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This paper formulates a bilevel compromise programming model for allocating resources between
pavement and bridge deck maintenances. The first level of the model aims to solve the resource
allocation problems for pavementmanagement and bridge deckmaintenance, without considering
resource sharing between them. At the second level, the model uses the results from the first step
as an input and generates the final solution to the resource-sharing problem. To solve the model,
the paper applies genetic algorithms to search for the optimal solution. We use a combination
of two digits to represent different maintenance types. Results of numerical examples show
that the conditions of both pavements and bridge decks are improved significantly by applying
compromise programming, rather than conventional methods. Resources are also utilized more
efficiently when the proposed method is applied.

1. Introduction

By the end of the 1960s, major construction of highway networks ended in developed
countries such as the US and Canada. The main tasks of highway agencies shifted from
planning, design, and construction to management and maintenance of the highway
infrastructure, which usually consumes large resources. In the US, for instance, the total
investment in highway infrastructure has reached $1 trillion [1]. In recent years, highway
agencies have to face tough budgeting problems in maintaining existing highway facilities.
Due to ever-increasing transportation demand, more funds are needed to rehabilitate
the deteriorating highway facilities, and the gap between required funds and budgets is
increasing. It becomes critical that the limited resources should be more effectively allocated
and used.
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Consequently, highway asset management, as an effective means for infrastructure
management, has received increasing attention. The principle of highway asset management
can be defined as a strategic approach to the optimal allocation of resources for manage-
ment, operation, and preservation of highway infrastructure. Highway asset management
emphasizes resource sharing and optimal allocation among all sections of the whole highway
network, beyond the scope of single facility management (e.g., pavement management or
bridgemanagement). Through highway asset management, the limited resources can be used
more effectively. Hence, the infrastructure will better serve the needs of road users during its
life cycle. The conceptual core of highway asset management is resource allocation [2].

Highway asset maintenance management (HAMM) is a critical element of highway
asset management. Through its integrated management for all components of the entire
highway system during its life cycle, the objective of HAMM is to optimize resource
allocation in a wider range and find the highway maintenance solution that minimizes the
costs or maximizes the benefits, considering the resources constraints in funds, labor, and
equipment. Specifically, HAMMwill solve such questions as when and how the maintenance
should be implemented. Since different maintenance types and implementation times
would yield different performances, the HAMM process finds the optimal combinations in
order to achieve stated objectives. The resource allocation problem in HAMM is usually a
multiobjective problem. The main task in solving multiobjective problem is to obtain Pareto-
optimal solutions. As an effective method for solving a multiobjective problem, compromise
programming (CP) was developed by Yu [3] and Zeleny [4]. In recent several decades, CP
was broadly applied in many fields.

Lounis and Cohn [5] applied compromise programming approach to select satisfying
solution for multicriteria optimization of engineering structures and structural systems.
To solve multicriteria decision making in irrigation planning, Zarghaami [6] formulated
compromise programmingmodels withmultiobjectives such as regulation of reliable water at
the demand time, improving rice and tea production, domestic water supply, environmental
needs, as well as reducing social conflicts. Diaz-Balteiro et al. [7] applied compromise
programming to rank sustainability of European paper industry countries in terms of 14
indicators including economic, environmental, and social indices. It was found that the
results were robust when different preferential weights were attached. And the methodology
can be applied at a more disaggregated level and other indicators can be introduced. Amiri
et al. [8] proposed a Nadir compromising programming (NCP) model by expanding a
CP-based method for optimization of multiobjective problems in financial portfolios. The
NCP model was formulated on the basis of the nadir values of each objective. Numerical
example of a multiobjective problem to select optimal portfolio in Iran stock market
proved that the NCP model can satisfy decision maker’s purposes better. Andre et al.
[9] assessed Spanish economy by taking compromise programming as an analytical tool
and studied several Pareto-efficient policies that represent compromises between economic
growth and inflation rate. Hashimoto and Wu [10] proposed a data envelopment analysis—
compromise programming model for comprehensive ranking including preference voting
to rank candidates. Shiau and Wu [11] applied compromise programming to optimize
water allocation scheme under multiobjective criteria to minimize the hydrologic alteration
and water supply shortages. By combination of fuzzy compromise programming and
group decision making under fuzziness, Prodanovic and Simonovic [12] formulated a new
multiple criteria multiple expert decision support methodology. However, few have applied
CP in pavement management, bridge deck maintenance, or highway asset maintenance
management except [13, 14].



