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This paper attempts to address the detailed verification of Zhao’s analytical solution including the moment effect with the two- and
three-dimensional finite element results. Zhao compared the analytical results with only the 2D FEA results and used the constant
bond-length ratio for the biadhesive bondline. In this study, overlap surfaces of the adherends and the adhesives were modelled
using surface-to-surface contact elements. Both analytical and numerical analyses were performed using four different biadhesive
bondline configurations. The 3D FEA results reveal the existence of complex stress state at the overlap ends. However, the general
results show that analytical and numerical results were in a good agreement.

1. Introduction

Structural adhesives have been used extensively in the space,
aviation, automotive, and naval industries. Single-lap joints
are the most widely used adhesive joints and have been
investigated by many researchers [1–8]. Techniques reduc-
ing peel and shear stress concentrations are tapering the
adherend, forming an adhesive fillet, changing the lap joint
geometry, and so forth. However, these techniques can have
some disadvantages. For example, tapering the adherend
damage fiber structure of the fiber-reinforced composites
and forming an adhesive fillet are quite difficult when low
viscosity adhesives are used.

An alternative technique is to use a combination of stiff
and flexible adhesives along the overlap region. The stiff
adhesive should be located in themiddle and flexible adhesive
at the ends. Different names for this type of joint are used
in the literature such as mixed-adhesive, biadhesive, and
hybrid-adhesive joints. The joints bonded with biadhesive
transfer the stresses from the ends towards the centre of the
overlap more than the joints bonded with a monoadhesive
alone. Therefore, high stress concentrations at the ends can
be reduced by using this technique.

Biadhesive joints have been studied in a limited number
of papers in the literature. Raphael’s early paper [9] related
to the biadhesive joint showed the possible benefits of using
a mixed-modulus bondline. He neglected the peel stress
effect in his model. Srinivas [10] investigated the application
of combined flexible and stiff adhesives in the bondline.
His model has an ability to include dissimilar as well as
composite adherends. Pires et al. [11] investigated a biadhesive
joint with aluminium adherends using both experimental
and numerical (finite element) techniques. They proved that
joint strength can be optimized by choosing appropriate
joint geometry and material. Fitton and Broughton [12]
used a linear elastic 2D finite element method (FEM) to
compare hybrid and monoadhesive bondlines. They showed
that significant strength improvement can be obtained if
joint failure stresses are considerably less than the shear
strength of the adhesive. Three-dimensional finite element
analyses of hybrid-adhesive joints under cleavage and tensile
load were carried out by Kong et al. [13]. They showed that
maximum stresses along the bondline can be decreased by
using appropriate bond-length ratios. Also, they emphasized
that it is necessary to take into account the change of
loading modes when optimizing the stress distributions of
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the biadhesive joint. Kumar [14] investigated the effects of
functionally graded bondlines on the stress components in
tubular joints. He suggested controlling the modulus of the
adhesive spatially for optimization of the peel and shear
strengths. Variable flexibility and strength along the overlap
length were described as an ideal adhesive joint by da Silva
and Lopes [15]. They concluded that, if the ductile adhesive
has a joint strength lower than that of the brittle adhesive,
a mixed-adhesive joint with both adhesives gives a joint
strength higher than the joint strength of the adhesives used
individually. This synergetic effect can be explained by the
shear stress distribution of the adhesive at failure. The effect
of the biadhesive bondline on the stress distribution of weld-
bonded joints was studied by You et al. [16]. They showed
that the load bearing capacity of the weld-bonded joints may
be increased by transferring some parts of stress from the
adhesive layer to the weld nugget. Da Silva and Adams [17]
studied titanium/titanium and titanium/composite double-
lap joints formed using a hybrid-adhesive bondline. They
showed that the suitable combination of two adhesives gives
a better performance over a wide temperature range (−55∘C
to 200∘C) than a high temperature adhesive alone for a joint
with dissimilar adherends. Temiz [18] studied the effect of
a hybrid-adhesive bondline on the strength of double strap
joints subjected to external bending moments. He concluded
that stress concentration at the overlap ends decreases by
applying the flexible adhesive towards the ends of the overlap
in bonded joints. By using the flexible adhesive in biadhesive
joints, the strains do not increase significantly when com-
pared with increase in predicted failure load. This indicates
that the stiffer adjacent adhesive has the constraining effect
on the strain in the flexible adhesive. Das Neves et al. [19]
developed an analytical model for hybrid-adhesive single and
double lap joints subjected to low and high temperatures.
They compared the solutions of the analytical model with a
finite element analysis and observed only small differences
close to the overlap ends where the maximum adhesive shear
and peel stresses occurred. Pires et al. [20] discussed the
failure mechanism of biadhesive joints. Their results showed
an increase in shear strength of the biadhesive-bonded joints
compared with those in which monoadhesives were used
over the full length of the bondline. The increase in the
apparent lap-shear strength was predicted through finite
element model. Kumar and Pandey [21] performed the two-
dimensional and three-dimensional nonlinear (geometric
and material) finite element analyses of adhesively bonded
single-lap joints having modulus-graded bondline under
monotonic loading conditions. The adhesives were modelled
as an elastoplastic multilinear material, while the substrates
were regarded as both linear elastic and bilinear elastoplastic
material. They observed that the static strength was higher
for joints with biadhesive bondlines compared to those with
monoadhesive bondlines. Effects of load level and bondline
thickness on stress distribution in the biadhesive bondline
were also studied.

Carbas et al. [22] developed a functionally modified
adhesive in order to have mechanical properties that vary
gradually along the overlap, allowing a more uniform stress
distribution along the overlap and to reduce the stress

concentrations at the ends of the overlap. Grading was
achieved by induction heating, giving a graded cure of the
adhesive. Analytical analyses were performed to predict the
failure load of the joints with graded cure and isothermal
cure.The functionally graded joint was found to have a higher
joint strength compared to the cases where the adhesive was
cured uniformly at low temperature or at high temperature.
The simple analytical analysis proposed by the authors was
shown to be a valid tool to predict the maximum failure load
of the functionally graded joint. Carbas et al. [23] studied a
functionally modified adhesive. Simple analytical model to
study the performance of the functionally graded joints was
developed.The differential equation of this model was solved
by a power series. Finite element analysis was performed to
validate the analytical model developed. The joints with the
adhesive properties functionally modified along the overlap
showed a high strength when compared with the joints with
homogeneous adhesive properties along the overlap. Both
shear stress distributions of the bond line were found to
have a similar behavior comparing the analytical analysis
by Power series expansion with the numerical analysis by
a FE analysis. Bavi et al. [24] optimized the geometry of
the overlap in mixed adhesive single- and double-lap joints
using a modified version of Bees and Genetic Algorithms
(BA and GA). Four and five optimization variables were
considered within bi- and triadhesive joint configurations,
respectively. Eventually, the efficiencies of the two employed
algorithms, namely, modified BA and GA, were compared
with each other. Most optimal joint configurations were
described by a long adhesive bond length and thick layers of
adherends. Comparing a modified version of BA (MBA) and
GA, it was observed that the first algorithm has a significant
robustness, producing a 100% success rate in all considered
cases. They concluded that the proposed MBA proved to
be a very suitable candidate for these types of engineering
problems.

