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A recursive least square (RLS) algorithm for estimation of vehicle sideslip angle and road friction
coefficient is proposed. The algorithm uses the information from sensors onboard vehicle and
control inputs from the control logic and is intended to provide the essential information for active
safety systems such as active steering, direct yaw moment control, or their combination. Based on a
simple two-degree-of-freedom (DOF) vehicle model, the algorithm minimizes the squared errors
between estimated lateral acceleration and yaw acceleration of the vehicle and their measured
values. The algorithm also utilizes available control inputs such as active steering angle and wheel
brake torques. The proposed algorithm is evaluated using an 8-DOF full vehicle simulation model
including all essential nonlinearities and an integrated active front steering and direct yaw moment
control on dry and slippery roads.

1. Introduction

The performance of a vehicle active safety system depends on not only the control algorithm,
but also on the estimation of some key states if they can not directly be measured. Among
these states to be estimated online, vehicle sideslip angle and tire-road friction coefficient
have been extensively studied in the literature. It is noted that road friction is also used for
determination of target response to driver’s steering inputs in the entire range of operation.

There are several strategies [1–5] for estimation of sideslip angle and road friction,
such as Kalman filter (KF), RLS algorithms, closed-loop feedback observers [2] and sliding
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mode observers [6]. Gustafsson and many others [7–10] designed observers based on tire-
road force models and single-track vehicle models. In [1], Yi et al. designed an observer
of tire-road friction coefficient using RLS methods for vehicle collision warning/avoidance
system. Wenzel et al. [11], and Baffet et al. [12], independently proposed a dual extended
Kalman filter (DEKF) for estimation of vehicle states and parameters which is intended for
various active chassis control systems. From the viewpoint of online estimation, the DEKF is
too complex to be used with the current systems, due to the limited computational authority
of microprocessors and availability of only a few sensors.

A common feature of most state observer and KF/RLS based algorithms for estimation
of sideslip angle is that they rely heavily on an accurate tire model, which may vary during
vehicle operation. To overcome the limitation, Hac and Simpson [2], combined the state
estimation method based on vehicle dynamic model with a closed-loop nonlinear observer
to estimate yaw rate and sideslip angle of the vehicle. This resulted in good estimates for
maneuvers on high-friction roads using “pseudomeasurement” of yaw rate as preliminary
estimate to supply additional feedback to the observer, which gets rid of the sensor for
direct measurement of yaw rate. However, sideslip angle cannot be estimated with enough
accuracy on very low-friction roads. Cheli et al. [13], estimated sideslip angle as a weighted
mean of the results provided by a kinematic formulation and those obtained through a state
observer based on vehicle single-track model. The basic idea is to make use of the information
provided by the kinematic formulation during a transient maneuver to update the single-
track model parameters (tire cornering stiffness).

In [14], tire-road friction estimation (TRFE) methodologies are classified as four types.
The first approach is slip-based and the other three use dedicated optical, acoustic [15, 16],
or strain gage type sensors [7, 15–18]. Slip-based approaches use wheel slip calculated based
on the difference between the wheel velocities of driven and nondriven wheels at normal
driving conditions [3, 14, 19]. The slip-based approach can be further extended to model-
based friction estimation [1, 8, 12, 14], in which wheel dynamics and/or brake pressure
model, and vehicle longitudinal and/or lateral dynamics, are employed.

The main idea of most slip-based friction estimation approaches is to predict the
maximum friction based on the collected low-slip and low-friction data at normal driving,
where normally acceleration/deceleration is less than 0.2 g [3] and slip ratios are rarely
greater than 5%. In these cases, maximum tire-road friction is estimated according to the slope
at the low values of slip/friction curve of the driven wheels, which is mainly determined by
the tire carcass stiffness rather than the road condition and thus quite sensitive to tire type,
inflation pressure, tire wear, and possibly vehicle configuration [19].

