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A class of unknown nonaffine pure-feedback nonlinear systems is investigated and a novel output feedback control scheme with
low complexity is proposed, based on the sliding mode control theory. The scheme is capable of guaranteeing output tracking
error with finite-time convergence and bounded closed loop signals. In this scheme, a novel transformation method is included,
which can easily transform the state-feedback control of nonaffine systems into output feedback control of strict-feedback affine
systems. Based on the transformed affine systems, a novel finite-time sliding mode control is designed, which is continuous and
nonsingular. The control scheme proposed in this work is simple and easy to implement, in which the “explosion of complexity”
caused by backstepping-like scheme is completely avoided. And the finite-time convergence is successfully achieved. In addition,
the scheme is designed based on output feedback control. And the dynamics of the nonaffine nonlinear systems is unknown in the
design process. Thus, the system knowledge needed is reduced.

1. Introduction

In the past decade, control design for complex nonlinear sys-
tems has attracted a lot of attention. Andmany breakthrough
results have been obtained, such as feedback linearization
technical [1] and adaptive backstepping technical [2]. The
aforementioned results assumed the input is affine in the
systems considered. In practice, there are many nonlinear
systems with nonaffine structure, such as aircraft dynamics
[3] and mechanical systems [4]. Explicit inverting control
design is impossible for nonaffine systems, because the input
does not appear linearly in the systems.Therefore, the control
design for nonaffine systems is more complex and more
challenging.

Many researches have been done for nonaffine pure-
feedback nonlinear systems. In the literatures [5–10], non-
affine pure-feedback systems are studied, in which the model
is known. In practice, it is difficult to obtain an exact
dynamic model of the system. And in the literature [11–14],
the controller design for unknown nonaffine pure-feedback
systems is studied. However, the proposed control methods
above are all designed based on the backstepping technical.

A drawback with the back-stepping technique is the problem
of “explosion of complexity,” which is caused by the repeated
differentiations of certain nonlinear functions such as virtual
controls [15, 16]. To overcome the problem, dynamic surface
control (DSC) was proposed in the controller design for
nonaffine system [17], by employing first-order filtering of the
synthetic virtual control input at each step of backstepping
approach. However, this method will produce an algebraic
loop, because the controller is employed in the approximation
algorithm, whose output is simultaneously utilized in the
controller. The problem of algebraic loop is solved in [18] by
combining the DSC technique and input-to-state stability-
(ISS-) modular design method [6]. However, in [18] the cor-
responding neural network (NN) and filter are needed to be
designed in each recursive step.Thus, themethod is still com-
plex. Recently, a low-complexity global approximation-free
backstepping-like approach is proposed for pure-feedback
nonaffine systems in [19], under the assumption that the
full states are known. And the complexity explosion issue
is avoided. However, it is still a recursive method. And it
is usually impossible that all the states are available in the
actual process. Hence, for nonaffine systems, it needs to
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further study the low-complexity controller design that is not
based on the backstepping technique and needs less system
knowledge.

It has been recognized that sliding mode control is
efficient to design a robust controller. In most of the sliding
mode controllers, the sliding mode surface is linear, which
can only guarantee the infinite-time convergence of the states
[20, 21]. To implement finite-time convergence, nonlinear
sliding mode surfaces are employed. One of such sliding
mode surfaces is the terminal sliding mode (TSM) [22].
However, TSM controller may cause the singularity problem
in the closed-loop system [23]. To overcome the singularity
problem, the nonsingular terminal sliding mode control
(NTSM) is proposed in [24, 25]. However, NTSM can only
be used in the second-order system. For high-order systems,
a finite-time sliding mode controller is designed in [26].
However, the sliding mode controllers mentioned above are
all designed for affine systems and are difficult to directly
be applied to nonaffine systems. According to the authors’
best knowledge, all the sliding mode control designed for
nonaffine systems [27–32] can only guarantee the infinite-
time convergence of the states. The finite-time controllers
have faster convergence rate than that of infinite-time con-
trollers. Furthermore, they possess better robustness and
better disturbance rejection performance, because fractional
power items are contained in them [33, 34]. Thus, research
on finite-time control of nonaffine systems has important
practical and theoretical significance.