Many closed-form solutions are available in the open
literature. The early analytical model was developed by
Volkersen [25]. However, Volkersen method, known as the
shear-lag model, neglected the rotation of the joint. A lot of
improvements were made over the following seventy years
including the addition of the rotation of the adherends,
adhesive plasticity, and the adherend shear deformation
[26, 27]. Recent contribution has been made by Zhao. He
proposed some closed-form solutions to evaluate the stress
components along the adhesive bondline and then extended
these solutions to the biadhesive bondline by taking into
account the bending effect [28].

In this study, after reviewing the current literature on
the existing analytical models for the biadhesive single-lap
joints, some expressions related to stress components for
the single-lap joint with biadhesive bondlines were derived
by following the same steps as Zhao’s solutions [28]. Defor-
mations due to the bending effect which causes the joint
to rotate were included in the formulations. A MAPLE
program was written. Prepared MAPLE program employs
these expressions to calculate stress components.The validity
of the analytical results was assessed by comparing the 2D
and 3D FEA results for the mono- and biadhesive bondlines.
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The analytical model was based on the plane elasticity and
some restrictive assumptions, but the state of stress in the
joint has the three-dimensional nature. Especially, the adhe-
sive peel stress is sensitive to the three-dimensional effects.
Therefore, the three-dimensional FEM model can provide
more accurate predictions for comparing the results without
introducing any simplification at the modelling procedure.
In this study, the 3D FEM model is based on the surface-to-
surface contact elements. Aluminum adherends were bonded
with stiff and flexible adhesives.The stiff adhesive was located
in themiddle and the flexible adhesive was located at the ends
of the overlap. The overlap length, the adhesive thickness,
the adherend thickness, and modulus of stiff and flexible
adhesives were kept constant. Both analytical and numerical
analyses were performed using four different bond-length
ratios for the biadhesive joint. The effect of biadhesive
and monoadhesive bondlines on the peel stress (transverse
normal stress) and shear stress distributions was investigated.
The numerical analyses were performed using the Ansys
finite element code. The results of both FEM analyses and
analytical solutions were compared.

It must be stated that this paper aims especially to
compare the analytical solutions with the 3D FEA solutions
and to show the three-dimensional nature of the state of stress
in the joint. Zhao [28] compared stress results predicted by
the closed-form expressions only with the 2D FEA results.
The bond-length ratio for the biadhesive bondline was kept
constant in his study.

2. Analytical Evaluation of Stress Components
for Biadhesive Joint

The biadhesive bondline can be modeled as three individ-
ual regions according to their shear modulus components
(Figure 1). The stiff adhesive was located in the middle and
flexible adhesive at the ends of the overlap. Two adherends
with the thicknesses of 𝛿

1
and 𝛿

2
were bonded with an

adhesive layer with a thickness of 𝛿
3
, where 𝛿

4
= 𝛿

3
. The

regions I and III at the overlap ends are the left and right
flexible adhesive regions, respectively. The region II at the
centre of the overlap is the stiff adhesive region. The two
ends of the adherends are simply supported, and right end
is subjected to an axial load 𝐹. (As seen in Figure 1, the 𝑥-axis
passes through the midplane of the adhesive layer.)

In Figure 1 𝑙
𝑓
is the flexible adhesive length and 𝑙

𝑠
is the

stiff adhesive length, where 𝑙
𝑓
= (𝑙 − 𝑠) and 𝑙

𝑠
= 2𝑠. The upper

and the lower adherends are denoted by the subscripts 1 and 2,
respectively.Theflexible and stiff adhesives are denoted by the
subscripts 3 and 4, respectively.Then, 𝐸

𝑖
and𝐺

𝑖
(𝑖 = 1, 2, 3, 4)

are the modulus of elasticity and shear modulus of the four
individual components. The total overlap length is 2ℓ. The
joint width, perpendicular to the (𝑥, 𝑦)-plane, is 𝑏.𝑉

0
and𝑀

0

are the shear force and bendingmoment acting on the ends of
the upper and lower adherends, respectively (Figure 1(b)). A
differential section 𝑑𝑥 can be cut out from the overlap region
of the biadhesive joint as shown in Figure 2.

In Figure 2 𝜎
3𝑦

is the peel stress at the upper and lower
interfaces of the adhesive. 𝐹

𝑖𝑥
, 𝑉
𝑖
and 𝑀

𝑖
(𝑖 = 1, 2) are

the tensile forces, shear forces, and bending moments related
to the upper and lower adherends, respectively.

The distributions of the longitudinal shear stresses and
displacements of adherends 1 and 2 are illustrated in Figure 3.
A linear shear stress and strain distributions through the
thickness of the adherends is assumed. Two local coordinate
systems, 𝑦

1
and 𝑦

2
, were introduced, where 𝑦

1
and 𝑦

2
are

the distances from the top of the upper and lower adherends,
respectively. Free surface stress conditions are considered.

The detailed derivation of the stress components for
the bi-adhesive joint along the bondline was given in the
Appendix. For the three regions (I, II, and III) shown in
Figure 1, the three sets of expressions are given as follows:
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Region III (𝑠 ≤ 𝑥 ≤ 𝑙)
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The abbreviations used in the expressions above were
given in theAppendix.Themoment effect is introduced in the
formulation (see the Appendix).The superscripts I, II, and III
denote the relevant stress components of the three individual
regions (see Figure 1). 𝜎

1𝑥
is the longitudinal normal stress

of the adherends. 𝜎
𝑖𝑦
and 𝜏
𝑖𝑥
(𝑖 = 3, 4) are the peel and shear

stresses along the adhesive midplane. Set of (1a) and (1c) are
related to the right and left flexible adhesive regions. Set of
(1b) is related to the stiff adhesive region, the central region.
Normal, shear, and peel stresses can then be evaluated by
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Figure 1: Biadhesive single lap joint under a tensile load: (a) geometric and material parameters, (b) force equilibrium free-body diagram.
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Figure 2: Free-body force equilibrium diagram.

using the appropriate expressions for each region.The results
of analytical solutions were compared with both the results of
2D and 3D FEM analyses.

