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This paper proposes a space-time block coding (STBC) transmission scheme for asynchronous cooperative systems. By combination
of rotated complex constellations and Hadamard transform, these constructed codes are capable of achieving full cooperative
diversity with the analysis of the pairwise error probability (PEP). Due to the asynchronous characteristic of cooperative systems,
orthogonal frequency division multiplexing (OFDM) technique with cyclic prefix (CP) is adopted for combating timing delays
from relay nodes.The total transmit power across the entire network is fixed and appropriate power allocation can be implemented
to optimize the network performance. The relay nodes do not require decoding and demodulation operation, resulting in a low
complexity. Besides, there is no delay for forwarding the OFDM symbols to the destination node. At the destination node the
received signals have the corresponding STBC structure on each subcarrier. In order to reduce the decoding complexity, the sphere
decoder is implemented for fast data decoding. Bit error rate (BER) performance demonstrates the effectiveness of the proposed
scheme.

1. Introduction

Recently, cooperative communication networks are known to
have significant potential in increasing network capacity and
transmission reliability. In recent years, cooperative networks
have attracted substantial interest from the wireless network-
ing and communications research [1–13]. The basic idea is
that intermediate relay nodes act as a virtual distributed
antenna array to assist the source node in transmitting its
information to the destination node. The amplify-and-for-
ward (AF) and decode-and-forward (DF) are the most
famous schemes for cooperative systems [14].

Space-time block code (STBC) [15, 16] is an effective
approach to achieve spatial diversity for cooperative trans-
missions. Since the relay nodes are in different locations
and have different oscillators, there may exist timing errors.
Therefore, it is difficult to design proper space-time coding
schemes. The transmission schemes, which are based on
orthogonal frequency division multiplexing (OFDM), are
exploited for combating the loss of timing phase [2–5].
In [4], a simple Alamouti scheme is proposed to achieve

cooperative diversity, where only a few simple operations
such as time-reversion and complex conjugation are required
at the relay nodes; the fast ML Alamouti decoding is used at
the destination node. However, this scheme is only useful for
the case of two relay nodes. In [6, 7], the clustered orthogonal
space-time block code (OSTBC) schemes for four or more
relay nodes are proposed by clustering the relay nodes. It
is shown that limited performance improvement is achieved
while the number of relay nodes increases.

In [17–21], a new multidimensional modulation scheme
is proposed to increase the modulation diversity. It is feasible
to achieve full modulation diversity by applying optimum
rotation to signal constellation. The algebraic number theory
is introduced in [22] to construct amultidimensional rotation
matrix. By properly selecting the algebraic number field, a
generator matrix that guarantees full modulation diversity
and maximizes the minimum product distance for precoded
information symbols can be obtained.

In this paper we study the diagonal algebraic space-time
(DAST) block coding for asynchronous cooperative network.
We consider the OFDM technique with enough cyclic prefix

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 862020, 7 pages
http://dx.doi.org/10.1155/2014/862020



2 Mathematical Problems in Engineering

(CP) [23, 24] to combat the timing errors. The information
symbols are precoded by amatrixmultiplication at the source
node. Throughout the proper operation at the relay node,
the received signals hold the DAST block code structure on
each subcarrier; hence it is convenient to decode data by
using ML decoding or fast sphere decoder. It is assumed that
the relay nodes do not have to know any information about
the channels but the destination node knows all channel
information through training. Therefore the relay nodes do
not need to decode and demodulate signals received from the
source node. Only a few simple signal processings are needed
at the relay nodes.

This paper is organized as follows. In Section 2, the relay
network model is described and a new transmission scheme
is proposed. In Section 3, the algebraic number theory is
introduced and the optimal rotation constellation scheme
is presented. The PEP is analyzed with the optimal power
allocation in Section 4. Section 5 contains the simulation
results. Finally, the conclusions are given in Section 6.

Notation. For a vector or matrix 𝐴, 𝐴𝑇, 𝐴𝐻, and ‖𝐴‖ indi-
cate the transpose, Hermitian, and Frobenius norm of 𝐴,
respectively. 𝐴 ∘ 𝐵 denotes the Hadamard product of 𝐴
and 𝐵, that is, the componentwise product. ∗ indicates the
conjugate operation. ⊛ denotes the circular convolution.
diag{𝑎

1
, . . . , 𝑎

𝑛
} is a diagonal matrix with 𝑎

𝑖
being its 𝑖th

diagonal entry. 𝐸 indicates the expectation and 𝑃 indicates
the probability. Gaussian integer is a complex number whose
real and imaginary parts are both integers.