In this paper, a novel finite-time convergence control
scheme is proposed for unknown nonaffine pure-feedback
system, based on sliding mode control theory. In the design
procedure, the input of the system is augmented with a low-
pass filter firstly. Then the nonaffine system is transformed
into an affine strict-feedback system through states trans-
formation. Because the states in the transformed system are
unavailable for controller design, a finite-time differentiator
is introduced to obtain the unavailable states. Finally, a finite-
time sliding mode controller is designed. Main contributions
of the paper are the following:

(1) Complexity of the control for nonaffine system
is reduced dramatically. A novel transformation
method is proposed, capable of completely avoiding
“explosion of complexity” caused by backstepping-
like scheme. Moreover, in the proposed scheme, only
one estimator is needed to obtain the states used in
the controller.

(2) The finite-time convergence of the closed system
is achieved for the first time. For nonaffine pure-
feedback nonlinear systems, a nonsingular, finite-
time sliding mode control is designed for the first
time. And the controller is continuous; thus, the
chattering of actuators is alleviated.

(3) The system knowledge needed is reduced. In the
proposed scheme, only the outputs of the system,
other than all the states, are used. Furthermore, the
control is designed based on the unknown nonaffine
pure-feedback systems; thus, accurate model of the
system is not required.

2. Model and Problem Formulation

Consider a class of nonaffine pure-feedback systems as
follows:
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in which 𝑥
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(𝑡) ∈ R, 𝑖 = 1, . . . , 𝑛, are the states, 𝑢 ∈ R is the
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Assumption 1 is a commonly used sufficient condition for
controllability of nonaffine system [19].

Assumption 2. The desired trajectory 𝑦

𝑑
: R
+

→ R
is known. It is sufficiently smooth, and there are constants
𝑐
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.

In this paper, we focus on the control of unknown
nonaffine pure-feedback system. The objective is to obtain
a low-complexity controller, such that the tracking error
with respect to the desired trajectory can converge to the
equilibrium point with finite time, and all the states are
bounded.

3. Finite-Time Output Feedback Control
Based on Sliding Mode Control Theory

3.1. Design of a Novel System Transformation Method.
Recently, in [21], a low-pass filter used to attenuate the
chattering is introduced in the input channel (i.e., 𝑢̇ = 𝑇𝑢+V),
when designing the sliding mode control for affine systems.
Inspired by this, we proposed a novel transformationmethod,
in which we will show that the low-pass filter can also be used
to transform the nonaffine systems into affine systems. The
transformation procedure is given as follows.

Augment the nonaffine system (1) through introducing
a low-pass filter in the input channel. And the augmented
system can be denoted by the following:
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In (3), 𝑇 > 0, 𝑢 becomes a new state, and V denotes the new
control input.
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Now, the initial nonaffine system denoted by (1) is trans-
formed into an affine strict-feedback integral chain system
denoted by the following:
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3.2. Design of a Finite-Time Differentiator. In transformed
system (5), only the states 𝑞
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where 𝐿 is a Lipschitz constant of 𝑞(𝑛+1)
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It follows from [35] that the estimated errors can converge to
zero in finite time.

3.3. Design of a Nonsingular Finite-Time SlidingMode Control.
A nonlinear sliding mode surface is given by
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in which the sliding mode surface 𝑠 is designed as (10), and
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will converge to zero in finite time, and all the signals in the
close-loop system are bounded.
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Proof. According to 𝑒
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It denotes that dynamic (12) and dynamic (13) are affected
by the estimated error dynamic (9). In the following, it will
show that dynamic (12) and dynamic (13) will not be driven
into infinity in finite time by dynamic (9).

