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A layer-by-layer assemble method was used to fabricate CdS quantum dots (QDs) sensitized electrodes. Scanning electron micro-
scopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM) have been utilized to
characterize the samples. The absorption spectra and photovoltaic measurement confirmed that much more effective deposition
of QDs in TiO2 matrix and much better power conversion performance were achieved for these multilayer electrodes compared
with the ones fabricated by traditional single-layer assembly method.

1. Introduction

In recent years, dye-sensitized solar cells (DSSCs) have at-
tracted a lot of scientific and technological interests owing to
their high energy conversion efficiency, low production cost,
and a facile fabrication process [1–3]. Besides conventional
ruthenium dyes, inorganic short-band-gap semiconductor
quantum dots, such as CdS, CdSe, CdTe, PbS and others,
have been researched as the good candidate sensitizers in the
so-called quantum-dot-sensitized solar cell (QD-SSC) [4–7].
The advantage of inorganic QDs over conventional ruthe-
nium dyes is that QDs can generate multiple electron-hole
pairs per proton and improve the efficiency of the solar cells
[8]. In addition, QDs’ optic and electronic properties can
be adjusted to match the solar spectrum much better by
changing their shape and size [9–11]. However, the difficulty
of penetrating QDs into the mesoporous TiO2 matrix
hindered QD-SSCs from achieving higher energy conversion
efficiency. The QDs assembly difficulty can mainly be
attributed to the two following reasons: (1) QDs are generally
not bound effectively to the TiO2 crystalline surface to form
a firmly anchoring QDs monolayer on TiO2 nanoparticles
[12]. (2) It is relatively difficult for nanoscale QDs to

penetrate deep into the TiO2 mesoporous films and deposit
in the underlayer of TiO2 film. To solve the first problem, the
various bifunctional surface modifiers are adopted as linker
molecules to anchor the QDs on TiO2 surface, which in-
deed enhance assembly of QDs [13–15]. But little attention
focused on the second problem. It is still unachievable to
obtain an entire coverage of QDs on the surface of TiO2

crystal throughout the mesoporous films.
In this work, we used multilayered quantum dots as-

sembly method to fabricate CdS QDs sensitized solar cells.
The increased coverage ratio, incorporation amount of QDs,
and effective deposition of QDs in underlayer of TiO2

mesoporous films were expected for these multilayer CdS
quantum-dots-sensitized solar cells.

2. Experimental Details

8 g TiO2 powder (P25, Degussa) was thoroughly mixed with
100 mL distilled water by vigorous stirring and ultrasonic.
The slurry was then sprayed on transparent conductive oxide
(TCO) glass (14Ω/squ, Nippon Sheet Glass) and the films
were dried at 120◦C for 10 min. For CdS quantum dot
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Figure 1: The preparation process of multilayer CdS-sensitized
TiO2 electrodes.

deposition, the TiO2 films were immersed in 20 mL solution
containing 0.002 mmol Cd(NO3)2, 1 mmol thiourea, and
0.02 mol NH3·H2O and heated up to 60◦C for two hours.
The as-prepared samples were cleaned sequentially with
distilled water. The spraying-drying-depositing procedure
was termed as one SDD cycle. One to five cycles were applied
to fabricate the TiO2(n)-CdS(n) electrodes (n = 1–5). The
process used for the preparation of the TiO2(n)-CdS(n)
electrodes was displayed in Figure 1. For comparison, one-
step (abbr. OS) preparation of TiO2 film (TiO2(OS)) with
almost same thickness as TiO2(5) was also fabricated. CdS
deposition process was similar to the procedure ascribed
above except the longer CdS bath time of 10 h. TiO2(OS)-
CdS and multilayer TiO2(n)-CdS(n) (n = 1–5) electrodes
were all annealed at 400◦C for 30 min in nitrogen.

A surlyn spacer (30 μm thick, DuPont) was sandwiched
between the CdS quantum-dot-sensitized electrode and the
Pt-coated counterelectrode. The space between the elec-
trodes was filled with the polysulphide electrolyte which con-
sisted of Na2S (0.5 M), S (0.125 M), and KCl (0.2 M), using
water/methanol (7 : 3 by volume) solution as co-solvent.
A 0.25 cm2 active area was defined by a hole punched
through the surlyn frame and was additionally masked from
illumination by black electrical tape to the same size.

The morphology and chemical composition of pho-
toanode were examined by field-emission scanning electron
microscopy (FESEM, JSM-6330F) equipped with an energy-
dispersive X-ray spectrometer (EDS) analyzer. The detailed
microscopic characterization of CdS QDs was analyzed using
transmission electron microscope (TEM, JEM-2010HR).
Absorption spectra of samples were recorded using a
spectrophotometer (Hitachi U-4100). The photocurrent-
voltage (I-V) curve of each cell was measured by Keithley
2400 source meter under an illumination of a solar sim-
ulator (Newport Oriel 91192) at 100 mW cm−2. Electron
impedance spectroscopy (EIS) measurements were carried
out by applying a 10 mV AC signal over the frequency range
of 10−2–105 Hz under 100 mW cm−2 illumination at open
circuit voltage by using an electrochemical workstation
(CHI760C).