3. Finite Element Model

Geometry, dimensions, and boundary conditions of the
biadhesive single-lap joint are shown in Figure 4.
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y1

u1t
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(a)
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𝜏2x = 0

y2

u2t

u2

u2b

(b)

Figure 3: Longitudinal shear stress and displacement distributions
through the thickness of the adherends; (a) upper adherend, (b)
lower adherend.

Finite Element Analysis based on the surface to surface
contact model was performed by using commercial FEA
softwareANSYS.The adherendswere constrained at the ends,
preventing excessive deflection of the joint and simulating the
gripping in the testing machine. The effect of the gripping
length on the stress components was studied to validate the
stress analysis results. Convergence tests were carried out
by using the gripping lengths of 10, 20, and 30mm. It was
seen that the gripping length does not have a considerable
effect on the stress results [29, see page 118]. Finally, it was
concluded that the 20mm optimum length was enough and
sufficient to prevent excessive deflection and allow the free
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Figure 4: Biadhesive single-lap joint: (a) geometry and dimensions, (b) 2D and 3D FEM model boundary conditions (front view), (c) 3D
FEMmodel boundary conditions (top view).

Table 1: Material properties of adherends and adhesives.

Adherend
(Aluminium alloy 7075)

Flexible Adhesive
(Terokal 5045)

Stiff Adhesive
(Hysol EA 9313)

Modulus of elasticity (GPa)
𝐸

1

= 𝐸

2

= 71.700 𝐸

3

= 0.437 𝐸

4

= 2.274

Modulus of shear (GPa)
𝐺

1

= 𝐺

2

= 26.955 𝐺

3

= 0.158 𝐺

4

= 0.836

Poisson’s ratio 0.33 0.38 0.36
Shear strength (MPa) 152 20 27.6
Elongation at break (%) 10 11.3 8

rotation of the joint for the problem considered (Figure 4(b)).
Thus, overlap regionwas not influenced by the boundary con-
ditions. Due to the longitudinal symmetry, half-symmetry
boundary condition was used in order to reduce the solution
time for the three-dimensional analysis (Figure 4(c)) [30].

Aluminium alloy 7075 was used as identical adherends.
Hysol EA 9313 and Terokal 5045 epoxy adhesives, produced
by Henkel, were used as stiff and flexible adhesives, respec-
tively. Material properties of adherends and adhesives are
given in Table 1 [31].

The thicknesses of the adherends and adhesives are
1.5mm and 0.25mm, respectively. The total overlap length

𝑙

𝑡
, 2𝑙
𝑓
+ 𝑙

𝑠
, was taken as 12.5mm, where 𝑙

𝑓
is the length of

the flexible adhesive and 𝑙
𝑠
is the length of the stiff adhesive.

The bond-length ratios of the adhesive bondline varied as 𝜉 =
𝑙

𝑓
/𝑙

𝑠
= 0.2, 0.4, 0.7, 1.3. Therefore, four different biadhesive

bondline configurations were investigated. A static force of
3.6 kN was applied to the right side of the lower adherend.
(Loading was chosen as the same in our recent paper [31]).
The finite element models of the joint for the 2D and 3D FEM
are shown in the same figure (Figure 5).

The finite element contact model recognizes possible
contact pairs by the presence of specific contact elements.
The overlap surfaces of the adherends and the adhesives were
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Figure 5: Finite element model of the joint: (a) two-dimensional, (b) three-dimensional.

modelled using surface-to-surface contact for the 2D and 3D
finite element models. Surface-to-surface contact model uses
Gauss integration points as a default, which generally provide
more accurate results than the nodal detection scheme, which
uses the nodes themselves as the integration points.This type
of contact model transmits contact pressure between Gauss
points, and not force between nodes.

In 2D FEA model, contact pairs were created using con-
tact element “CONTA172” and target element “TARGE169”
between the adherends and adhesive overlap surfaces
(Figure 6). CONTA172 elements were generated on the
bottom and upper surfaces of adhesive. CONTA172 is a
2D, 3-node, higher order parabolic element. TARGE169
elements were used on the overlap surfaces of the adherends.
TARGE169 is used to represent various 2D “target” surfaces
for the associated contact element. The 2D model was
discretized using the 8-node plane stress elements (Plane 183).

In 3D FEA model, contact pairs were created using con-
tact element “CONTA174” and target element “TARGE170”
between the adherends and adhesive overlap surfaces
(Figure 6). CONTA174 elements were generated on the
bottom and upper surfaces of adhesive. CONTA174 is a
3D, 8-node, higher order quadrilateral element. TARGE170
elements were used on the overlap surfaces of the adherends.
TARGE170 is used to represent various 3D “target” surfaces
for the associated contact element. (More detailed infor-
mation on the 3D contact modelling of biadhesive joint is
available in our recent paper [31].) Adherends and adhesives
were meshed with solid hexahedral elements (solid95). This
element is defined by twenty nodes having three degrees of
freedom per node. Three elements were used through the
thickness of the adherends and the bondline (Figure 5(b)).

The mesh density affects the stress values in the adhesive
layer. The size of the elements in the mesh was reduced until
a stable stress value was achieved. Five different meshing
schemes were investigated to optimize the number and size
of the elements. The sizes of the elements were graded for
the finer mesh in the critical regions (at the edges of overlap
and contact interfaces of adhesives). Finally, the element size
near the stress concentration and contact interface were set

Target element

 Contact element

Adherend

Adhesive

Contact pair

Figure 6: Surface-to-surface contact pair.

to 0.03mm and 0.04mm, respectively, which is fine enough
to describe the severe stress variation near the critical regions.
Thenumber of elements varied for FEMmodels ofmono- and
biadhesive joints. However, the mesh size was kept constant
in all models. This was important in order to compare the
results between the mono- and biadhesive joints, and also to
compare results of biadhesive joints among themselves.

The two-dimensional and three-dimensional finite ele-
ment analyses were performed. The results were used to
compare the analytically predicted adhesive stresses. We
present the FEA results and their comparisons with the
analytical results in the next section.

4. Results and Discussion

The adhesive shear and peel stress distributions in the
midplane of the bondline were obtained both analytically
and numerically.This section presents a comparison between
the numerical and analytical results. The distributions of the
stress components were normalized with respect to average
shear stress (𝜏avg), and distributions of the same type of stress
components were given in the same figure. In addition, bar
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 Contact interfaces

Flexible adhesive Stiff adhesive  Flexible adhesive

Midplane

Adherend

Adherend

Overlap edge Overlap edge

Figure 7: Overlap region of the biadhesive single-lap joint.

graphs were used to illustrate a visual comparison among the
stress results of analytical model, 2D FEA and 3D FEA.