Define a finite-time bounded function as follows:

𝑉 =

1

2

𝑛+1

∑

𝑖=1

𝜍

2

𝑖
+

1

2

𝑠

2
. (14)

Taking derivative of𝑉 with respect to time, then substituting
(13), yields

̇

𝑉 =

𝑛

∑

𝑖=1

𝜍

𝑖
(𝜍

𝑖+1
+ 𝑒

𝑖
) + 𝜍

𝑛+1
( ̇𝑠 −

𝑛+1

∑

𝑖=1

𝑘

𝑖
sign (𝜍

𝑖
)

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

𝛼𝑖
)

+ 𝑠 ̇𝑠.

(15)

Noting that when 𝛼
𝑖
∈ (0, 1) (𝑖 = 1, . . . , 𝑛 + 1), it implies that

|𝜍

𝑖
|

𝛼𝑖
≤ 1 + |𝜍

𝑖
|, and combing (15), one can obtain

̇

𝑉 ≤

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

(

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖+1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨

)

+

󵄨

󵄨

󵄨

󵄨

𝜍

𝑛+1

󵄨

󵄨

󵄨

󵄨

(| ̇𝑠| +

𝑛+1

∑

𝑖=1

𝑘

𝑖
(1 +

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

)) + |𝑠| | ̇𝑠|

≤

1

2

𝑛

∑

𝑖=1

(𝜍

2

𝑖
+ 𝜍

2

𝑖+1
) +

1

2

𝑛

∑

𝑖=1

(𝜍

2

𝑖
+ 𝑒

2

𝑖
) +

󵄨

󵄨

󵄨

󵄨

𝜍

𝑛+1

󵄨

󵄨

󵄨

󵄨

| ̇𝑠|

+

1

2

𝜍

2

𝑛+1
+

1

2

(

𝑛+1

∑

𝑖=1

𝑘

𝑖
)

2

+

1

2

𝑛+1

∑

𝑖=1

𝑘

𝑖
(𝜍

2

𝑛+1
+ 𝜍

2

𝑖
)

+ |𝑠| | ̇𝑠| ≤ 𝑙

1
𝑉 + 𝑙

2
+ (

󵄨

󵄨

󵄨

󵄨

𝜍

𝑛+1

󵄨

󵄨

󵄨

󵄨

+ |𝑠|) | ̇𝑠|

(16)

in which

𝑙

1
= 3 + 2(

𝑛+1

∑

𝑖=1

𝑘

𝑖
) ,

𝑙

2
=

𝑛

∑

𝑖=1

𝑒

2

𝑖

2

+

1

2

(

𝑛+1

∑

𝑖=1

𝑘

𝑖
)

2

.

(17)

Substituting (11) into (12) yields

̇𝑠 = − (1 − 𝜀

0
)

−1
(1 + 𝜀)

⋅ (𝜂 + 𝐵

0
𝜌 + 𝜀

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛+1

∑

𝑖=1

𝑘

𝑖

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

𝛼𝑖 sign (𝜍
𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

) sign (𝑠)

− 𝜀

𝑛+1

∑

𝑖=1

𝑘

𝑖
sign (𝜍

𝑖
)

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

𝛼𝑖
− (1 + 𝜀) 𝜆𝑠 + 𝐹 + ̇𝑒

𝑛+1
.

(18)

Note that 𝜀 ∈ [−𝜀

0
, 𝜀

1
], 0 < 𝜀

0
< 1, 𝜀

1
> 𝜀

0
> 0, and

|𝐹| < 𝐵

0
𝜌 and |𝜍

𝑖
|

𝛼𝑖
≤ 1 + |𝜍

𝑖
|. And from (18), one can obtain

| ̇𝑠|

≤ (1 − 𝜀

0
)

−1
(1 + 𝜀)(𝜂 + 𝐵0

𝜌 + 𝜀

1

𝑛+1

∑

𝑖=1

𝑘

𝑖

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

𝛼𝑖
)