3. Results and Discussion

Figures 2(a) and 2(b) are the SEM images of TiO2 film before
and after CdS quantum dots deposition, respectively. The
bare nanocrystalline TiO2 film was exhibited in Figure 2(a).
After CdS modification, there was a coating assembled on
the surface of TiO2 nanoparticles (Figure 2(b)). The EDS
analysis (Figure 2(c)) confirmed that this coating consist
of CdS. Figure 2(d) shows the TEM image of the CdS
nanocrystal. The distance of 0.337 and 0.245 nm between
the adjacent lattice fringes can be assigned to the interplanar
distance of hexagon CdS (002) and (102) face, respectively.
The diameter of QDs was about in the range of 5∼10 nm.

Figure 3 shows the comparison of the absorption spec-
trum of multilayer electrodes. The absorbance intensities of
electrodes increased with SDD cycles. The absorption peaks
of CdS-modified electrodes with different cycles were almost
at same position of 450 nm, which was consistent to the value
reported in the literature [16]. For TiO2(5)-CdS(5), the
absorption edge was approximately 510 nm, which was
obtained from the intersection of the sharply decreasing
region of a spectrum with its baseline. Corresponding to this
absorption edge, the band gap was calculated to be 2.43 eV.
That was higher than 2.25 eV, the value reported for CdS
in bulk [16]. It indicated that the size of the CdS particles
deposited on the TiO2 films were still within the scale of
quantum dots. The size of CdS particles was possible to be
estimated from the excitonic peaks of the absorption spectra
based on the empirical equations proposed by Yu et al. [17].
Then the mean diameter of CdS particles deposited on the
TiO2 films was calculated to be ca. 8.23 nm. The size of
CdS calculated based on empirical equations was consistent
with that observed in TEM image. For comparison, the UV-
Vis absorption spectra of TiO2(OS)-CdS was also showed
in Figure 3. The absorbance of TiO2(OS)-CdS was lower
than that of TiO2(5)-CdS(5) although their film thickness
were almost the same, which displayed the superiority of
multilayered electrodes in depositing quantum dots. The
absorption edge of TiO2(OS)-CdS was also at ca. 510 nm,
indicating that the size of CdS particles on TiO2(OS) was the
same as that on multilayered electrodes.

The effect of SDD cycles on the device performance
has also been studied. The photocurrent-voltage (I-V)
curves of the QD-SSCs using TiO2(n)-CdS(n) (n = 1–5)
and TiO2(OS)-CdS as photoelectrodes were showed in
Figure 4. It was considered that the absorption spectrum of
photoelectrodes played an important role in determining the
energy conversion efficiency of DSSCs. Inferred from Figures
3 and 4, the I-V properties of TiO2(n)-CdS(n) QD-SSCs
(n = 1–5) were consistent to the absorbance of TiO2(n)-
CdS(n) electrodes (n = 1–5). Table 1 summarizes the open
circuit potential (VOC), short circuit current density (JSC), fill
factor (FF), and overall energy conversion efficiency (η) of
these cells. The VOC, JSC and η increased with cycles and the
QD-SSC using TiO2(5)-CdS(5) photoelectrode exhibited the
best performance due to the most incorporated amount of
CdS on electrode. TheVOC, JSC, and η of TiO2(OS)-CdS QD-
SSC were only 0.31 V, 0.91 mA cm−2, and 0.11%, respectively,
which were much lower than those of TiO2(5)-CdS(5)
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Figure 2: SEM images of TiO2 nanocrystalline film (a) before and (b) after CdS quantum dots deposition. (c) EDS spectra of CdS-modified
TiO2. (d) TEM image of CdS quantum dots.
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Figure 3: UV-vis absorption spectra of bare TiO2 nanocrystalline
film, TiO2(n)-CdS(n) (n = 1–5) and TiO2(OS)-CdS electrodes.
Photographs of bare TiO2 and TiO2(n)-CdS(n) (n = 1–5),
electrodes were presented in turn as inset.