Estimation of vehicle sideslip angle relies heavily on an accurate tire model, but the
computing power required in such detailed models easily exceeds the control cycle time.
For example, the famous Magic Formula tire model can very accurately represent the force
and moment properties. However, due to trigonometric and exponential functions associated
with such formulation with several associated coefficients, the time required for online
calculation, far exceeds the control cycle time. On the other hand, if tire and vehicle dynamic
models do not include the required details, estimation accuracy will be lost. Consequently,
several efficient and accurate tire models with simpler expressions of tire forces have been
investigated in the literature. In other words, a compromise between accuracy and complexity
of tire model is required for online implementation.

In this paper, an RLS algorithm is proposed to estimate sideslip angle and road friction
for online application during activation of active front steering and direct yaw moment
control. Two main means are adopted to reduce the computational time of the algorithm.
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Figure 1: Scheme of the proposed algorithm for sideslip angle and road friction estimation.

The first one is use of a modified Dugoff tire model, for which simple expressions of tire
forces are used and parametric differences with respect to tire normal forces can be easily
functionalized using polynomials. The second one is online linearization of the model and
iterative computation for the proposed algorithm which are distributed to different control
cycles without sacrificing estimation accuracy. A significant merit of the algorithm lies in
the fact that it can provide estimates with reasonable accuracy without additional sensors.
It makes adequate use of the data available through the control logic for correction steering
angle and wheel brake torques. Comparison between estimated results and simulation data
using Matlab/Simulink and an 8-DOF full vehicle model shows that the proposed algorithm
is promising for practical use in active safety systems.

2. Algorithm Description

The algorithm considered in this paper is intended for real-time online estimation of sideslip
angle and road friction for the vehicle stability control systems using active front steering and
direct yaw moment control. Due to the limited computational authority of microprocessors
used in vehicle control systems, the algorithm should not be too complex. A simple two-
degrees-of-freedom (DOF) vehicle model is used to develop the estimation algorithm. Shown
in Figure 1 is the scheme of the proposed algorithm for sideslip angle and road friction
estimation.

The estimator in Figure 1 consists of the vehicle model and the RLS algorithm. All
the inputs of the estimator are from the controller (i.e., electric control unit, or ECU), either
directly measured by sensors or estimated by the control algorithm. Here, it is assumed that
such typical sensors as those for lateral acceleration and yaw rate of the vehicle, steering
wheel angle, and wheel speeds are used. Vehicle speed is estimated using the wheel speeds.

In the vehicle model, tire forces are computed according to the estimated vehicle states
û and β̂, estimated road friction μ̂l and μ̂r , and control inputs of steering angle δ and brake
torque “vector” Tb. The lateral and yaw accelerations are then estimated and used in the RLS
algorithm. Errors of lateral acceleration and yaw acceleration of the vehicle are computed
according to inputs from the vehicle model and the controller, and the RLS algorithm uses
these errors to recursively estimate the sideslip angle and road friction.
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Figure 2: A two DOF vehicle model with four wheels.

2.1. A 2-DOF Vehicle Model

Shown in Figure 2 is the 2-DOF vehicle model with 4 wheels. The model is intended for
online computation of lateral and yaw accelerations based on vehicle states and road friction
conditions. Equations governing the lateral and yaw motion of the vehicle are as follows

m(u̇ − rv) = Fxf sin(δ) + Fyf cos(δ) + Fyr,

Izṙ = aFxf sin(δ) + aFyf cos(δ) − bFyr,

+
tw
2
[
(Fxfl − Fxfr) cos(δ) −

(
Fyfl − Fyfr

)
sin(δ) + (Fxrl − Fxrr)

]
.

(2.1)

Note that the vehicle velocity at the center of gravity, V , is the resultant vector of
longitudinal speed u and lateral speed v. Tire slip angles can be determined according to
kinematic relationships shown in Figure 2 as follows:

αfl = ξfl − δ = tan−1 v + ra

u + rtw/2
− δ,

αfr = ξfr − δ = tan−1 v + ra

u − rtw/2
− δ,

αrl = ξrl = tan−1 v − rb
u + rtw/2

,

αrr = ξrr = tan−1 v − rb
u − rtw/2

.