+ 𝜀

𝑛+1

∑

𝑖=1

𝑘

𝑖

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

𝛼𝑖
+ (1 + 𝜀) 𝜆 |𝑠| + |𝐹| +

󵄨

󵄨

󵄨

󵄨

̇𝑒

𝑛+1

󵄨

󵄨

󵄨

󵄨

≤ (1 − 𝜀

0
)

−1
(1 + 𝜀

1
)(𝜂 + 𝐵

0
𝜌 + 𝜀

1

𝑛+1

∑

𝑖=1

𝑘

𝑖
(1 +

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

))

+ 𝜀

1

𝑛+1

∑

𝑖=1

𝑘

𝑖
(1 +

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

) + (1 + 𝜀

1
) 𝜆 |𝑠| + 𝐵0

𝜌 +

󵄨

󵄨

󵄨

󵄨

̇𝑒

𝑛+1

󵄨

󵄨

󵄨

󵄨

≤ 𝜗

1
+ 𝜗

2

𝑛+1

∑

𝑖=1

𝑘

𝑖

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

+ (1 + 𝜀

1
) 𝜆 |𝑠| .

(19)

In (19),

𝜗

1
= (1 − 𝜀

0
)

−1
(1 + 𝜀

1
) (𝜂 + 𝐵

0
𝜌)

+

(2 + 𝜀

1
− 𝜀

0
)

(1 − 𝜀

0
)

𝜀

1
(

𝑛+1

∑

𝑖=1

𝑘

𝑖
) + 𝐵

0
𝜌 +

󵄨

󵄨

󵄨

󵄨

̇𝑒

𝑛+1

󵄨

󵄨

󵄨

󵄨

,

𝜗

2
=

(2 + 𝜀

1
− 𝜀

0
)

(1 − 𝜀

0
)

𝜀

1
> 0.

(20)
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Substituting (19) into (16) yields

̇

𝑉 ≤ 𝑙

1
𝑉 + 𝑙

2
+ (

󵄨

󵄨

󵄨

󵄨

𝜍

𝑛+1

󵄨

󵄨

󵄨

󵄨

+ |𝑠|) (𝜗1
+ 𝜗

2

𝑛+1

∑

𝑖=1

𝑘

𝑖

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

)

+ (

󵄨

󵄨

󵄨

󵄨

𝜍

𝑛+1

󵄨

󵄨

󵄨

󵄨

+ |𝑠|) (1 + 𝜀1
) 𝜆 |𝑠|

≤ 𝑙

1
𝑉 + 𝑙

2
+ (

󵄨

󵄨

󵄨

󵄨

𝜍

𝑛+1

󵄨

󵄨

󵄨

󵄨

𝜗

1
+ |𝑠| 𝜗1

)

+ 𝜗

2

𝑛+1

∑

𝑖=1

𝑘

𝑖
(

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜍

𝑛+1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

|𝑠|)

+ (1 + 𝜀

1
) 𝜆

𝜍

2

𝑛+1
+ 3𝑠

2

2

≤ 𝑙

1
𝑉 + 𝑙

2
+ 𝜗

2

1
+

𝜍

2

𝑛+1
+ 𝑠

2

2

+ 𝜗

2
(

𝑛+1

∑

𝑖=1

𝑘

𝑖

𝜍

2

𝑛+1
+ 2𝜍

2

𝑖
+ 𝑠

2

2

)

+ (1 + 𝜀

1
) 𝜆

𝜍

2

𝑛+1
+ 3𝑠

2

2

≤ (𝑙

1
+ 𝑙

3
) 𝑉 + (𝑙

2
+ 𝑙

4
) .