Some comparisons among the peak stress values were
carried out on the basis of the percent error. Percentage error
is defined as follows:

Error % =
Numeric − Analytic

Numeric
× 100,

(2)

where word “Numeric” denotes 2D and 3D FEA results.
Percent errors between analytical and numerical results for
the biadhesive case were tabulated in tables, while the error
discussions were presented in a text for monoadhesive case.

In the bar graphs and tables, peak values of the stress com-
ponents obtained through analytical model were compared
with those obtained through 2D FEA and 3D FEA. However,
there are two peak stress locations for the biadhesive bond-
line, one just at the overlap edges and the other at contact
interfaces of adhesives. Therefore, in the case of biadhesive
joint, two peak stresses were considered for the comparison
(Figure 7). In 3D FEA, shear and peel stresses peak at the
midwidth of the adhesive midplane for both of mono- and
biadhesive bondlines. Therefore, stress distributions plotted
at themidwidth along the adhesive midplane. Peak values are
also related to the midwidth of the adhesive midplane in 3D
FEA.

Figure 8 shows the shear stress distributions of themono-
and biadhesive joints obtained from analytical and numerical
(FEA) solutions. It can be seen from Figure 8 that the shear
stress distributions in the monoadhesive joint is not uniform.
This is because the applied load causes bending moments
which lead to peel stresses especially at the overlap edges.
However, peel stress component is more dominant especially
over the mono-stiff adhesive. Therefore, the shear stress
distribution for the mono-flexible adhesive is more uniform
and there is a very small stress concentration at the overlap
edges. In the monoadhesive joint, the higher level of stress
region exists at the overlap edges (Figure 8).

In the biadhesive bondline, as can be seen in Figure 8,
higher shear stress occurs at the contact interfaces of the
adhesives, and the lower shear stress region exists at the
overlap edges. Peak stress decreases at the overlap edges and
increases at the contact interfaces. With the increase in the 𝜉
ratio, the values of peak shear stress are decreasing, although
there is no great reduction in the peak shear stress for ratio
higher than 0.7.

The shear stress distributions from the analytical solution
were plotted in Figure 8(c).This shows a good agreementwith
numerical ones, although some differences can be seen at the
overlap edges. Peak shear stresses of the numerical solutions
occur very near the edge of the overlap region, while those of
the analytical results were always at the overlap edges. That
is because the numerical model tries to model the zero stress
state at traction-free end surfaces. However, in practice, there
is an adhesive spew fillet and the shear stress does not go to
zero at the bondline ends.

The normalized peak shear stress values at the overlap
edges and the contact interfaces are showed in Figure 9 as a
vertical bar chart.

From Figure 9, it can be seen that the normalized peak
shear stress values for analytical and the numerical models
had close correlation for the majority of mono- and biad-
hesive joints. The maximum shear stresses occurred at the
overlap edges for monoadhesive joints, and at the contact
interfaces for biadhesive joints.

According to Figure 9, the shear peak stress which occurs
at the overlap edges increased with increasing 𝜉 ratio. Fur-
thermore, increasing rate in the shear peak stress at the
edges was observed to be a parallel changing rate with
the decreasing rate in the shear peak stress at the contact
interfaces.

Figures 9(a) and 9(b) show that analytical results are in
good agreement with 2D FEA results rather than 3D FEA
results for both the mono- and biadhesive joint cases.The 3D
FEA solution gives slightly higher shear peak stress values
than those from the analytical and 2D FEA solutions.
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Figure 8: (a) Normalized shear stress distributions obtained from 2D FEA. (b) Normalized shear stress distributions at midwidth obtained
from 3D FEA. (c) Normalized shear stress distributions obtained from analytical model.
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Figure 9: (a) Normalized peak shear stress values at the overlap edges. (b) Normalized peak shear stress values at the contact interfaces.

As stated before, percent error comparisons for monoad-
hesive joint will be given in a text. After doing some calcu-
lations by data used to plot Figure 9, it was concluded that,
for mono-stiff adhesive joint, the analytical model predicts
higher peak shear stress than the 2D FEA with an error of at
most 2.0%, while it predicts a lower peak shear stress than 3D

FEA with an error of at most 3.80%. However, for the mono-
flexible adhesive bondline, analytical model predicts lower
peak shear stress than both the 2D FEA and 3D FEA, with
errors of 1.40% and 5.94%, respectively. For more detailed
comparison about the biadhesive joint, percent errors were
calculated by using (2) and tabulated in Table 2.
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Figure 10: (a) Normalized peel stress distributions obtained from 2D FEA. (b) Normalized peel stress distributions at the midwidth obtained
from 3D FEA. (c) Normalized peel stress distributions obtained from analytical model.

Table 2: Percent error between analytical and numerical results for
the peak shear stresses.

Percent error (%)
At the contact interfaces At the overlap edges

2-D FEA
𝜉 = 0.2 −2.14 3.93
𝜉 = 0.4 −3.62 3.02
𝜉 = 0.7 −4.11 2.06
𝜉 = 1.3 −2.57 1.19

3-D FEA
𝜉 = 0.2 3.98 6.62
𝜉 = 0.4 4 5.79
𝜉 = 0.7 4.84 5.08
𝜉 = 1.3 7.32 4.60

Peak shear stress values were given at the adhesive contact
interface and overlap edge for the four bond-length ratios.
As can be seen from Table 2, the analytical results agree
well with the numerical ones. It can be calculated form the
data in Table 2 that, at the overlap edges, peak shear stresses
predicted by the analytical model agree well with the 2D FEA
results with a maximum error of about 3.93% compared to
that of 6.62% for the 3D FEA results. The analytical results

have a high level of agreement with the 2D FEA results at the
contact interfaces of adhesives. The maximum percent error
is minus 4.11%. If 3D FEA results were considered, there was
a lower level of agreement between analytical and 3D FEA
results with a maximum error of 7.32%.

Figure 10 shows the peel stress distributions of the mono-
and biadhesive joints obtained from analytical and numerical
solutions. It is clear from Figure 10 that the peel stress peaks
at the overlap edges for both mono- and biadhesive joints.
The biadhesive bondline gives lower peak peel stresses at the
overlap edges. However, the peak peel stress in the flexible
part of the biadhesive bondline is approximately within
the same order of magnitude for both mono- flexible and
biadhesive joints.

From Figure 10, it must be noted that, at the overlap
edges, changing the 𝜉 ratio has a moderating effect on the
values of the peel peak stresses. The peel peak stress in the
biadhesive bondline was lower than that of the mono-stiff
adhesive bondline. At the contact interfaces of adhesives, it
can be seen fromFigure 10 that the presence of a little amount
of flexible adhesive can cause a secondary peak in the peel
stress distribution in the biadhesive joint.

Figure 11 shows a comparison as a vertical bar chart of the
normalized peel peak stresses obtained from analytical and
numerical solutions.