Mathematical Problems in Engineering 3

This paper applies the concepts of compromise programming and formulates a
bilevel model for the resource allocation problem. The first level of the model solves the
resource allocation problems for pavement management and bridge deck maintenance,
without considering resource sharing between them. The second level of the model solves
the resources allocation problems considering resource sharing. The following content is
organized as below. Section 2 presents the bilevel optimizationmodel based oncompromising
programming. Section 3 is a numerical example applying genetic algorithms to solve the
model. The conclusions and recommendations for further study are presented in Section 4.

2. Model

The basic concepts of CP are presented below. Consider the following general multiobjective
problem [13, 14]:

min
{
f1(x), f2(x), . . . , fk(x)

}
,

s.t. x ∈ X,
(2.1)

where there are k (≥ 2) objective functions {fi(x), i = 1, 2, . . . , k}.
The constraints can be expressed in a general form as x ∈ X = {x ∈ Rn | gj(x) ≤ 0, j =

1, 2, . . . , q; hl(x) = 0, l = 1, 2, . . . , r}, where q and r are numbers of inequality and equality
constraints, respectively.

If the problem does not have any conflicting objectives, one can apply conventional
optimization approaches to obtain a final solution that optimizes all objective functions.
However, the objectives are mutually conflicting in many real-world engineering problems.
In addition, those objectives can have different measurement scales. Zeleny [4] developed a
method that transforms these objectives into a set of comparable scales. He then formulated
a new single-objective optimization problem as in (2.2) and showed that the optimal solution
from the new problem is a Pareto-optimal solution to the original problem (2.1). Consider

min Lp =

[
k∑

i=1

(

λi ·
fi(x) − y0

i

y0
i

)p]1/p

,

s.t. x ∈ X, λ ∈ Λ.

(2.2)

In the Previous expression, y0
i is the optimal solution to the original problem

containing only the ith objective function fi(x). p is a parameter satisfying 1 ≤ p < ∞.
Λ = {λ ∈ Rk | λ ≥ 0,

∑k
i=1 λi = 1}. Let Zi(x) = (fi(x) − y0

i )/y
0
i . The meanings of the objective

function in (2.2) for different parameter p are discussed in the following.

(a) If p = 1, (2.2) can be simplified to (2.3),

min Lp =
k∑

i=1

|λi · Zi(x)|,

s.t. x ∈ X, λ ∈ Λ.

(2.3)
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The new objective function, Lp, is a weighted average of all shortest distances of
objective values. Lp is called the Manhattan distance.

(b) If 1 < p < ∞, then (2.2) can be transformed into (2.4)

min Lp =

[
k∑

i=1

(λi · Zi(x))
2

]1/2

,

s.t. x ∈ X, λ ∈ Λ.

(2.4)

In this case, the new objective function, Lp, is a weighted summation of geometric
distances. When p = 2, Lp is a Euclidean weighted distance.

(c) If p = ∞, then (2.2) can be transformed into (2.5). In this case, the new objective
function, Lp, is a Chebyshev distance as follows

min Lp = max |λi · Zi(x)|,
s.t. x ∈ X, λ ∈ Λ.

(2.5)

Under such transformations, the multiobjective problem in (2.1) has an equivalent
single-objective problem, which can be expressed as

min Lp =

[
k∑

i=1

(λi · Zi(x))
p

]1/p

,

s.t. x ∈ X, λ ∈ Λ.

(2.6)

Earlier approaches to highway infrastructure management were usually developed for
single facility management. In this section, we present an optimization model for resource
allocation in pavement maintenance. A model for bridge deck maintenance is very similar.
The major difference between them is that in the pavement maintenance model, road surface
is divided into segments of different lengths, while in the bridge deck maintenance model
a bridge deck is divided into different areas. In addition, performance indices are different
between the two models.

The objective for the pavement maintenance is to maximize the weighted average
surface performance after maintenance. It can be formulated as

max

{
1

∑I
i=1 Li ×ωi

×
I∑

i=1

A∑

a=0

X0
ia × Li × PQIia ×ωi

}

, (2.7)

where PQIia is the pavement quality index of segment i after a type a maintenance, a =
0, 1, . . . , A, Li is the length of segment i, ωi is the associated weight for segment i, I is the total
number of road segments in the whole network, A is the total number of maintenance types,
X0

ia is a binary decision variable. X0
ia = 1 when a type a maintenance is selected for segment

i, and 0 otherwise.
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Four sets of constraints are considered in the problem: funding constraints, human
resource constraints, equipment constraints, and constraints on road maintenance types.