2. Relay Network Model and
Cooperative Protocol

Consider a relay network with one source node, one desti-
nation node, and 𝑅 (𝑅 = 2

𝑞
, 𝑞 = 1, 2, . . .) relay nodes, as

shown in Figure 1. There is only one antenna at every node.
We denote the average signal energy 𝐸

𝑠
= 1 by a normalizd

QAM constellation. OFDM technique is used to combat the
time errors. It is assumed that the number of subcarriers is
𝑁 and the transmission delay of the signals from 𝑖th relay
node at the destination node is 𝜏

𝑖
, which is a multiple of

𝑇
𝑠
with 𝑇

𝑠
denoting the information symbol duration. At

the source node the information bits are modulated into
complex symbols by normalized QAM constellation. The
consecutive 𝑁𝑅 symbols are denoted by 𝑠

𝑗,𝑘
, 𝑗 = 1, 2, . . . , 𝑅,

𝑘 = 1, 2, . . . , 𝑁. Then we let 𝑠
𝑗
= [𝑠

𝑗,1
, 𝑠

𝑗,2
, . . . , 𝑠

𝑗,𝑁
] represent

the 𝑗th block consisting of𝑁 symbols.
Let 𝑀 be an 𝑅 × 𝑅 precoding matrix. We obtain the

precoded symbols 𝑥
𝑘
= [𝑥

1,𝑘
, . . . , 𝑥

𝑅,𝑘
]
𝑇
= 𝑀𝑠

𝑘
, where

𝑠
𝑘
= [𝑠

1,𝑘
, . . . , 𝑠

𝑅,𝑘
]
𝑇. Then the new 𝑅 consecutive OFDM

block is denoted by 𝑥
𝑗
= [𝑥

𝑗,1
, 𝑥

𝑗,2
, . . . , 𝑥

𝑗,𝑁
]. After 𝑁-point

IFFT operation and CP of length ℓcp insertion, the OFDM
symbols of length 𝑁 + ℓcp are transmitted to the destination
node through the relay nodes.We assume that the knowledge
of timing errors can be obtained at the destination node. It
is emphasized that the CP length must be larger than the
maximum time delay 𝜏max. Besides, we make the assumption
that the channels between any two nodes are quasi-static flat
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Figure 1: Relay network model.

fading. The fading coefficient from the source node to the
𝑖th relay node is denoted by ℎ

𝑖
, and the fading coefficient

from 𝑖th relay node to the destination node is denoted by 𝑓
𝑖
.

These coefficients are independent and identically distributed
(i.i.d.) complex Gaussian random variables with zero mean
and unit variance.

Denote by𝑋
1
, . . . , 𝑋

𝑅
the 𝑅 consecutive OFDM symbols,

where𝑋
𝑗
consists of IFFT(𝑥

𝑗
) and the corresponding CP for

𝑗 = 1, . . . , 𝑅.The 𝑘th subcarrier output of 𝑗th OFDM symbols
in frequency domain can be represented by

IFFT (𝑥
𝑗
) (𝑘) =

1

√𝑁

𝑁

∑

𝑢=1

𝑥
𝑗,𝑢
𝑒
2𝜋√−1(𝑢−1)(𝑘−1)/𝑁

. (1)

The 1/√𝑁multiplier in terms of IFFT guarantees the power
of signal symbols invariant after IFFT operation. We assume
the channel coefficients remain unchanged during the trans-
mission of 𝑅OFDM symbols. At the 𝑖th relay node in the 𝑗th
OFDM symbol duration the received signals are

𝑌
𝑖,𝑗
= √𝑃

1
𝑋

𝑗
ℎ

𝑖
+ 𝑛

𝑖,𝑗
, (2)

where 𝑃
1
is the average transmit power at the source node

and 𝑛
𝑖,𝑗

is the corresponding additive white Gaussian noise
(AWGN) with zero mean and unit variance at the 𝑗th relay
node, in the 𝑖th OFDM symbol duration. Note that due to the
additive white Gaussian noise, the average power of received
signal is 𝑃

1
+ 1.