(2.2)

Wheel load transfer is included in calculation of tire normal force as follows:

Fzij = Fzsij ±
hgmâx

2L
∓
hgmay

2tw
, i = f, r; j = l, r, (2.3)
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where + and − need to be properly selected for each specific tire, and âx is the estimated
longitudinal acceleration according to the estimated longitudinal speed. Although lateral
load transfer should be distributed between the two axles according to suspension roll
stiffness and some other factors, here only the average lateral inertia force is included and
distributed.

During a typical intervention of AFS/DYC, the tires often operate at or near the friction
limit and combined-slip conditions may arise. Therefore, a nonlinear tire model capable of
simulating the friction ellipse phenomena is required. A modified Dugoff tire model is used
here for the estimator. First, lateral tire forces at pure-slip conditions are calculated using the
modified Dugoff model and longitudinal forces are determined from the brake torques. Then,
the lateral forces are further amended according to the magnitude of the longitudinal force.
Variation of tire-road friction with respect to slip is included in the calculation of the lateral
forces.

The pure-slip lateral force is first calculated for dry asphalt road with a nominal tire-
road friction coefficient μ0 = 1.0 and then is adjusted for the estimated friction coefficient μ̂(μ̂l

or μ̂r). Calculation of F0y can be summarized as follows:

Cα = c1Fz
2 + c2Fz + c3, Fyp = c4Fz

2 + c5Fz,

Fys = c6Fz + c7, Sα = min(|tanα|, 1),

μ0Fz = c8Fyp(1 − Sα) + FysSα, λ =
μ0Fz

2Cα tanα
,

f(λ) =

⎧⎨
⎩
(2 − λ)λ, λ < 1,

1, λ ≥ 1,
F0y =

μ̂

μ0
Cα tan(α)f(λ),

(2.4)

where the coefficients ci’s (i = 1 ∼ 8) in (2.4) can be determined according to tire test data
or drawn from other tire models which have a high accuracy but are not suitable for online
computation, and tanα can be determined from (2.2) as follows:

tan(αfl) =
(v + ra) − (u + rtw/2)δ
(u + rtw/2) + (v + ra)δ

,

tan(αfr) =
(v + ra) − (u − rtw/2)δ
(u − rtw/2) + (v + ra)δ

,

tan(αrl) =
v − ra

u + rtw/2
,

tan(αrr) =
v − rb

u − rtw/2
,

(2.5)

where tan δ has been set equal to δ due to the fact that, during AFS/DYC intervention, the
total steering angle at front wheels is not likely to exceed 20◦ (the relative error at 20◦ is only
approximately 4.1%).

The coefficient c8 is used to compensate for overlimitation of tire force value at large
slip rates in the original Dugoff tire model. Shown in Figure 3 are some examples of lateral
forces using the modified Dugoff model and a Magic Formula model, where the coefficients
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Figure 3: Tire forces at pure-slip conditions based on a Magic Formula model and a modified Dugoff
model.

in the former are drawn from the latter. When slip angles are small or very large, the two
models are close. For a real vehicle, the slip angle is normally less than 10◦, and thus the
modified model is suitable for practical use. However, the computational power required for
the modified Dugoff model using (2.4) and (2.5) is much less than that of Pacejka Magic
Formula model.

When DYC is activated, brake torque is applied on some of the wheels. For
simplification, tire longitudinal forces are calculated using the following equation

Fx = −Fb = − Tb

Rw
, (2.6)

where Tb is the brake torque commanded by the controller. Since a wheel slip controller is
usually incorporated in the AFS/DYC control system, the above simplification is made based
on the following assumptions:

(1) The target brake torque can always be realized without delay;

(2) The longitudinal slip rate κis constant during activation of DYC.

Further, κ is assumed to be 0.2 for determination of the final lateral forces at combined-
slip conditions as follows

Fy = F0y
Sα√

κ2 + S2
α

. (2.7)

In order to reduce the computational requirements, (2.8) was fitted to (2.7) where κ takes a
fixed value of 0.2:

Fy =

⎧⎨
⎩
F0ySα(5.21 − 8.24Sα) if Sα ≤ 0.25,

F0y(0.7231 + 0.2575Sα) if Sα > 0.25.
(2.8)
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When slip angle is less than 10◦ (this is almost always true as mentioned above), or
equivalently Sα = 0.1763, the results using (2.7) and (2.8) are very close as shown in Figure 4.