It can be seen from Figure 11 that the analytical and
numerical peel peak stresses have close correlation for
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Figure 11: (a) Normalized peak peel stress values at the overlap edges. (b) Normalized peak peel stress values at the contact interfaces.

the majority of mono- and biadhesive joints, especially at
the overlap edges. The peak values occurred at the overlap
edges for both the mono- and biadhesive joints. Figure 11(a)
shows that, at the mono- and biadhesive overlap edges,
the analytical results are in a good agreement with the 3D
FEA results. For mono-stiff adhesive joint, the analytical
model predicts higher peel peak stress than both the 2D
FEA and 3D FEA results, with an error of −13.62% and
−1.48%, respectively.However, for themono-flexible adhesive
bondline, analytical model predicts higher peel peak stress
than the 2D FEA with an error of −8.55%, while it predicts
lower peel peak stress than 3D FEA results, with an error of
4.40%. Apparent difference about the results for the mono-
stiff adhesive joint is that analytical results show a higher
peak peel stress compared to the peak values of the 3D FEA
results (Figure 11(a)).The largest difference in the peak values
occurred at the contact interfaces of adhesives, when the
𝜉 ratio is set to 0.2. This difference is not very important
because, in order to design an adhesively bonded joint, the
values of the maximum peak stresses are more important
than the exact stress distribution [32].

For more detailed comparison about the biadhesive joint,
peak peel stress values were tabulated in Table 3. Table 3
compares the analytical results with numerical results for peel
peak stresses of biadhesive joint.

As seen in Table 3, a good correlation was found between
the analytical and numerical results at the overlap edges. The
maximum error between the analytical and 2D FEA results
is −9.12%. However, if 3D FEA results are considered, there
is a higher level of agreement between analytical and 3D
FEA results with a maximum error of 7%. The maximum
error in the peak values occurred at the contact interfaces
of adhesives. The magnitude of the error was maximum for
the bond-length ratio of 0.2. For this ratio, analytical model
predicts higher peel peak stress than both the 2D FEA with
an error of −111.46% and 3-D FEA results with an error of
−408.86%.

Table 3: Percent error between analytical and numerical results for
the peel peak stresses.

Percent error (%)
At the contact interfaces At the overlap edges

2-D FEA
𝜉 = 0.2 −111.46 −8.03
𝜉 = 0.4 11.41 −9.12
𝜉 = 0.7 −10.57 −8.18
𝜉 = 1.3 −24.57 −7.94

3-D FEA
𝜉 = 0.2 −408.86 7
𝜉 = 0.4 10.87 5.16
𝜉 = 0.7 −8.28 5.78
𝜉 = 1.3 −48.85 5.98

5. Conclusions

Some expressions were derived related to stress components
for the single lap joint with biadhesive bondlines by following
the same steps as Zhao’s solutions. However, Zhao compared
stress results predicted by the closed-form expressions only
with the 2D FEA results. Moreover, the bond-length ratio for
the biadhesive layer stayed constant in his study.

In this study, the analytical formulations were presented
in a detailed format (including further details) and given
in the Appendix. A MAPLE program was written. Prepared
MAPLE program employs these expressions to calculate
stress components. Some figures were plotted using the data
calculated with MAPLE. The closed-form solution accounts
the bending effect. It is capable of determining the distribu-
tion of the stress components only in the middle of bondline.
(It must be noted that stress expressions are only a function of
𝑥. As seen in Figure 4, the𝑥-axis passes through themidplane
of the adhesive layer.)
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The validity of the analytical results was assessed by com-
paring the analytical results with the 2D and 3D FEA results.
Especially, the adhesive peel stress is sensitive to the three-di-
mensional effects. Therefore, the three-dimensional FEM
model can provide more accurate predictions for comparing
the results. In this study, the 2D and 3D FEM models were
based on the surface-to-surface contact elements. Analyses
were performed for four different bond-length ratios both an-
alytically and numerically. In addition, a comparison of peak
stress values was carried out on the basis of percentage error.

The following conclusions can bemade about the analysis
results.

(1) The analytical model gives similar stress distributions
to those of numerical models for all the stress compo-
nents.

(2) The peak stress comparison shows that analytical
results are generally in a good agreement with the
numerical ones. The analytical predictions are more
compatible with 3D FEA predictions for the peel peak
stresses in the case of the biadhesive bondline. As
stated above, the adhesive peel stress is sensitive to
the three-dimensional effects.Thus, as to its peel peak
stress predictions, it can be said that the analytical
model has somewhat more ability to model the 3D
effects than 2D FEM model. However, for the shear
peak stresses, the analytical model gives closer results
to those of the 2D (plane stress) FEA. These com-
parisons are valid for both the mono- and biadhesive
joints. Zhao [28] reported in his paper that the peak
shear stresses at the overlap edges predicted by 2D
FEAwere lower than those predicted by the analytical
solution. Our study offers opposite case. This can be
attributed to the differences in FEMmodels andmesh
concentrations. In our FEM model, the surface-to-
surface contact model was used. In addition, there
was also a difference in the predicted peak locations.
Zhao concluded that shear peak stresses of the 2D
FEA results occurred at about one bondline thickness
away from the ends, while those of the analytical
results were always at the ends of the overlap region.
However, in this study, peak shear stress occurs at a
point closer to the ends, approximately 70% of the
bondline thickness.

(3) The analytical and numerical results show that appro-
priate 𝜉 ratio must be used to effectively reduce the
concentration of peel and shear stresses in the joint.

(4) Choosing improper bond-length ratio, using insuf-
ficient amount of flexible adhesive in the biadhesive
bondline such as 𝜉 = 0.2 in our model, caused a
secondary peak in the peel stress distribution because
of the change of peel stresses from compressive to
tensile. Therefore, selecting the appropriate bond-
length ratio is crucial for biadhesive joints.

(5) The results show a measurable decrease in the stress
components of the biadhesive joints compared with
those in whichmonoadhesives were used over the full
length of the bondline.