(21)

Noting (21) and (17), one can obtain

𝑙

1
+ 𝑙

3
= 4 + (2 + 3𝜗

2
)(

𝑛+1

∑

𝑖=1

𝑘

𝑖
) + 3 (1 + 𝜀

1
) 𝜆,

𝑙

2
+ 𝑙

4
= 𝜗

2

1
+

𝑛

∑

𝑖=1

𝑒

2

𝑖

2

+

1

2

(

𝑛+1

∑

𝑖=1

𝑘

𝑖
)

2

,

(22)

where 𝑒
𝑖
, 𝑖 = 1, . . . , 𝑛 + 1, in (9) can converge to zero in

finite time; thus, ̇𝑒

𝑛+1
and 𝑒

𝑖
, 𝑖 = 1, . . . , 𝑛, are bounded.

Consequently, 𝜗
1
and 𝜗

2
denoted by (20) are bounded. And

𝑙

1
+𝑙

3
and 𝑙
2
+𝑙

4
in (22) are bounded.Thus, it can be concluded

from (21) and (14) that 𝑉, 𝜍
𝑖
(𝑖 = 1, . . . , 𝑛 + 1) and 𝑠 will

not escape to infinity in finite time before 𝑒
𝑖
, 𝑖 = 1, . . . , 𝑛,

converge to zero.
Because 𝑒

𝑖
, 𝑖 = 1, . . . , 𝑛, will converge to zero in finite

time, system (12) will then reduce to

̇𝑠 = 𝐹 + 𝐵

0 (
1 + 𝜀) V +

𝑛+1

∑

𝑖=1

𝑘

𝑖
sign (𝜍

𝑖
)

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

𝛼𝑖
. (23)

Substituting (11) into (23) yields

̇𝑠 = 𝐵

0
𝜀V
1
+ 𝐵

0 (
1 + 𝜀) V2 + 𝐹. (24)

Noting that 𝜀 ∈ [−𝜀
0
, 𝜀

1
], 𝜀
1
> 𝜀

0
, 0 < 𝜀

0
< 1, 𝜀

1
> 𝜀

0
> 0 and

𝜆 > 0, and further substituting (11) into (24), it follows that

𝑠 ̇𝑠 = 𝑠𝐵

0
𝜀V
1
+ 𝑠𝐵

0 (
1 + 𝜀) V2 + 𝑠𝐹

≤ 𝐵

0 |
𝑠| |𝜀|

󵄨

󵄨

󵄨

󵄨

V
1

󵄨

󵄨

󵄨

󵄨

− |𝑠| (1 + 𝜀) 𝜓 − (1 + 𝜀) 𝜆𝑠

2
+ |𝑠| |𝐹|

≤ 𝐵

0
𝜀

1 |
𝑠|

󵄨

󵄨

󵄨

󵄨

V
1

󵄨

󵄨

󵄨

󵄨

− |𝑠| (1 − 𝜀0
) 𝜓 + |𝑠| |𝐹| .

(25)

Substituting 𝜓 denoted by (11) into (25), and combing with
𝐵

0
𝜌 > 𝐹, yields

𝑠 ̇𝑠 ≤ 𝐵

0
𝜀

1 |
𝑠|

󵄨

󵄨

󵄨

󵄨

V
1

󵄨

󵄨

󵄨

󵄨

− |𝑠| (𝜂 + 𝐵0
𝜌 + 𝐵

0
𝜀

1

󵄨

󵄨

󵄨

󵄨

V
1

󵄨

󵄨

󵄨

󵄨

) + |𝑠| |𝐹|

≤ −𝜂 |𝑠| − |𝑠| (𝐵0
𝜌 − |𝐹|) ≤ −𝜂 |𝑠| .

(26)

According to (26), we know that the sliding mode surfaces 𝑠
and ̇𝑠will converge to zero in finite time. And (9) implies that
𝑒

𝑖
will converge to zero with finite time. So dynamic (13) will

reduce to
̇𝜍

𝑖
= 𝜍

𝑖+1
, 𝑖 = 1, . . . , 𝑛,

̇𝜍

𝑛+1
= −

𝑛+1

∑

𝑖=1

𝑘

𝑖
sign (𝜍

𝑖
)

󵄨

󵄨

󵄨

󵄨

𝜍

𝑖

󵄨

󵄨

󵄨

󵄨

𝛼𝑖
.