The relay nodes would simply process and transmit the
received noisy signals. Only unary positive andnegative oper-
ations are needed. For instance, in the case of 𝑅 = 4 the
processed signal matrix is given by

𝑌 = 𝜆
[
[
[

[

𝑌
1,1

𝑌
2,1

𝑌
3,1

𝑌
4,1

𝑌
1,2

−𝑌
2,2

𝑌
3,2

−𝑌
4,2

𝑌
1,3

𝑌
2,3

−𝑌
3,3

−𝑌
4,3

𝑌
1,4

−𝑌
2,4

−𝑌
3,4

𝑌
4,4

]
]
]

]

. (3)

We can find that it holds the structure similar to the Had-
amard matrix. Apart from the orthogonal STBC scheme,
which is required to switch the OFDM symbols and has
to wait to start process and transmit until the next several
OFDM symbols arrive at the relay nodes [4, 5], in our pro-
posed scheme the relay nodes can process and broadcast
the received signals immediately without waiting the other
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symbols arriving. As a result, the proposed schemewould not
induce the transmission delay.

Let 𝑌
𝑖,𝑗

= 𝜆𝑆
𝑖,𝑗
𝑌

𝑖,𝑗
be the transmit signal from the 𝑖th

relay node, in the 𝑗th OFDM symbol duration, where 𝑆
𝑖,𝑗

belonging to {+1, −1} is the entry of Hadamard matrix 𝑆 of
𝑅 dimensions, and scalar 𝜆 = √𝑃

2
/ (𝑃

1
+ 1) guarantees the

average transmit power is 𝑃
2
for one transmission at every

relay node. At the destination node, the received signal in the
𝑗th OFDM symbol duration can be written as

𝑍
𝑗
=

𝑅

∑

𝑖=1

(𝑌
𝑖,𝑗
⊛ 𝐹

𝑖
) 𝑓

𝑖
+𝑊

𝑗
, (4)

where𝑊 is the correspondingAWGNat the destination node
and 𝐹

𝑖
is an 𝑁 point vector whose (𝜏

𝑖
+ 1)th element is one

and the others are zero. Time delays in the time domain are
expressed by circular convolution with 𝐹

𝑖
. After CP removal

and𝑁-point FFT transformation, the received signals can be
rewritten as

𝑍
𝑗
= 𝜆

𝑅

∑

𝑖=1

𝑆
𝑖,𝑗
(√𝑃

1
𝑥

𝑗
∘ 𝑓

𝜏𝑖ℎ
𝑖
𝑓

𝑖
+ 𝑁

𝑖,𝑗
∘ 𝑓

𝜏𝑖𝑓
𝑖
) +𝑊

𝑗
, (5)

where 𝑓𝜏𝑖 = [1, 𝑒
−2𝜋𝜏𝑖√−1/𝑁

, . . . , 𝑒
−2𝜋𝜏𝑖√−1(𝑁−1)/𝑁

]
𝑇 with 𝑓 =

[1, 𝑒
−2𝜋√−1/𝑁

, . . . , 𝑒
−2𝜋√−1(𝑁−1)/𝑁

]
𝑇 meaning the phase change

in frequency domain corresponding to the sample time delay
𝜏
𝑖
in time domain,𝑁

𝑖,𝑗
= FFT(𝑛

𝑖,𝑗
), and𝑊

𝑗
= FFT(𝑊

𝑗
). For

every subcarrier 𝑘, 1 ≤ 𝑘 ≤ 𝑁, we have

𝑧
𝑘
= 𝜆√𝑃

1
(diag (𝑥

1,𝑘
, 𝑥

2,𝑘
, . . . , 𝑥

𝑅,𝑘
) 𝑆) (𝑓

𝜏

𝑘
∘ ℎ ∘ 𝑓)

+ 𝜆 (𝑁
𝑘
∘ 𝑆) (𝑓

𝜏

𝑘
∘ 𝑓) + 𝑤

𝑘
,

(6)

where we have defined

𝑧
𝑘
=
[
[

[

𝑧
1,𝑘

.

.

.