Appendix

The detailed procedure for deriving stress components
expressions for the biadhesive single-lap joint was presented
below and given by Zhao [28]. Firstly, we begin with the
free-body diagram of the flexible adhesive layer given in
Figure 2. By referring to Figure 2, the differential equations
of equilibrium equations can be obtained as
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Based upon the assumptions (see Figure 3), one can write the
following stress-strain relationships:
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From the equilibrium of 𝑥 forces in Figure 2, we have

𝐹 = 𝐹

1𝑥
+ 𝐹

2𝑥
. (A.5)

The stress distributions through the thickness of adherends
are assumed to behave linearly (Figure 3). Then, the shear
stresses acting on upper and lower adherends can be
expressed as
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where 𝑦
1
and 𝑦

2
are the distances from the top of adherend 1

and adherend 2, respectively. Substituting (A.6a) and (A.6b)
into (A.4b), we obtain the shear strains of adherends as
follows:
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Longitudinal displacements of adherend 1 and 2 due to the
longitudinal forces are given as follows:
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where subscripts 1𝑡 and 2𝑡 correspond to the top surfaces
of adherend 1 and adherend 2, respectively. Superscript 𝑇
was used for emphasizing the longitudinal force effects,
which serves to distinguish it from the moment effects. The
moment effect was also introduced in the later steps of
formulation. As an example, we can try to write an expression
for the displacement at the interface between adherend 1 and
adhesive by using (A.8a) as follows:

𝑢

𝑇

1𝑏

= 𝑢

𝑇

1

(𝑦

1
= 𝛿

1
) = 𝑢

𝑇

1𝑡

+

𝜏

3𝑥
𝛿

1

2𝐺

1

, (A.9)

where subscript 1𝑏 corresponds to the top surface of
adherend 1. Using (A.9), we can rewrite (A.8a) as
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Taking (A.8a) and (A.8b) into account, longitudinal force
components can be written as
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From Figure 3, shear strain in the low modulus adhesive is
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Substituting (A.12) into (A.4b) and then differentiating it with
respect to 𝑥, we obtain
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To get the displacements induced by the bending moment,
we can rearrange 𝑢

1𝑏
and 𝑢

2𝑡
displacements in terms of the

tensile and moment effects in the following form:
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Longitudinal strains may now be written in terms of bending
moments by using classical beam theory as
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Differentiating (A.14) with respect to𝑥 and substituting it and
(A.15) into (A.13), we have

𝛿

3

𝐺

3

𝜏

3𝑥

𝑑𝑥

=

𝑑𝑢

𝑇

2𝑡

𝑑𝑥

−

𝑑𝑢

𝑇

1𝑏

𝑑𝑥

+

6𝑀

1

𝐸

1
𝑏𝛿

2

1

+

6𝑀

2

𝐸

2
𝑏𝛿

2

2

.
(A.16)

Substituting (A.15) into (A.11a) and (A.11b) and after simpli-
fying the expression, we get

[

𝛿

3

𝐺

3

+

𝛿

1

3𝐺

1

+

𝛿

2

3𝐺

2

]

𝑑𝜏

3𝑥

𝑑𝑥

=

𝐹

2𝑥

𝐸

2
𝛿

2
𝑏

−

𝐹

1𝑥

𝐸

1
𝑏𝛿

1

+

6𝑀

1

𝐸

1
𝑏𝛿

2

1

+

6𝑀

2

𝐸

2
𝑏𝛿

2

2

.

(A.17)

Differentiating (A.17) with respect to 𝑥 and combining this
expression with (A.1) and (A.3), we obtain

[

𝛿

3

𝐺

3

+

𝛿

1

3𝐺

1

+

𝛿

2

3𝐺

2

]

𝑑

2

𝜏

3𝑥

𝑑𝑥

2

− 4(

1

𝐸

2
𝛿

2

+

1

𝐸

1
𝛿

1

) 𝜏

3𝑥

=

6𝑉

1

𝐸

1
𝑏𝛿

2

1

+

6𝑉

2

𝐸

2
𝑏𝛿

2

2

.

(A.18)

Rearranging (A.18) with (A.1), (A.5) and (A.17) yields

[

𝛿

3

𝐺

3

+

𝛿

1

3𝐺

1

+

𝛿

2

3𝐺

2

]

𝑑

2

𝐹

1𝑥

𝑑𝑥

2

− (

1

𝐸

2
𝛿

2

+

1

𝐸

1
𝛿

1

)𝐹

1𝑥

+

6𝑀

1

𝐸

1
𝛿

2

1

+

6𝑀

2

𝐸

2
𝛿

2

2

+

𝐹

𝐸

2
𝛿

2

= 0.

(A.19)

Differentiating (A.19) twice with respect to 𝑥 and recalling
(A.1), (A.2), and (A.3) and rearranging give us

[

𝛿

3

𝐺

3

+

𝛿

1

3𝐺

1

+

𝛿

2

3𝐺

2

]

𝑑

4

𝐹

1𝑥

𝑑𝑥

2

− 4(

1

𝐸

1
𝛿

1

+

1

𝐸

2
𝛿

2

)

𝑑

2

𝐹

1𝑥

𝑑𝑥

2

+ 6𝑏(

1

𝐸

1
𝛿

2

1

−

1

𝐸

2
𝛿

2

2

)𝜎

3𝑦
= 0.

(A.20)

Curvatures of adherends 1 and 2 are

𝑑

2]
1

𝑑𝑥

2

= −

𝑀

1

𝐸

1
𝐼

1

,

𝑑

2]
2

𝑑𝑥

2

= −

𝑀

2

𝐸

2
𝐼

2

,
(A.21)
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where V
1

and V
2

are the transverse displacements of
adherends. 𝐼

1
and 𝐼
2
are the second moments of areas for

adherends 1 and 2 and defined as 𝐼
1
= 𝑏𝛿

3

1

/12 and 𝐼
2
=

𝑏𝛿

3

2

/12. The interfacial peel stress-strain relationship may be
written in terms of the transverse deflections of adherends as

𝜎

3𝑦

𝐸

3

= 𝜀

3𝑦
=

]
1
− ]
2

𝛿

3

⇒

𝛿

3

𝐸

3

𝜎

3𝑦
= ]
1
− ]
2
. (A.22)

Differentiating the second expression of (A.22) with respect
to 𝑥 yields

𝛿

3

𝐸

3

𝑑𝜎

3𝑦

𝑑𝑥

=

𝑑]
1

𝑑𝑥

−

𝑑]
2

𝑑𝑥

= 𝜃

1
− 𝜃

2
,

(A.23)

where 𝜃
1
and 𝜃
2
are the relevant slopes of adherends. Differ-

entiating (A.23) with respect to 𝑥 and introducing (A.21) lead
to

𝛿

3

𝐸

3

𝑑

2

𝜎

3𝑦

𝑑𝑥

2

=

12𝑀

2

𝐸

2
𝑏𝛿

3

2

−

12𝑀

1

𝐸

1
𝑏𝛿

3

1

.

(A.24)

Differentiating (A.24) with respect to 𝑥 and rearranging yield

𝛿

3

𝐸

3

𝑑

3

𝜎

3𝑦

𝑑𝑥

3

=

𝑑𝑀

2

𝑑𝑥

12

𝐸

2
𝑏𝛿

3

2

−

𝑑𝑀

1

𝑑𝑥

12

𝐸

1
𝑏𝛿

3

1

.