(27)

From (27), it can be concluded that 𝜍
𝑖
(𝑖 = 1, . . . , 𝑛 + 1) and

̇𝜍

𝑛+1
will converge to zero in finite time [21]. And at this time

𝑞

𝑖
= 𝜍

𝑖
(𝑖 = 1, . . . , 𝑛 + 1) denote the tracking error and

its derivatives, so the tracking error and its derivatives are
bounded and can converge to zero in finite time. Because
𝜍

𝑖
, 𝑖 = 1, . . . , 𝑛 + 1, are all bounded, the new input V in

(11) is bounded. And according to the bounded input and
bounded output properties of one-order linear system [36],
𝑢 produced by 𝑢̇ = 𝑇𝑢 + V in (11) is bounded too. Because
𝑞

1
= 𝑥

1
− 𝑦

𝑑
is bounded, state 𝑥

1
is bounded. Furthermore,

because 𝑞
2
= 𝑓

1
− ̇𝑦

𝑑
is bounded, thus 𝑓

1
is bounded. Then it

can be concluded that𝑥
2
is bounded according to the fact that

𝜕𝑓

1
/𝜕𝑥

2
is bounded.Throughusing the procedure recursively,

it can be concluded that all the other states 𝑥
𝑖
, 𝑖 = 2, . . . , 𝑛,

are bounded too.

Remark 4. Compared with the commonly used backstep-
ping-like controller, the complexity is reduced dramatically in
the proposed controller through using a novel system trans-
formation. And the finite-time convergence of the tracking
error can also be insured. The system knowledge needed is
reduced, and only the output state is used in the proposed
controller, while all the states are usually needed in the
backstepping-like controller.

4. Simulation

In this section, the feasibility of the scheme proposed in this
paper will be demonstrated. Consider the following three-
order system:

𝑥̇

1
= 0.2𝑥

1
+ (1 + exp (−𝑥

1
)) 𝑥

2
+ 0.3 sin𝑥

1

+ 0.1 sin 𝑡,

𝑥̇

2
=

1 − exp (𝑥
1
𝑥

2
)

1 + exp (𝑥
1
𝑥

2
)

+ (1 + 0.2 sin𝑥
1
) 𝑥

3

+ 0.02 sin (𝑥
2
𝑡) ,

𝑥̇

3
= 0.5 sin (𝑥

1
𝑥

2
𝑥

3
) + (0.42 + 0.1 cos (𝑥

2
𝑡)) 𝑢

+ 0.1 sin (0.5𝑢) ,

𝑦 = 𝑥

1

(28)
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Figure 1: Actual output 𝑦 and desired output 𝑦
𝑑
.
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Figure 2: Tracking error.

with the desired trajectory 𝑦

𝑑
= sin(𝑡 + 𝜋/2) and initial

conditions 𝑥
1
(0) = 0, 𝑥

2
(0) = 0, 𝑥

3
(0) = 0.

It can be verified that Assumptions 1 and 2 are satisfied.
In the controller design, the differentiator is firstly designed as
(8)with the parameters:𝐿 = 300, 𝜆

0
= 1.1, 𝜆

1
= 30, 𝜆

2
= 50,

and 𝜆

2
= 80. The sliding mode surface is given by (10) with

𝑘

1
= 625, 𝑘

2
= 500, 𝑘

3
= 150, 𝑘

4
= 40, 𝛼

1
= 1/2, 𝛼

2
=

4/7, 𝛼
3
= 2/3, 𝛼

4
= 4/5. And the initial value of the integral

part is 0. The controller is given by (11); in (11), 𝑇 = −5, 𝜆 =

20, 𝐵
0
= 0.6, 𝜂 = 1, 𝜌 = 3, 𝜀

1
= 6, 𝜀

0
= 0.8. The simulation

results are shown as in Figures 1–10.
As a comparison, an improved backstepping-like con-

troller designed in [18] is also simulated. In [18] the com-
plexity issue is alleviated through using the dynamic surface
technique, which can avoid calculating the derivative of the
virtual control. The controller is designed as 𝑢 = −𝑘