𝑧
𝑅,𝑘

]
]

]

, 𝑓
𝜏

𝑘
=
[
[

[

𝑓
𝜏1

𝑘

.

.

.

𝑓
𝜏𝑅

𝑘

]
]

]

,

ℎ =
[
[

[

ℎ
1

.

.

.

ℎ
𝑅

]
]

]

, 𝑓 =
[
[

[

𝑓
1

.

.

.

𝑓
𝑅

]
]

]

,

𝑤
𝑘
=
[
[

[

𝑤
1,𝑘

.

.

.

𝑤
𝑅,𝑘

]
]

]

.

(7)

𝑁
𝑘
is an 𝑅 × 𝑅 matrix with the entries {𝑁

𝑖,𝑗,𝑘
}, 1 ≤ 𝑖 ≤ 𝑅,

1 ≤ 𝑗 ≤ 𝑅. The Hadamard transform is useful for reducing
the high peak-to-average power ratio over different transmit
antennas resulting in power amplification.

3. Rotated Constellations Using
Algebraic Number Theory

In order to achieve full modulation diversity over the Ray-
leigh fading channel and Gaussian fading channel, the rota-
tion of a multidimensional signal symbol vector is discussed

in this section. The minimum product distance of the con-
stellation considered is defined as

𝑑min = min
𝑥=𝑀(𝑠−𝑠

),𝑠 ̸=𝑠


𝑅

∏

𝑗=1


𝑥

𝑗


, (8)

where 𝑠 and 𝑠
 belong to an 𝑅-dimensional constellation

(QAM or PAM).The algebraic number theory was employed
to construct a proper precoding rotation matrix 𝑀, which
maximizes theminimumproduct distances in certain dimen-
sions.The diversity order is theminimumHamming distance
between any two coordinate vectors of constellation points. It
is emphasized that a rotation matrix constructed by algebraic
number theory is a Vandermondematrix, which can simplify
the encoding and reduce the computational complexity in a
similar way of fast Fourier transformation. Furthermore, this
algebraic construction of rotations is useful for reduction of
peak-to-mean envelope power ratio (PMEPR).

It can be considered that the algebraic constellation has
full spatial diversity if the associated minimum product
distance𝑑min is strictly positive; equivalently, the components
of vectors 𝑥 = 𝑀𝑠 and 𝑥

= 𝑀𝑠
 (with 𝑠 ̸= 𝑠

) in the rotated
constellation are all different. To construct a precodingmatrix
𝑀 of dimension𝑅 (𝑅 = 2𝑞

, 𝑞 = 1, 2, . . .) with fullmodulation
diversity, we apply the canonical embedding to some totally
complex cyclotomic number fields. The reader can refer to
[25, 26] for more comprehensive details about cyclotomic
number fields and canonical embedding.

The algebraic norm for real integer in number fields at
first appears in solving problems such as the integer solutions
of finding all 𝑥𝑛

+ 𝑦
𝑛
= 𝑧

𝑛, for 𝑛 = 2, which is stated in
the Fermat theorem. It is emphasized that𝑁(𝛼) is an integer
and 𝑁(𝛼) = 0 if and only if 𝛼 = 0; hence 𝑁(𝛼) ≥ 1 for
𝛼 ̸= 0. The algebraic norm should be compared with the
canonical embedding. With the application of the canonical
embedding 𝜎

𝑖
to each element of basis [1, 𝜃, 𝜃2

, . . . , 𝜃
𝑁−1

] of
𝐾, the generator matrix is given by

𝑀 =
1

√𝑅

[
[
[
[

[

1 𝜃
1
⋅ ⋅ ⋅ 𝜃

𝑅−1

1

1 𝜃
2
⋅ ⋅ ⋅ 𝜃

𝑅−1

2

.

.

.
.
.
. d

.

.

.