(A.25)

Substituting (A.3) into (A.25), we obtain

𝛿

3

𝐸

3

𝑑

3

𝜎

3𝑦

𝑑𝑥

3

=

12𝑉

2

𝐸

2
𝑏𝛿

3

2

−

12𝑉

1

𝐸

1
𝑏𝛿

3

1

+ 6𝜏

3𝑥
(

1

𝐸

2
𝛿

2

2

−

1

𝐸

1
𝛿

2

1

) .

(A.26)

Differentiating (A.26) with respect to 𝑥 and using (A.1) and
(A.2) give us

𝛿

3

𝐸

3

𝑑

4

𝜎

3𝑦

𝑑𝑥

4

=

𝑑𝑉

2

𝑑𝑥

12

𝐸

2
𝑏𝛿

3

2

−

𝑑𝑉

1

𝑑𝑥

12

𝐸

1
𝑏𝛿

3

1

+ 6

𝑑𝜏

3𝑥

𝑑𝑥

(

1

𝐸

2
𝛿

2

2

−

1

𝐸

1
𝛿

2

1

) .

(A.27)

Substituting (A.1) and (A.2) into (A.27), we have

𝛿

3

𝐸

3

𝑑

4

𝜎

3𝑦

𝑑𝑥

4

+ (

12

𝐸

2
𝛿

3

2

+

12

𝐸

1
𝛿

3

1

)𝜎

3𝑦

−

6

𝑏

(

1

𝐸

1
𝛿

2

1

−

1

𝐸

2
𝛿

2

2

)

𝑑

2

𝐹

1𝑥

𝑑𝑥

= 0.

(A.28)

When the same geometric characteristics and material prop-
erties are used for the adherends, that is, identical adherends,
that allows the straightforward stress analysis of the biadhe-
sive joint. That is,

𝐺

1
= 𝐺

2
= 𝐺, 𝐸

1
= 𝐸

2
= 𝐸, 𝛿

1
= 𝛿

2
= 𝛿

0
. (A.29)

Rearranging (A.20) gives us the below differential equation

[

𝛿

3

𝐺

3

+

2𝛿

0

3𝐺

]

𝑑

4

𝐹

1𝑥

𝑑𝑥

2

−

8

𝐸𝛿

0

𝑑

2

𝐹

1𝑥

𝑑𝑥

2

= 0.
(A.30)

Rearranging this equation gives

𝑑

4

𝐹

1𝑥

𝑑𝑥

4

− 𝜆

2

1

𝑑

2

𝐹

1𝑥

𝑑𝑥

4

= 0,

(A.31)

where 𝜆2
1

is

𝜆

2

1

=

4𝛼

𝜂 + 𝛽/3

. (A.32)

Here, 𝛼 = 2/𝐸𝛿
0
, 𝜂 = 𝛿

3
/𝐺

3
, and 𝛽 = 2𝛿

0
/𝐺. By treating

the stiff adhesive layer as the flexible adhesive layer, then 𝜆2
2

becomes

𝜆

2

2

=

4𝛼

𝜂



+ 𝛽/3

, (A.33)

where 𝛼 = 2/𝐸𝛿
0
, 𝜂 = 𝛿

3
/𝐺

4
and 𝛽 = 2𝛿

0
/𝐺. Rearranging

(A.28) by considering (A.29) leads to differential equation
given below

𝑑

4

𝜎

3𝑦

𝑑𝑥

4

+ 4𝜔

4

1

𝜎

3𝑦
= 0,

(A.34)

where 𝜔4
1

= 3𝜙/𝜒. Here, 𝜙 = 2/𝐸𝛿3
0

and 𝜒 = 𝛿
3
/𝐸

3
. By

treating the stiff adhesive layer as the flexible adhesive layer,
then𝜔4

1

becomes𝜔4
2

= 3𝜙/𝜒. Here, 𝜙 = 2/𝐸𝛿3
0

and 𝜒 = 𝛿
3
/𝐸

4
.

The governing equations (A.31) and (A.34) are the forth-order
ordinary differential equationswith constant coefficients.The
general solution of (A.31) is

𝐹

1𝑥
= 𝐴

 sinh (𝜆
1
𝑥) + 𝐵

 cosh (𝜆
1
𝑥) + 𝐶



𝑥 + 𝐷



,
(A.35a)

where 𝐴, 𝐵, 𝐶, and 𝐷 are constants of integration. Then,
the longitudinal normal stress can be written as

𝜎

1𝑥
=

𝐹

1𝑥

𝑏𝛿

0

= 𝐴

 sinh (𝜆
1
𝑥) + 𝐵

 cosh (𝜆
1
𝑥) + 𝐶



𝑥 + 𝐷



,

(A.35b)

where 𝐴, 𝐵, 𝐶, and 𝐷 are also constants of integration.
The general solution of (A.34) is

𝜎

3𝑦
= 𝐴 sinh (𝜔

1
𝑥) sin (𝜔

1
𝑥) + 𝐵 cosh (𝜔

1
𝑥) sin (𝜔

1
𝑥)

+ 𝐶 sinh (𝜔
1
𝑥) cos (𝜔

1
𝑥) + 𝐷 cosh (𝜔

1
𝑥) cos (𝜔

1
𝑥) .

(A.35c)

Using the first expression of (A.1) and the derivative expres-
sion of (A.35a) with respect to 𝑥, the shear stress at the
interface then becomes

𝜏

3𝑥
= −𝛿

1
(𝐴



𝜆

1
cosh (𝑥) + 𝐵𝜆

1
sinh (𝑥) + 𝐶) . (A.35d)
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Rearranging (A.35b), (A.35c), and (A.35d) for the three
regions (I, II, and III) shown in Figure 1, we have the three
sets of expressions below

Region I (−𝑙 ≤ 𝑥 ≤ −𝑠)

𝜎

𝚤

1𝑥

= 𝐴

1
sinh (𝜆

1
𝑥) + 𝐴

2
cosh (𝜆

1
𝑥) + 𝐴

3
𝑥 + 𝐴

4
,

𝜏

𝚤

3𝑥

= −𝛿

0
(𝐴

1
𝜆

1
cosh (𝜆

1
𝑥) + 𝐴

2
𝜆

1
sinh (𝜆

1
𝑥) sinh+𝐴

3
) ,

𝜎

𝚤

3𝑦

= 𝐵

1
sinh (𝜔

1
𝑥) sin (𝜔

1
𝑥) + 𝐵

2
sinh (𝜔

1
𝑥) cos (𝜔

1
𝑥)

+ 𝐵

3
cosh (𝜔

1
𝑥) sin (𝜔

1
𝑥) + 𝐵

4
cosh (𝜔

1
𝑥) cos (𝜔

1
𝑥) .

