validation.

Particularly, we adopt cascade architecture to speed up
the detection procedure. Using this approach, the windows
which theoretically cannot achieve threshold 𝜉 are rejected
as early as possible. The cascade architecture provides a
significantly fast detection due to the fact that there is no need
to compute the probability for all trees in the forest for a large
majority of windows in the test image. Algorithm 3 describes
the cascade detection procedure.

6. Experimental Results

We evaluate the proposed method on two challenging
pedestrian datasets: TUD pedestrians, INRIA pedestrians,
where we provide a performance comparison with the other
competing detection methods, including the best algorithms
(as far as we know) in this field. We follow the PASCAL

Input:
Train forest: {𝑇

𝑘
(𝑥)}

𝐾

𝑘=1

Test window: 𝜔
Output:

Label of 𝜔
(1) Initialize: score = 0
(2) for 𝑘 = 1 to 𝐾 do
(3) Evaluate 𝜔 with 𝑇

𝑘
by (15)

(4) score = score + 𝑇
𝑘
(𝜔)

(5) score∗ = ∑𝐾
𝑖=𝑘+1

1.0 = 𝐾 − 𝑘

(6) if score + score∗ < 𝐾 ⋅ 𝜉 then
(7) reject 𝜔
(8) return −1
(9) end if
(10) end for
(11) return 1

Algorithm 3: Cascade detection procedure.

protocol [36] to decide whether the detected object is true
positive; namely, the overlap area of detected bounding box
and the ground-truth exceeds 50%. In order to avoidmultiple
detections for the same ground-truth, we reject the detections
with centers inside the bounding boxes detected with higher
score. Additionally, we analyze the twomost relevant parame-
ters of ourmethod onTUDpedestrian dataset: themaximum
size of local template 𝐿 and the maximum depth 𝑑max. All
the experiments are performed with two Inter Core(TM) i5
3.2 GHz CPU, 16G RAM, and Windows 64-bit OS.

6.1. Datasets and Experimental Setup

6.1.1. TUD Pedestrians. The TUD pedestrian dataset is a
widely used benchmark for human detection. This dataset
includes 400 training images and 250 test images with 311
pedestrians. Because the background in this dataset is mainly
street; moreover, the diversities of backgrounds are low; we
suggest collecting negative samples from INAIA dataset. In
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(a) Detection examples on TUD pedestrians dataset

(b) Detection examples on INRIA pedestrians dataset

Figure 3: Detection examples on TUD pedestrians and INRIA pedestrians.

addition, we randomly select some positive samples from
INAIA dataset.

6.1.2. INRIA Pedestrians. The INRIA pedestrian dataset is
also a popular benchmark for pedestrian detection. This
dataset is very challenging because of various intraclass
variations and cluttered scenes. The training set includes 614
images with 1208 pedestrians and 1218 background images. In
order to tolerate changes caused by poses, views, occlusions,
and so forth, we flip the 1208 normalized pedestrian windows
and get 2416 normalized positive samples. Negative train-
ing windows are sampled randomly from 1218 background
images.The test set includes 288 images with 1126 pedestrians
and 453 images without them.

During training the proposedmodel for pedestrian detec-
tion on these two datasets, all samples are normalized to
51 × 95 pixels. As mentioned before, the size of each block
is 7 × 7 pixels. The overlap of the neighboring blocks is 4
pixels. Therefore, each sample can be partitioned into 12 × 23
overlapping blocks. We set the number of trees 𝐾 = 100, as
discussed in [22]. Regarding the maximum depth 𝑑max and
the maximum size of local template 𝐿, we set 𝑑max = 8 and
𝐿 = 6 which are exhaustively optimized using a validation
set. Additionally, we find that the discriminating power of
local template with small size is too low. We reset the range
of width and height of each local template as 𝐵, 𝐶 ∈ [3, 𝐿].
During detection, the test image is partitioned in the same
way, and each detectionwindow slideswith a block. Tohandle
scale variations of object, we resized a test image to 20 scales
with stride 1.05.

6.2. Experimental Results. Figures 3(a) and 3(b) demonstrate
some detection examples of our method on TUD pedestrian
and INRIA pedestrian dataset, respectively. They strongly
prove that the proposed algorithm can detect people with

large intraclass variability caused by different poses, size, and
clothing under varying illumination and cluttered scenes.

To evaluate the performance of different methods eval-
uated on TUD pedestrian test set, the Receiver Operating
Characteristic (ROC) curves are drawn to describe the statis-
tical comparison of different methods. We use the definition
in [36] that Recall and Precision are computed as

Recall = Tp
nP
,

Precision = TP
TP + FP

,

(16)

where TP and FP are the number of true positive and false
positive, respectively, during test andnP is the total number of
positive in the test dataset.The goal of all detectionmethods is
to improve the Recall and, in the meanwhile, also to improve
the Precision. Unfortunately, they are mutually related to
each other and mutually restrict each other. Generally, Area
Under Curve (AUC) is used for measuring the perfor-
mance of differentmethods according to corresponding ROC
curves.The comparison result is shown in Figure 4. Applying
the proposed method to detect pedestrian on this dataset
achieves AUC = 0.908, which outperforms other competing
algorithms. Furthermore, we compute the Equal Error Rate
(EER) of different methods, as shown in Table 1. EER is the
point on the ROC curve that corresponds to have an equal
probability of missclassifying a positive or negative sample.