1 𝜃
𝑅
⋅ ⋅ ⋅ 𝜃

𝑅−1

𝑅

]
]
]
]

]

= [𝜉
1
, 𝜉

2
, . . . , 𝜉

𝑅
] , (9)

where 𝜉
𝑘
is the corresponding column of 𝑀 for 𝑘 =

1, 2, . . . , 𝑅. Due to the characteristic of Vandermonde matrix
and 𝜃

𝑢
− 𝜃V ̸= 0 for 1 ≤ 𝑢 ̸= V ≤ 𝑅, the matrix 𝑀

has full rank. This means that matrix 𝑀 is eligible to be
a generator complex matrix for multidimensional rotated
constellation. It is important to select the roots 𝜃

𝑘
, 𝑘 =

1, 2, . . . , 𝑅 for generating full modulation diversity rotations
andmaximizing theminimumproduct distance.With proper
𝜃
𝑘
the matrix 𝑀 becomes an orthogonal matrix; that is,

𝑀
𝐻
𝑀 = 𝐼. According to the property of algebraic norm, the

minimum product distance is a nonzero integer. It is revealed
that 𝑑min is related to the special properties of algebraic
number field when the full modulation diversity is obtained.
In fact, the diversity product is 1 for the optimal cyclotomic
rotation matrix no matter what the space-time code size and
constellation size are, which have been proved in [26].
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We consider any two columns 𝜉
𝑢
and 𝜉V of 𝑀, 𝑢, V =

1, 2, . . . , 𝑅; without loss of generality, we assume V < 𝑢; then
the complex inner product of 𝜉

𝑢
and 𝜉V is

⟨𝜉
𝑢
, 𝜉V⟩ =

1

𝑅

𝑅

∑

𝑘=1

(𝜃
𝑘
)
𝑢−1

(𝜃
∗

𝑘
)
V−1

=
1

𝑅

𝑅

∑

𝑘=1

(𝜃
𝑘
𝜃

∗

𝑘
)
V
(𝜃

𝑘
)
𝑢−V

.

(10)

The problem transforms to the 𝑅 − 1 power symmetric func-
tions with 𝑅 complex roots, with the constraints of the
properties of the minimal polynomial 𝜇

𝜃
(𝑥). Due to the fact

that the complex roots 𝜃
𝑘
are on the unit circle, we hold

𝜃
𝑘
𝜃

∗

𝑘
= 1 and𝑀 is an orthogonal matrix, so that we obtain

⟨𝜉
𝑢
, 𝜉V⟩ =

1

𝑅

𝑅

∑

𝑘=1

(𝜃
𝑘
)
𝑚
= 0, 𝑚 = 1, 2, . . . , 𝑅 − 1. (11)

We assume the minimal polynomial

𝜇
𝜃 (𝑥) =

𝑅

∏

𝑘=1

(𝑥 − 𝜃
𝑘
) =

𝑅

∑

𝑚=0

𝑎
𝑚
𝑥

𝑚
, (12)

where 𝑎
𝑅
= 1, 𝑎

𝑅−1
= ∑

1≤𝑘≤𝑅
𝜃
𝑘
, 𝑎

𝑅−2
= ∑

1≤𝑢<V≤𝑅
𝜃
𝑢
𝜃V,. . .,

and𝑎
0
= 𝜃

1
𝜃
2
⋅ ⋅ ⋅ 𝜃

𝑅
. Notice that it is an elementary symmetric

polynomial. According to Newton’s identities, we have

𝑎
𝑚
=

1

𝑅 − 𝑚

𝑅−𝑚

∑

𝑗=1

((−1)
𝑗−1
𝑎
𝑚+𝑗

𝑅

∑

𝑘=1

(𝜃
𝑘
)
𝑗
) . (13)

Since ∑𝑅

𝑘=1
(𝜃

𝑘
)
𝑚
= 0 for 𝑚 = 1, 2, . . . , 𝑅 − 1, we have 𝑎

𝑘
= 0

for 𝑘 = 1, 2, . . . , 𝑅 − 1. Notice the coefficients of the minimal
polynomial 𝜇

𝜃
(𝑥) are a Gaussian integer and 𝜃𝑅

1
= 𝜃

𝑅
= 𝑖,

where 𝑖 = √−1, which yields

𝜇
𝜃 (𝑥) = 𝑥

𝑅
− 𝑖. (14)

Using the above results it is easy to achieve the complex roots
𝜃
𝑘
= exp((4𝑘 − 3)𝜋𝑖/2𝑅) for 𝑘 = 1, . . . , 𝑅.