3
𝑠

3
+

̂

𝜃

𝑇

3
𝜉

3
(𝑥

1
, 𝑥

2
, 𝑥

3
, 𝑧̇

3
), in which 𝑠

3
= 𝑥

3
− 𝑧

3
and 𝑧
3
is tuned by

one-order filter 𝜏
2
𝑧̇

3
+ 𝑧

3
= 𝛼

3
. 𝛼
3
= −𝑘

2
𝑠

2
+

̂

𝜃

𝑇

2
𝜉

2
(𝑥

1
, 𝑥

2
, 𝑧̇

2
)

is a virtual control, in which 𝑠

2
= 𝑥

2
− 𝑧

2
, and 𝑧

2
is tuned

by one-order filter 𝜏
2
𝑧̇

2
+ 𝑧

2
= 𝛼

2
. 𝛼
2
= −𝑘

1
𝑠

1
+

̂

𝜃

𝑇

1
𝜉

1
(𝑥

1
, ̇𝑦

𝑑
)

is a virtual control, in which 𝑠

1
= 𝑥

1
− 𝑦

𝑑
. 𝜃𝑇
𝑖
𝜉

𝑖
, 𝑖 = 1, 2, 3,

are three NN units. And the NN weights are determined as
̇

̂

𝜃

𝑖
= Γ

𝑖
[−𝜉

𝑖
𝑠

𝑖
− 𝜂

𝑖
̂

𝜃

𝑖
], 𝑖 = 1, 2, 3. The comparison of the two

methods is illustrated in Figures 11-12.
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According to the simulation results, the following can be
concluded:

(1) The proposed controller can insure the tracking error
and its derivatives have a finite-time convergence
property (Figures 2–5). This is because the proposed
controller can insure a finite-time convergence of the
slidingmode surface (Figure 6); moreover, the sliding
mode surface in this paper is a nonsingular finite-
time terminal sliding mode surface, so the states on
the slidingmode surface can converge to zero in finite
time.

(2) The proposed sliding mode controller is chattering-
free. Though the augmented input is desecrated
(Figure 9), the actual input 𝑢 is continuous and
smooth, because 𝑢 is produced by 𝑢̇ = 𝑇𝑢 + V.
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Thus, the chattering of the conventional sliding mode
control is avoided.

(3) The proposed controller is simple and easy to imple-
ment. And the complexity of the current controllers
designed for nonaffine systems is greatly avoided. It is
noted that threeNNunits, two filters, and all the three
states are needed in the backstepping-like controller
proposed in [18]. And the number ofNNunits and fil-
ters will increasewith the increase of the systemorder.
However, only one output state, one differentiator,
and one filter are needed in the controller proposed
in this paper. In addition, the number of the needed
states, differentiators, and filters will not increase with
the increase of the system order. So the complexity of
the controller for nonaffine pure-feedback systems is
greatly avoided.

(4) Compared to the controller in [18], the needed knowl-
edge of system is reduced. In the proposed controller,
only the output and the order of the system, other
than all the states and the accurate system model, are
needed.

(5) According to Figures 11-12, it is shown that the control
performance of the proposed controller in this paper
is as good as that of the improved backstepping-like
controller proposed in [18].

5. Conclusion

In the paper, a novel control scheme with low complexity
is proposed for unknown nonaffine pure-feedback systems.
The scheme involves a novel transformedmethod, which can
transform the nonaffine systems into affine strict-feedback
system. And a nonsingular finite-time sliding mode con-
troller is also implemented. Compared with the related
article, the proposed scheme not only can achieve finite-time
convergence, but also is much simpler and easy to implement
and needs less system knowledge. And the simulation results
demonstrate that the tracking performance is also very good.
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