2.2. RLS Algorithm

The recursive least square algorithm introduced here was developed based on a simple two-
degrees-of-freedom vehicle model. Due to the nonlinearities involved in the equations, online
linearization becomes a dynamic part of the algorithm.

As shown in Figure 1, tire-road nominal friction coefficients for the left and right sides
and the sideslip angle at the vehicle’s center of gravity need to be estimated. Since both
vehicle lateral acceleration ay and yaw acceleration ṙ are nonlinear functions of the estimated
parameters, linearization of these functions is required when employing the RLS algorithm.
Let

ay = g1
(
μl, μr , β

)
,

ṙ = g2
(
μl, μr , β

)
,

(2.9)

and define the functions at a given point p0 = [μl0, μr0, β0]
T as follows:

ay0 = g1
(
μl0, μr0, β0

)
,

ṙ0 = g2
(
μl0, μr0, β0

)
.

(2.10)

At this point, functions g1 and g2 can be linearized as follows

ay = ay0 +
∂g1

∂μl

∣∣∣∣
p0

Δμl +
∂g1

∂μr

∣∣∣∣
p0

Δμr +
∂g1

∂β

∣∣∣∣
p0

Δβ,

ṙ = ṙ0 +
∂g2

∂μl

∣∣∣∣
p0

Δμl +
∂g2

∂μr

∣∣∣∣
p0

Δμr +
∂g2

∂β

∣∣∣∣
p0

Δβ,

(2.11)
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where

Δμl = μl − μl0, Δμr = μr − μr0, Δβ = β − β0. (2.12)

Equation (2.11) can be rewritten as follows:

x1 = b11Δμl + b12Δμr + b13Δβ,

x2 = b21Δμl + b22Δμr + b23Δβ,
(2.13)

where

x1 = ay − ay0,

x2 = ṙ − ṙ0,

bi1 =
∂gi
∂μl

∣∣∣∣
p0

, bi2 =
∂gi
∂μr

∣∣∣∣
p0

, bi3 =
∂gi
∂β

∣∣∣∣
p0

, i = 1, 2.

(2.14)

Now the unknown parameter vector and the state vector can be defined using the
following equations:

θ =
[
Δμl Δμr Δβ

]T
,

x = [x1 x2]T .
(2.15)

The state vector error can be expressed as

ek = xk − Bθ̂k, (2.16)

Where

B =

[
b11 b12 b13

b21 b22 b23

]
. (2.17)

Define an index Φ with a forgetting factor λ as follows:

Φ =
k∑
i=2

λk−ieTi ei, 0 < λ ≤ 1. (2.18)
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By adopting the formulations given above and using the procedure in [1] for
minimizing the index given by (2.18), the unknown parameters can be estimated as follows

θ̂k+1 = θ̂k + Fk+1BT
(
xk+1 − Bθ̂k

)

Fk+1 =
1
λ

[
Fk − FkBT

(
λI + BFkBT

)−1
BFk

]

θ̂1 = θ0, F1 = σI,

(2.19)

where θ0 is always set to zero (this is only specific for the problem stated here), σ is a large
number, and I is a unit matrix with the proper dimensions.

On certain situations such that when estimated road friction coefficients or sideslip
angle are far from current operating point, a new operating point is needed and linearization
of the functions g1 and g2 need to be renewed since (2.11) or (2.13) hold only when ‖θ‖ is
small. Therefore, p0 should be renewed using p0 + θ according to the criteria defined in the
next section. Matrix B must be recalculated when operating point is renewed.