4. PEP Analysis and Optimal Power Allocation

The optimum power allocation between the source node and
the relay nodes is discussed in [10] to minimize the pair-
wise error probability (PEP), which is well known to be an
important measure for performance analysis. In this section
we focus on the high power regime and the upper bound
of PEP and provide the theoretical bases for reducing the
upper bound of PEP with the precoding matrix. At first, for
simplicity’s sake we rewrite (6) as follows:

𝑧
𝑘
= 𝜆√𝑃

1
𝐴𝑀𝑠

𝑘
+ 𝑤



𝑘
, (15)

where 𝐴 = diag((𝑓𝜏

𝑘
∘ ℎ ∘ 𝑓)

𝑇
𝑆) and 𝑤



𝑘
= 𝜆(𝑁

𝑘
∘

𝑆)(𝑓
𝜏

𝑘
∘ 𝑓) + 𝑤

𝑘
. The expression (15) implies that equivalently

the rotated constellation symbols are transmitted over the
diagonal channel matrix in space and time. Since |𝑓𝜏𝑖

𝑘
| =

1 for any 𝑖, it is obvious to see that 𝑤

𝑘
is an independent

Gaussian random vector, so that we can obtain𝐸(𝑤

𝑘
) = 0 and

Var(𝑤

𝑘
) = (1 + 𝜆

2
∑

𝑅

𝑖=1
|𝑓

𝑖
|
2
)𝐼

𝑅
. Assuming ideal channel state

information (CSI), the maximum-likelihood (ML) decoding
is implemented. The PEP of mistaking 𝑠

𝑘
by 𝑠

𝑘
is given by

𝑃 (𝑠
𝑘
→ 𝑠



𝑘
) =

1

2
𝐸
ℎ,𝑓

𝑒
−𝑃1𝑃2(𝐻

𝐻
(𝐶

−𝐶)
𝐻
(𝐶

−𝐶)𝐻)/4(1+𝑃1+𝑃2 ∑

𝑅

𝑖=1
|𝑓𝑖|
2
)
,

(16)

where 𝐶 and 𝐶 are corresponding code matrix of 𝑠
𝑘
and

𝑠


𝑘
, respectively. When 𝑅 goes to infinity, by the law of large

numbers, it shows that (1/𝑅)∑𝑅

𝑖=1
|𝑓

𝑖
|
2 converges to 1 since the

variance of∑𝑅

𝑖=1
|𝑓

𝑖
|
2 tends to zeros.Thus we have∑𝑅

𝑖=1
|𝑓

𝑖
|
2
≈

𝑅. It is also implied that the fading has little effect when 𝑅 is
large.We assume the total transmit power in thewhole system
is 𝑃 per symbol transmission; then we have 𝑃 = 𝑃

1
+𝑅𝑃

2
and

𝑃
1
𝑃

2

2 (1 + 𝑃
1
+ 𝑃

2
𝑅)

=
𝑃

1
(𝑃 − 𝑃

1
)

2𝑅 (1 + 𝑃)
≤

𝑃
2

8𝑅 (1 + 𝑃)
. (17)

It is not hard to see that the probability can be minimized
when 𝑃

1
= 𝑃/2 and 𝑃

2
= 𝑃/2𝑅; that is, it is optimal to allocate

half of the total power to the transmit node and the other
half to the relay nodes. It is significant that every relay node
only consumes a little amount of power to contribute to the
transmission.

To obtain the upper bound of PEP we have to compute
the expectation over ℎ, 𝑓. Note that 𝐻 = 𝐹


ℎ, where 𝐹

=

diag(𝑓𝜏1

𝑘
𝑓

1
, . . . , 𝑓

𝜏𝑅

𝑘
𝑓

𝑅
). Since |𝑓𝜏𝑖

𝑘
| = 1, we have 𝐹 = 𝐹𝐻

𝐹

=

diag(|𝑓
1
|
2
, . . . , |𝑓

𝑅
|
2
). By using the tight upper bound of

Gaussian tail function, we have the following approximate
inequality:

𝑃 (𝑠
𝑘
→ 𝑠



𝑘
)

≲
1

2
𝐸
ℎ,𝑓

𝑒
−(𝑃
2
/16𝑅(1+𝑃))ℎ

𝐻
𝐹
𝐻

(𝐶

−𝐶)
𝐻
(𝐶

−𝐶)𝐹

ℎ

=
1

2
𝐸
𝑓

∫𝜋
−𝑅 exp(−

𝑃
1
𝑃

2
(ℎ

𝐻
𝐹

𝐻
𝐺𝐹


ℎ)

4 (𝑃
1
+ 1)𝑁

0

− ℎ
𝐻
ℎ)𝑑ℎ

=
1

2
𝐸
𝑓

det−1
[𝐼

𝑅
+

𝑃
2

16𝑅 (1 + 𝑃)
(𝐶


− 𝐶)

𝐻

(𝐶

− 𝐶)𝐹] .