QD-SSC (0.44 V, 7.12 mA cm−2, and 1.06%), although its
absorbance was little lower than that of TiO2(5)-CdS(5). It
may be due to the difficulty for CdS QDs diffusing and
depositing in the underlayer of TiO2 mesoporous film,
which resulted in overloading of CdS QDs in the surface of
TiO2 film. Overloading of QDs was reported to be disad-
vantageous to the cell performance because mesopores were
blocked by extra loading of CdS QDs and the electrolyte
diffusion was also hindered [18]. So the advantage of
multilayer TiO2 films in cell performance over the traditional
TiO2 films was evident. The sealed multilayer CdS QDSSCs
displayed good stability still retaining over 90% of their
initial efficiency after 720 h of storage in ambient conditions.
Here we used only CdS QDs as multilayer sensitizer in this
work. It is very promising to deposit different kinds of QDs,
such as CdSe, CdTe, and PbSe and the others in multilayers
of electrodes. The extending of absorption range, the increase
of absorbance, and improvements in the cell efficiency could
be possible for solar cell fabricated by multilayer TiO2 film
sensitized by multiple QDs with different absorption spectra
range.

Electron impedance spectroscopy of multilayer QD-
SSCs, shown in Figure 5, were measured to investigate the
kinetics of charge transfer and recombination. An equivalent
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Table 1: A summary of photovoltaic and photoelectron transport properties of CdS QD-SSCs under AM1.5 condition.

Sample VOC (V) JSC (mA cm−2) FF (%)
η

(%)
Rk (Ω) keff (s−1) τeff (s) Deff × 108 (cm2/s) Film thickness (μm)

TiO2(1)-CdS(1) 0.16 0.91 35.2 0.05 308.75 8.291 0.121 3.770 1.2

TiO2(2)-CdS(2) 0.33 1.71 30.5 0.17 254.86 6.876 0.145 5.331 2.8

TiO2(3)-CdS(3) 0.42 3.58 29.4 0.44 228.15 3.167 0.316 8.251 3.9

TiO2(4)-CdS(4) 0.42 5.40 29.9 0.66 197.18 4.663 0.214 24.193 4.9

TiO2(5)-CdS(5) 0.44 7.12 33.7 1.06 157.33 5.638 0.177 43.264 5.6

TiO2(OS)-CdS 0.31 0.91 37.9 0.11 312.71 6.876 0.145 38.763 5.8

0

1

2

3

4

5

6

7

Voltage (V)

0 0.1 0.2 0.3 0.4

C
u

rr
en

t 
de

n
si

ty
 (

m
A

 c
m
−2

)

TiO2(2)-CdS(2)
TiO2(3)-CdS(3)

TiO2(4)-CdS(4)
TiO2(5)-CdS(5)
TiO2(OS)-CdS

TiO2(1)-CdS(1)

Figure 4: Photocurrent-voltage curves of CdS QD-SSCs measured
under AM1.5 condition. The active surface area was 0.25 cm2.

circuit used to fit the experimental data was shown as inset in
Figure 5. By modeling and fitting the Nyquist plots, the elec-
tron transport parameters such as charge transfer resistance
related to recombination of electrons at the TiO2/electrolyte
interface (Rk), the first-order reaction rate constant for loss of
electrons (keff), electron life time (τeff) and effective diffusion
coefficient (Deff) were extracted and also presented in Table 1.
It was clear that Rk decreased with the SDD cycles, for
which there are two possible reasons: (1) an increase in film
thickness and (2) an increase in the electron density owing
to the increasing current density. keff decreased with cycles
varying from 1 to 3. Thus, the recombination rate decreased
with cycles when cycle was below 3. This showed the reason
the value of JSC and η increases greatly when cycles were
within 3. But keff increased when cycle was more than 3. The
increasing recombination rate means that electrons were lost
rapidly by recombination. Inferred from Table 1, although
FF decreased with cycle changing from 1 to 3 and then
increased when cycle was above 3, the growth rate of η for
cells with cycle above 3 decreased comparing with that
for ones with cycle below 3 under considering the rate of
increase for film thickness. It was deduced that the increase of
electron recombination rate may contribute to the decreasing
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Figure 5: Experimental (dots) and fitted (solid curve) Nyquist plots
of CdS QD-SSCs under AM1.5 condition. The equivalent circuit
used to fit the experimental data was shown as inset.

growth rate of η above 3 SDD cycles. Deff increased with
the increasing film thickness, which was consistent with the
result reported by Adachi et al. [19]. As for TiO2(OS)-CdS,
the Rk value was similar with that of TiO2(1)-CdS(1), which
should due to similar current density of these two cells.

4. Conclusion

We have demonstrated a layer-by-layer assembling method
to improve the coverage of QDs on the surface of TiO2

crystal throughout the mesoporous films effectively and
its application in QD sensitized solar cells. The multilayer
electrodes showed much more effective deposition of QDs
in TiO2 matrix and better power conversion performance,
compared with the ones fabricated by traditional method.
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The open circuit voltage, short circuit current, and overall
power conversion efficiencies of multilayer CdS QD-SSCs in-
creased with the layers and reached maximum value, 0.44 V,
7.12 mA cm−2, and 1.06%, respectively, for 5 layers.
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