3. Algorithm Implementation

3.1. Numerical Implementation of Partial Derivatives

The following equations are used to compute the partial derivatives at p0 = [μl0, μr0, β0]
T :

∂gi
∂μl

∣∣∣∣
p0

=
gi
(
μl0 + Δμl0, μr0, β0

)
− gi

(
μl0 −Δμl0, μr0, β0

)
2Δμl0

,

∂gi
∂μr

∣∣∣∣
p0

=
gi
(
μl0, μr0 + Δμr0, β0

)
− gi

(
μl0, μr0 −Δμr0, β0

)
2Δμr0

∂gi
∂β

∣∣∣∣
p0

=
gi
(
μl0, μr0, β0 + Δβ0

)
− gi

(
μl0, μr0, β0 −Δβ0

)
2Δβ0

, i = 1, 2 (3.1)

Computation of the partial derivatives using (3.1) may be time-consuming. Therefore,
the alternative solution adopted in this paper is distributing the computation among different
control cycles to help with the limited computational authority of the microprocessor.

3.2. Criteria of Reparameterization

When any of the following conditions holds, substitute p0 with p0 + θ̂ and a new round of
recursive process will be initiated:

∥∥∥θ̂∥∥∥ > ε,

n > n0,

(3.2)
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where ε is a preset small positive number, n is the number of iterative computation using
(2.19) since last re-parameterization, and n0 is a known threshold.

If the value of estimated parameters changes too quickly, restrictions for their
increment are applied. In this paper, maximum increment for μ̂l, μ̂r and β̂ are 0.1, 0.1, and
0.005 rad, respectively. For example, if μ̂lk = 0.36 and μ̂lk+1 = 0.49, the value of μ̂lk+1 will be
restricted to 0.46; if β̂k = 0.0023 rad and β̂k+1 = −0.0075 rad, the value of β̂k+1 will be restricted
to −0.0027 rad. Whenever maximum increment is violated, the value for matrix Fk+1 is reset
as σI.

3.3. Summary of Procedure for the Estimator

To facilitate understanding of parameter estimation using the proposed RLS algorithm, the
main steps of the procedure are outlined as follows.

Step 1 (determinaion of ay0 and ṙ0 at p0 = [μl0, μr0, β0]
T ). ay0 and ṙ0 are estimated using the

2-DOF vehicle model according to (3.3), which is rearranged from (2.1) with consideration
of ay = u̇ − rv and using approximation for sin(δ) and cos(δ) under small angle assumption.
θ0 = 0 and σI are used as the first group of parameters for a new round as in (2.19). In the
following steps, (3.3) is always used if the 2-DOF vehicle model is involved.

ây =

[
F̂xfδ + F̂yf + F̂yr

]
m

̂̇r =

(
aF̂xfδ + aF̂yf − bF̂yr +

tw
2

[(
F̂xfl − F̂xfr + F̂xrl − F̂xrr

)
−
(
F̂yfl − F̂yfr

)
δ
])

Iz

(3.3)

Go to Step 2.

Step 2 (calculation of partial derivatives with respect to μl). gi(μl0 −Δμl0, μr0, β0) and gi(μl0 +
Δμl0, μr0, β0) (i = 1, 2) are computed using the 2-DOF vehicle model. Then b11 and b21 are
determined according to the first formula in (3.1).

Go to Step 3.

Step 3 (calculation of partial derivatives with respect to μr). Similarly,gi(μl0, μr0−Δμr0, β0) and
gi(μl0, μr0 +Δμr0, β0) (i = 1, 2) are computed using the 2-DOF vehicle model. Then b12 and b22

are determined according to the second formulae in (3.1).

Go to Step 4.

Step 4 (calculation of function values of gi(μl0, μr0, β0 − Δβ0)). g1(μl0, μr0, β0 − Δβ0) and
g2(μl0, μr0, β0 −Δβ0) are computed using the 2-DOF vehicle model.

Go to Step 5.
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Step 5 (calculation of function values of gi(μl0, μr0, β0 + Δβ0)). g1(μl0, μr0, β0 + Δβ0) and
g2(μl0, μr0, β0 + Δβ0) are computed using the 2-DOF vehicle model. Then b13 and b23 are
determined according to the third formulae in (3.1).

Go to Step 6.

Step 6 (iterative calculation using the RLS algorithm). Matrix F and vector θ are calculated
using (2.19). Estimations of the unknown parameters are available in this step.