(18)

Due to the fact that (𝐶
− 𝐶)

𝐻
(𝐶


− 𝐶) = 𝑆 diag(|𝑥(1)

𝑘
−

𝑥
(1)

𝑘
|
2
, . . . , |𝑥

(𝑅)

𝑘
− 𝑥

(𝑅)

𝑘
|
2
)𝑆 and 𝑆𝑆 = 𝑅𝐼

𝑅
, it is not hard to

see det[(𝐶
− 𝐶)

𝐻
(𝐶


− 𝐶)] ≥ 𝑅

𝑅
𝑑

2

min = (𝑅/𝐸)
𝑅. With the

knowledge that 𝛿
𝑖
= |𝑓

𝑖
|
2 is 𝜒2 distribution with 2 degrees of

freedom and the corresponding probability density function
is 𝑓(𝛿

𝑖
) = 𝑒

−𝛿𝑖 , we obtain

𝑃 (𝑠
𝑘
→ 𝑠



𝑘
) ≲

1

2

𝑅

∏

𝑖=1

∫

∞

0

(1 +
𝛿

𝑖

𝛽
)

−1

𝑒
−𝛿𝑖𝑑𝛿

𝑖

=
1

2
[𝛽 exp (𝛽) 𝐸𝑖 (−𝛽)]𝑅 ,

(19)
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where

𝛽 =
16𝐸 (1 + 𝑃)

𝑃2
, 𝐸𝑖 (𝑥) = ∫

𝑥

−∞

𝑒
𝑡

𝑡
𝑑𝑡 (20)

is the exponential integral function.This upper bound is suf-
ficient to derive the optimization criteria. On the high power
regime of log𝑃 ≫ 1, we have

𝑒
16𝐸(1+𝑃)/𝑃

2

= 1 + 𝑂(
1

𝑃
) ≈ 1,

𝐸𝑖 (
16𝐸 (1 + 𝑃)

𝑃2
) = − log𝑃 + 𝑂 (1) ≈ − log𝑃;

(21)

thus

𝑃 (𝑠 → 𝑠

) ≲

1

2
[
16𝐸(1 + 𝑃)

𝑃
]

𝑅

(
log𝑃
𝑃

)

𝑅

≈
1

2
(16𝐸)

𝑅
𝑃

−𝑅(1−loglog𝑃/ log𝑃)
.

(22)

Therefore, the achieved diversity gain is𝑅(1−loglog𝑃/ log𝑃),
which is linear in the number of relay nodes. If 𝑃 increases
greatly (log𝑃 ≫ loglog𝑃), full diversity of 𝑅 is obtained, the
same as the multiple-input multiple-output (MIMO) system
with 𝑅 transmit antennas and one receive antenna.

5. Simulation Results

In this section, we present some simulated performance of
DAST codes forwireless asynchronous cooperative networks.
The MATLAB 8.0 sumulation tool was used for the simu-
lation (on a Core i7-3770 3.4GHz PC). The different values
of the number of relays 𝑅 and total transmit power 𝑃 are
considered. We assume that the length of OFDM subcarriers
is 𝑁 = 64 and the length of cyclic prefix ℓcp = 16 with the
total bandwidth of 10MHz, and the OFDM symbol duration
is 𝑇

𝑠
= 6.4 𝜇s. To satisfy the conditions that the time delay

must be less than the CP length, 𝜏
𝑖
is randomly chosen from

0 to 15 with the uniform distribution, and 𝜏
1
is assumed

to be 0 for the first relay node. The information symbol is
modulated by normalized 4-QAM. We fix the total transmit
power 𝑃, which is measured in decibel. Using the optimal
power allocation strategy, the transmit power of the source
node is 𝑃/2 and the relay nodes share the other power. The
average SNR at the destination node can be calculated to
be 𝑃2

/4(𝑃 + 1). When 𝑃 ≫ 1, the SNR becomes 𝑃/4. At
the destination node, the ML decoding of the DAST block
code can be implemented by the sphere decoder to obtain
almost the same performance at a moderate complexity. The
performances of the unrotated constellation for the relay
network and the DAST block code for the multiple-input
multiple-output (MIMO) system are given. For the sake of
comparison, the performances of Alamouti code scheme [4]
are also shown.