The INRIA pedestrian test set contains pedestrians with
large intraclass variability. The statistical comparison of dif-
ferent methods is defined by miss rate at 1 false positive per
image (FPPI). We follow the definition in [3] that the miss
rate is computed as

miss rate = NF
nP
, (17)
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Figure 4: Performance curves of differentmethods evaluated on the
TUD pedestrian dataset.

Table 1: EER of different methods evaluated on TUD pedestrian
dataset.

Algorithm Equal Error Rate (EER)
Ours 0.911
ADF-Regr [22] 0.879
HF [14] 0.796
DPM [8] 0.783

where FN is the false negative during test. For pedestrian
detection, if the threshold of the classifier is low, the miss rate
will decrease; at the same time, the number of false positive
in each test image will increase. To make fair comparison, we
should specify a statistical indicator and use another indicator
to evaluate the performance of different methods. Generally,
miss rate at FPPI = 1 is used, as shown in Table 2. The
proposed method achieves miss rate of 0.12 at 1 FPPI, which
is not as good as that of the state-of-the-art method [18]. Yet
it is still quite competitive and, in particular, performs better
than methods built on other block based descriptors, such as
HOG and LBP.That gives direct evidence to the effectiveness
of the proposed adaptive local DOT template. Regarding the
gap between proposedmethod and the work in [18], themain
reason is that the detector in [18] is built not only on local
features, but also on the full object.

Regarding detection speed, we evaluate it on TUD pedes-
trian dataset. With fast DOT template matching and cascade
detection architecture in our method, the mean detection

Table 2: Performances of different methods evaluated on INRIA
pedestrian dataset at 1 FPPI.

Algorithm Miss rate at 1 FPPI
Ours 0.12
Parts + dictionary [11] 0.12
Very fast [18] 0.07
HOG-LBP [6] 0.14
HOG [3] 0.23

time of one test image achieves 0.18 second which is faster
than the HF’s 1.11 second and DPM’s 0.85 second.

6.3. Parameter Evaluation. In this section, we analyze the
two most important parameters of the proposed method: the
maximum size of local template 𝐿 and the maximum depth
𝑑max. The TUD pedestrian dataset is used for evaluation.
To evaluate the maximum size of local template 𝐿, we fix
the maximum depth 𝑑max = 8. Generally, 𝐿 represents
the compromise between discrimination and robustness to
local variations. If 𝐿 is too small, the discriminating power
of selected local template is low; while 𝐿 is too large, local
DOT template cannot tolerate variations caused by different
views and articulated poses, partial occlusion, and changes
in illumination. We depict the relations between 𝐿 and
performance measured by AUC of PR curve in Figure 5(a).
As expected, the performance increases with 𝐿 up to a certain
limit 𝐿 = 6 and decreases if 𝐿 > 6. To evaluate the
second parameter 𝑑max, we fix the maximum size of local
template 𝐿 = 6. From another point of view, 𝑑max can be
considered as the number of local templates in pedestrian
assembled for classification. It is affected by two factors:
the representativeness of selected templates and the way of
assembling multiple weak classifiers built on these templates.
The experimental results show that 𝑑max = 8 is enough for
our method, as shown in Figure 5(b).

7. Conclusion and Future Work

We have proposed a novel compositional model for pedes-
trian detection in cluttered scenes. The key idea of our
method is to assemble multiple weak classifiers which are
defined by adaptive local templates.We achieve it by Random
Forest. The forest is built in an iterative, layer-wise manner.
The adaptive local templates are used for learning splitting
functions in the forest, and all splitting functions in one
depth form a weak classifier. Each newly weak classifier
is learned and added by minimizing a global loss, with
weights of samples updating. The final experimental results
on two challenging pedestrian datasets indicate that the
proposedmethod achieves the state-of-the-art or competitive
performance.

As demonstrated in this paper, the extensive experiments
show that our method is robust and effective for detecting
pedestrians with various intraclass variations to some extent.
However, we have to concede that there is room for improve-
ment, particularly on challenging INRIA pedestrian dataset.
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Figure 5: (a) Evaluation of the maximum size of local template. (b) Evaluation of the maximum depth of forest. We plot the performance as
AUC of PR curve. The TUD pedestrian dataset is used.

The key of the problem is to model the combination relations
of selected local templates explicitly during learning each
weak classifier, which is used for providing information about
poses, views, and occlusions. In the future works, we will
continue our researches to solve this problem.
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