If any of the conditions in (3.2) holds, substitute p0 with p0 + θ̂ and then go to Step 1;
otherwise, continue with Step 6.

Comments

From the viewpoint of online application, each of the steps is intended to be executed within
one control cycle.

4. Evaluation of the RLS Algorithm by Simulation

The algorithm is evaluated using the data from simulation of an AFS/DYC-based
integrated control system. Simulation of a double lane change maneuver is conducted using
Matlab/Simulink. A nonlinear 8-DOF vehicle model along with a combined-slip tire model
and a single-point preview driver model is used. Control commands are executed through
correction steering angle on front wheels and brake torque applied on one of the four wheels.

The data for the steering angles at front wheels, brake torques on the four wheels, yaw
rates, lateral acceleration, and vehicle speeds are used as inputs to the RLS based estimator.
Estimated results of vehicle sideslip angles and road friction coefficients are compared with
those from the simulation of double lane change maneuver using Matlab/Simulink. This
enables the reader to evaluate whether the results are sufficiently precise to be used in control.

Two scenarios of double lane change maneuvers are involved: one is on high friction
road surface and the other is on low friction road surface, and the target vehicle speeds for
the two scenarios are 110 km/h and 40 km/h, respectively.

The initial sideslip angle and nominal tire-road friction coefficients on both sides are
assumed to be 0, 0.8, and 0.8, respectively. The forgetting factor λ taking a value of 0.975 and
σ in (2.19) is set to 1. The results are shown in Figures 5 and 6.

In each figure, the first one or two diagrams illustrate the inputs to the estimator.
Estimated results are plotted in the second diagram, together with the actual data for
comparison. When integrated control quits from intervention, the estimated sideslip angle
and nominal tire-road friction coefficients are reset to their initial values. This is due to the
fact that, with the current sensors onboard vehicles equipped with active safety systems, it is
not possible to determine the surface coefficient of adhesion as long as vehicle remains within
the linear range of operation [2].

For the double lane change maneuver performed on dry road with μ = 0.8 and at
110 km/h, comparison of estimated and actual data in Figure 5 shows that the estimates of
the yaw rate track the actual values with reasonable accuracy, and that the estimates of road
friction coefficients are, on average, less than the actual values. However, the estimates of
road friction coefficients can still provide useful information of road adhesion for the control
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Figure 5: Double lane change on high-μ at 110 km/h.

algorithm and are acceptable in the sense of road conditions in terms of slipperiness: normal
(μ ≥ 0.5), slippery (0.3 ≤ μ < 0.5), and very slippery (μ < 0.3) [3].

Figure 6 illustrates a double lane change maneuver performed on slippery road with
μ = 0.2 and at 40 km/h. This is a difficult maneuver from the estimation viewpoint, because
of extremely slippery surface and low speed. Nevertheless, the estimates of the yaw rate and
road friction coefficients track the actual values quite well during the maneuver. It is shown
that the estimates of road friction after about 11s, when the double lane change maneuver
has been completed, are not quite accurate. However, this inaccuracy has no adverse effect
on control because information about the road friction within the linear range of operation is
not required.

For evaluating the accuracy of the above estimated sideslip angle using the RLS
algorithm, some results cited from [13] for a vehicle performing the same maneuver but using
a methodology that combines a kinematic formulation and a state observer based on a single
track vehicle model are shown in Figure 7 for comparison with the results shown in Figures
5(b) and 6(b). The results of Figure 7 show that the methodology used in [13] yields high
accuracy of estimation. It is found from Figure 5(b) that when sideslip angle changes abruptly
such as those from 4.2 s to 5.8 s, the estimate can not catch up with its actual value fast enough
and thus a relatively large error arises. However, this error can be corrected by combining the
proposed RLS algorithm with kinematic formulation, just like the methodology used in [13].