In Figure 2, we show the decoding performance of the
network system equipped with two relay nodes. Assume all
the systems have the same total transmit power and all the
nodes in the relay network systems have the same power
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Figure 2: BER comparison of relay network with 𝑅 = 2.

constraint. As expected, we can see the performance for unro-
tated constellation is poor. For 𝑅 = 2, since the Alam-
outi scheme is the unique complex orthogonal design at a
transmission rate of 1, it seems hard for the DAST scheme
to outperform it. However, there are some drawbacks for
Alamouti scheme such that the relay nodes have to stack
every two OFDM symbols and then exchange the transmit
order of the two OFDM symbols, which leads to one OFDM
symbol time slot delay. The advantage of DAST scheme will
be immediate and significant when more relay nodes are
employed.

Figures 3(a) and 3(b) show the decoding performance of
the four-relay network systems and the MIMO system with 4
transmit antennas and 1 receive antenna. Figure 3(a) shows
the BER performances with respect to the total transmit
power. Figure 3(b) shows the BER performances with respect
to the receive SNR. In the MIMO system the receive SNR
is assumed to be 𝑃. We observe that the slopes of the BER
curves of the DAST scheme approache the slopes of the BER
of the DAST MIMO systems when the total transmit power
𝑃 or the receive SNR increases, which indicates that the new
scheme can achieve diversity degree of 4. We can see that the
distance between the curves of the MIMO system and DAST
relay system is large because the transmit antennas can fully
cooperate in MIMO system. However, at the same receive
SNR, the gap of the two curves is diminishing, which can
be seen clearly in Figure 3(b). Since OSTBC design cannot
achieve full transmission rate for more than two antennas, it
is not applicable for the system with more than 2 relay nodes.
Therefore, the cluster Alamouti code method [5] with rate
1/2 is used for the network with 4 relay nodes. 16QAM is
considered to maintain the same transmission rate. We can
see that DAST scheme has a gain of about 3 dB at 10−6 in
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Figure 3: BER comparison of relay network with 𝑅 = 4.
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Figure 4: BER performance with 𝑅 = 8.

Figure 3(b). It should be noted that this gain will be enhanced
when increasing the size of the constellation. In addition, the
cluster Alamouti code scheme has one OFDM symbol time
delay to perform signal processing at the relay nodes.

Finally, the example for 𝑅 = 8 is given to show the BER
performance of the DAST scheme and the MIMO system
with respect to the total transmit power in Figure 4. It also

achieves a diversity order similar to that of DAST MIMO
systems. When more relay nodes are utilized, the curves
descendmuch faster at the high SNR regime.This implies the
better BER performance is achieved.

6. Conclusions

In this paper, we propose the use of DAST block codes for
asynchronous cooperative relay networks. OFDM technique
is implemented at the source node, and only +/− opera-
tions are required at the relay nodes, without decoding and
transmission delay. By using this method the received signal
symbols at the destination node hold the STBC structure after
removing CP and IFFT operation.This structure is useful for
decoding. It can be considered efficient to adopt fast decoding
algorithms such as sphere decoder to maintain the ML
decoding performance in a polynomial time. It is not required
with the transmitted signal symbols and channel information
at the relay nodes. We analyze the PEP and observe that the
proposed scheme is capable of achieving full spatial diversity
for high total transmit power. Simulation results on theDAST
scheme are demonstrated, which verifies our results.

For possible future works, it would be interesting to
investigate further of imperfect CSI. In the existing works, the
channels are assumed to be perfectly estimated. However, the
channel estimation errors are inevitable in practice and affect
the BER performance. Therefore, the investigation of impact
of imperfect CSI on the proposed schemes would be our
further work. Moreover, the symbol time offset and carrier
frequency offset in OFDM technique can also be explored.
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