(A.36a)

Region II (−𝑠 ≤ 𝑥 ≤ 𝑠)

𝜎

𝚤𝚤

1𝑥

= 𝐴

5
sinh (𝜆

2
𝑥) + 𝐴

6
cosh (𝜆

2
𝑥) + 𝐴

7
𝑥 + 𝐴

8
,

𝜏

𝚤𝚤

4𝑥

= −𝛿

0
(𝐴

5
𝜆

2
cosh (𝜆

2
𝑥) + 𝐴

6
𝜆

2
sinh (𝜆

2
𝑥) + 𝐴

7
) ,

𝜎

𝚤𝚤

4𝑦

= 𝐵

5
sinh (𝜔

2
𝑥) sin (𝜔

2
𝑥) + 𝐵

6
sinh (𝜔

2
𝑥) cos (𝜔

2
𝑥)

+ 𝐵

7
cosh (𝜔

2
𝑥) sin (𝜔

2
𝑥) + 𝐵

8
cosh (𝜔

2
𝑥) cos (𝜔

2
𝑥) .

(A.36b)

Region III (𝑠 ≤ 𝑥 ≤ 𝑙)

𝜎

𝚤𝚤𝚤

1𝑥

= 𝐴

9
sinh (𝜆

1
𝑥) + 𝐴

10
cosh (𝜆

1
𝑥) + 𝐴

11
𝑥 + 𝐴

12
,

𝜏

𝚤𝚤𝚤

3𝑥

= −𝛿

0
(𝐴

9
𝜆

1
cosh (𝜆

1
𝑥) + 𝐴

10
𝜆

1
sinh (𝜆

1
𝑥) + 𝐴

11
) ,

𝜎

𝚤𝚤𝚤

3𝑦

= 𝐵

9
sinh (𝜔

1
𝑥) sin (𝜔

1
𝑥) + 𝐵

10
sinh (𝜔

1
𝑥) cos (𝜔

1
𝑥)

+𝐵

11
csch (𝜔

1
𝑥) sin (𝜔

1
𝑥)+𝐵

12
cosh (𝜔

1
𝑥) cos (𝜔

1
𝑥) .

(A.36c)

Set of (A.36a) and (A.36c) is related to the right and left
flexible adhesive region. Set of (A.36b) is related to the
stiff adhesive region, the central region. Normal, shear, and
peel stresses are can be evaluated by using the appropriate
expressions for each region.

Boundary Conditions (BCs). Continuity conditions of shear
strain, normal strain, and slope at the interface between
regions I and II lead to

𝜏

𝚤

3𝑥

𝐺

3

















𝑥=−𝑠

=

𝜏

𝚤𝚤

4𝑥

𝐺

4

















𝑥=−𝑠

, (A.37a)

𝜎

𝚤

3𝑦

𝐸

3



















𝑥=−𝑠

=

𝜎

𝚤𝚤

4𝑦

𝐸

4



















𝑥=−𝑠

, (A.37b)

𝛿

3

𝐸

3

𝑑𝜎

𝚤

3𝑦

𝑑𝑥



















𝑥=−𝑠

=

𝛿

3

𝐸

4

𝑑𝜎

𝚤𝚤

4𝑦

𝑑𝑥



















𝑥=−𝑠

. (A.37c)

Thenormal stress boundary conditions at the interfaces of the
adhesives are

𝜎

𝚤𝚤

1𝑥







𝑥=𝑠

= 𝜎

𝚤𝚤𝚤

1𝑥







𝑥=𝑠

, (A.37d)

𝜎

𝚤

1𝑥







𝑥=−𝑠

= 𝜎

𝚤𝚤

1𝑥







𝑥=−𝑠

. (A.37e)

By using (A.17), (A.24), and (A.26), the boundary conditions
at the interface between regions I and II may be written as

(

𝛿

3

𝐺

3

+

2𝛿

0

3𝐺

)

𝑑𝜏

𝚤

3𝑥

𝑑𝑥

















𝑥=−𝑠

= (

𝛿

3

𝐺

4

+

2𝛿

0

3𝐺

)

𝑑𝜏

𝚤𝚤

4𝑥

𝑑𝑥

















𝑥=−𝑠

,

(A.38a)

𝛿

3

𝐸

3

𝑑

2

𝜎

𝚤

3𝑦

𝑑𝑥

2



















𝑥=−𝑠

=

𝛿

3

𝐸

4

𝑑

2

𝜎

𝚤𝚤

4𝑦

𝑑𝑥

2



















𝑥=−𝑠

,
(A.38b)

𝛿

3

𝐸

3

𝑑

3

𝜎

𝚤

3𝑦

𝑑𝑥

3



















𝑥=−𝑠

=

𝛿

3

𝐸

4

𝑑

3

𝜎

𝚤𝚤

4𝑦

𝑑𝑥

3



















𝑥=−𝑠

.
(A.38c)

The boundary conditions at 𝑥 = ± 𝑙 for the moments,
shear forces, and longitudinal forces are

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑀

1







𝑥=−𝑙

= −𝑀

0

𝑉

1







𝑥=−𝑙

= −𝑉

0

𝐹

1𝑥







𝑥=−𝑙

= 𝐹

}

}

}

}

}

}

}

}

}

}

}

}

}

,

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑀

2







𝑥=−𝑙

= 0

𝑉

2







𝑥=−𝑙

= 0

𝐹

2𝑥







𝑥=−𝑙

= 0

}

}

}

}

}

}

}

}

}

}

}

}

}

,

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑀

1







𝑥=𝑙

= 0

𝑉

1







𝑥=𝑙

= 0

𝐹

1𝑥







𝑥=𝑙

= 0

}

}

}

}

}

}

}

}

}

}

}

}

}

,

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑀

2







𝑥=𝑙

= 𝑀

0

𝑉

2







𝑥=𝑙

= −𝑉

0

𝐹

1𝑥







𝑥=𝑙

= 𝐹

}

}

}

}

}

}

}

}

}

}

}

}

}

.

(A.39)

Referring to Figure 1(b) and considering (A.39), the bound-
ary conditions at𝑥 = −𝑙 can bewritten by using (A.17), (A.18),
(A.24), and (A.25) as
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The other two boundary conditions are
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In (A.36a), (A.36b), and (A.36c) there are a total of 24
unknown coefficients corresponding to the three regions.
However, we constructed only 14 BCs above. Ten boundary
conditions are needed for the problem at hand. We wrote the
boundary conditions above for the left group of flexible-stiff
adhesive layer (regions I and II). From 𝑦-axis symmetry, we
can again write additional new boundary conditions for the
right group of stiff-flexible adhesive layer (regions II and III).
Then, the 24 unknown coefficients can be obtained from these
BCs.
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