To evaluate robustness of the proposed RLS algorithm with repect to certain variantons
that may occur during vehicle operation (mass, moment of inertia, tire cornering stiffness
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Figure 7: Estimated results and comparison with experimental data for vehicle performing a double lane
change maneuver, cited from [13].

etc.), more simulation was performed. As an example, Figure 8 illustrates the results obtained
in a double lane change maneuver performed with different vehicle inertia properties. The
vehicle inertia parameters are designated as m = 1535 kg, ms = 1318 kg, Ix = 445 kg·m2, Iz
= 2513 kg·m2 for the estimator, while those for the double lane change maneuver are m =
1997 kg, ms = 1780 kg, Ix = 601 kg·m2, Iz = 3269 kg·m2. Though partly deviated from the actual
states, the estimates are generally acceptable. In Figure 8a, the average estimated road friction
coefficients deviate more from their actual values than those in Figure 5(b). For both cases
shown in Figure 8, there are certain periods of time when the estimates of sideslip angle
have a large error and lag, which indicates that the parameters for the algorithm should be
further tuned to improve its robustness. Again, these errors appear during abrupt change of
sideslip angle and can be reduced by combining the proposed RLS algorithm with kinematic
formulation.

5. Conclusion

A model-based recursive least square algorithm for estimation of sideslip angle and road
friction using data from the active front steering and dynamic yaw control logic is proposed.
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Figure 8: Double lane change with variation of vehicle inertia properties

The estimates are evaluated through simulation of double lane change maneuvers using
Matlab/Simulink. The results indicate that the strategy of estimation is valid and successful
without using additional sensors, on both high and low friction road surfaces. Robustness
of the algorithm is evaluated through more simulation with variation of vehicle inertia
properties, and results show that the estimates are generally acceptable but the parameters
for the algorithm need to be further tuned.

Though not yet included in our investigation, we propose that the RLS algorithm
developed in this research be combined with kinematic formulation to enhance estimation
accuracy during abrupt change of sideslip angle.

Future work of the research may include evaluation of the methodology through
hardware-in-the-loop and road tests and implementation of the estimation algorithm on a
vehicle stability enhancement system for online applications.
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Nomenclature

Subscript, Abbreviation, and Symbol

fl: Front left
fr: Front right
rl: Rear left
rr: Rear right
f: Front
r: Rear
COG: Center of gravitŷ: Indicator for estimated value
∼ : Indicator for error between measured and estimated values.

Parameters and Variables

a: Horizontal distance between vehicle COG and front axle
ax: Longitudinal acceleration of vehicle
ay: Lateral acceleration of vehicle
B: Matrix for RLS algorithm
b: Horizontal distance between vehicle COG and rear axle
Cκ: Tire longitudinal slip stiffness
Cα: Tire cornering stiffness
Dy: Peak value of lateral force of tire
Fx: Longitudinal tire force in tire x-axis (of wheel plane)
F0y: Lateral tire force in tire y-axis (of wheel plane) at pure-slip condition
Fy: Lateral tire force in tire y-axis (of wheel plane) at combined-slip condition
Fyp: Peak value of lateral tire force in tire y-axis
Fys: Lateral tire force at pure lateral sliding in tire y-axis
Fz: Vertical force on tire
Fzs: Vertical static force on tire
hg : COG height of total vehicle mass with respect to ground
Ix: Roll moment of inertia (about vehicle x-axis)
Iz Yaw moment of inertia (about vehicle z-axis)
L: Wheel base
m: Total vehicle mass
ms: Sprung mass of vehicle
r: Yaw rate
Rw: Tire static loaded radius
Sα: Tire lateral slip rate
Tb: Brake torque vector for all the four wheels, defined as {Tbfl, Tbfr, Tbrl, Tbrr}T
Tb: Brake torque on a single wheel
t: Time
tw: Wheel track
u: Longitudinal velocity
V : Velocity vector at vehicle COG
v: Lateral velocity
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x: State vector
α: Tire sideslip angle
β: Vehicle sideslip angle at COG
δ: Total applied steer angle at wheels
δf: Applied steer angle at wheels, result of driver’s input
δc: Correction steer angle at wheels supplied by AFS
κ: Longitudinal slip rate
ξ: Angle between velocity vector and vehicle x-axis
λ: Forgetting factor
θ: Parameter vector to be estimated
Φ: Index
μ: Tire-road nominal friction coefficient.
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