Funding constraints are expressed in (2.8). It indicates that the total maintenance
expenses for all segments must not exceed the total available funds in a specific planning
year as follows:

I∑

i=1

A∑

a=0

X0
ia × Li × C

p

ia ≤ Bp, (2.8)

where Cp

ia in the above expression is the maintenance expense when a type a maintenance is
selected for segment i and Bp is the total available funds for all pavement of the network.

Similar to the funding constraints, human resource constraints can be expressed as

I∑

i=1

A∑

a=0

X0
ia × Li ×m

p

iau ≤ M
p
u, (2.9)

where mp

iau is the required amount of type u labor when a type a maintenance is selected for
segment i and M

p
u is the total available amount of type u labor.

The equipment constraints can be expressed as

I∑

i=1

A∑

a=0

X0
ia × Li × e

p

iak
≤ E

p

k
, (2.10)

where epiak is the required amount of type k equipment when a type amaintenance is selected
for segment i and E

p

k is the total available amount of type k equipment.
It is also assumed that in a maintenance cycle, only one type of maintenance is selected

for one segment. Thus, one has the following constraints on road maintenance types:

A∑

a=0

X0
ia = 1, ∀i. (2.11)

Typically, highway assets include pavement and bridges. The objective of highway
asset maintenance management is to maximum the overall quality of the entire highway
network. In this paper, we only consider two types of maintenance: pavement and bridge
deck maintenance. Based on the concepts of compromise programming, we formulate a
single-objective function as a weighted summation of two distances as below:

max

⎧
⎨

⎩

⎡

⎣

(

λ1 ·
∑

i

(∑
a XiaLiωiPQIia −

∑
a X

0
iaLiωiPQIia

)

∑
i

∑
a X

0
iaLiωiPQIia

)2

+

⎛

⎜
⎝λ2 ·

∑
j

(∑
r YjrSjωjCRjr −

∑
r Y

0
jrSjωjCRjr

)

∑
j

∑
r Y

0
jrSjωjCRjr

⎞

⎟
⎠

2⎤

⎥
⎦

1/2⎫⎪⎪⎬

⎪⎪⎭
,

(2.12)
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where parameters λ1, λ2 represent the weights of pavement and bridge decks, respectively,
and ωi, ωj are the weights of pavement segment i and bridge deck unit j, respectively; Xia

and Yjr are binary decision variables.Xia = 1 if a type amaintenance is selected for pavement
segment i, and 0 otherwise; Yjr = 1 if a type r maintenance is selected for bridge deck unit j,
and 0 otherwise. In (2.12), we take p as 2 to avoid cancellation of positive and negative values
in the objective function.

The problem has five sets of constraints, which are discussed in the following content.

2.1. Funding Constraints

As the funds for pavement maintenance and bridge deckmaintenance can be shared, the total
expenses for both pavement and bridge deck maintenance must not exceed the total available
funds. Thus, one has the following:

I∑

i=1

A∑

a=0

XiaLiC
p

ia +
J∑

j=1

R∑

r=0

YjrSjC
b
jr ≤ B, (2.13)

where B is the total available funds for entire network maintenance.

2.2. Human Resource Constraints

In highway maintenance, labor can be classified into three groups: personnel only capable
of managing pavement, personnel only capable of managing bridge decks, and personnel
having both capabilities. Among these three groups, personnel in the third group can be
shared between pavement maintenance and bridge deck maintenance. Equations (2.14),
(2.15) and (2.16) describe constraints on labor in these three groups, respectively:

I∑

i=1

A∑

a=0

XiaLim
p

iau ≤ M
p
u u = f + 1, . . . , U f + 1 ≤ U, (2.14)

J∑

j=1

R∑

r=0

YjrSjm
b
jrv ≤ Mb

v v = f + 1, . . . , V f + 1 ≤ V, (2.15)

I∑

i=1

A∑

a=0

XiaLim
p

iau +
J∑

j=1

R∑

r=0

YjrSjm
b
jrv ≤ M

p
u +Mb

v u = v = 1, . . . , f, (2.16)

where f is the total number of labor types that can be shared between pavement maintenance
and bridge deck maintenance; U is the total number of labor types that can only be used for
pavement maintenance; V is the total number of labor types that can only be used for bridge
deck maintenance.
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2.3. Equipment Constraints

Equipment resources can also be classified into three groups: equipments only usable
in pavement maintenance, equipments only usable in bridge deck maintenance, and
equipments usable in both pavement and bridge deck maintenance. Equations (2.17), (2.18),
and (2.19) describe constraints on equipment in these three groups, respectively:

I∑

i=1

A∑

a=0

XiaLie
p

iak
≤ E

p

k
k = g + 1, . . . , K g + 1 ≤ K, (2.17)

J∑

j=1

R∑

r=0

YjrSje
b
jrl ≤ Eb

l l = g + 1, . . . , L g + 1 ≤ L, (2.18)

I∑

i=1

A∑

a=0

XiaLie
p

iak
+

J∑

j=1

R∑

r=0

YjrSje
b
jrl ≤ E

p

k
+ Eb

l k = l = 1, . . . , g, (2.19)

where g is the total number of equipment types that can be shared, K is the total number
of equipment types that can be used in pavement maintenance, and L is the total number of
equipment types that can be used in bridge deck maintenance.

2.4. Constraints on Maintenance Types

In eachmaintenance cycle, it is assumed that only one type of maintenance can be selected for
a pavement segment or bridge deck unit. Hence, we have additional constraints as follows:

A∑

a=0

Xia = 1 ∀i,

R∑

r=0

Yjr = 1 ∀j.
(2.20)

2.5. Least Performance Constraints

From the transformations of objective functions in compromise programming, it is noted
that when parameter p is an even number, the value within the parentheses in (2.12) can be
either positive or negative. When this value becomes negative, highway asset maintenance
management will not achieve any benefits. Hence, we have additional constraints that the
performance of highway infrastructure under resource sharing must exceed or at least equal
that without resource sharing. Such constraints can be presented in the following:

I∑

i=1

(
A∑

a=0

XiaLiωiPQIia −
A∑

a=0

X0
iaLiωiPQIia

)

≥ 0,

J∑

j=1

(
R∑

r=0

YjrSjωjCRjr −
R∑

r=0

Y 0
jrSjωjCRjr

)

≥ 0.

(2.21)
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Table 1: Human resource demands for different types of pavement maintenance.

Maintenance types Labor Demands (Man-days)
Technical chiefs Drivers Ordinary workers Equipment operators

No maintenance 0 0 0 0
Minor maintenance 1 1 1 2
Moderate maintenance 1 3 3 4
Major maintenance 2 5 6 7

Table 2: Productivities for types of maintenances and types of road facilities.

Highway types Productivities (Lane-km/Day)
No maintenance Minor maintenance Moderate maintenance Major maintenance

State highways 0.0 5.1 2.3 0.8
Provincial highways 0.0 6.7 3.5 1.4
County roads 0.0 8.5 4.2 2.1

3. Numerical Analysis

In this numerical example, the highway network consists of four types of facilities: 16.7 lane-
km of state highways, 30.7 lane-km of provincial highways, 59.6 lane-km of county roads,
and 20.3 lane-km of bridges. For each pavement unit or bridge deck unit, one can choose from
the following four options: major maintenance, moderate maintenance, minor maintenance,
and no maintenance. The resources (e.g., funds, human resources, equipments) amounts
required for different maintenance options and for different facility types are assumed to be
known. It is also assumed that the information on infrastructure quality after different types
of maintenance is available for analysis.

Table 1 lists the amounts of human resources required in different types of
maintenance. Table 2 shows the productivities for different maintenance types against facility
types. In addition, the model requires other information such as unit maintenance expense,
equipment allocation, before-and-after facility quality, interest rates, total available funds,
and other resources, least performance requirements for each facility unit, and variations
of traffic volumes. The input information for each bridge deck unit is similar to that for a
pavement segment.

Although the highway network is not large, the space of all feasible solutions to the
problem is very large, and complete enumeration is computationally infeasible as a method
of finding the optimal solution. In this paper, we apply genetic algorithms (GA) to search for
the optimal solution.

A chromosome in GA is a string of 0-1 numbers. Here we use a combination
of two digits to represent various maintenance types. For instance, “00” stands for
“no maintenance”, while “01,” “10,” and “11” stand for minor, moderate, and major
maintenances, respectively.

In this example, a blue cell represents a pavement segment, and a green cell represents
a bridge deck segment. A chromosome, that is, a feasible solution to the model, consists of 10
fractions. Each fraction represents a one-year pavement and bridge deck maintenance plan,
see Figure 1. As for any specific fraction, there are 2 parts, blue one and green one. The blue
part indicates pavement maintenance plan and the green part corresponds to bridge deck
maintenance plan for a given year.
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01 00 10 11 10 00 01 11 10 00 1001

Pavement Pavement Pavement Bridge deck Bridge deck Bridge deck 

11 01 00 10 10 10

· · ·

· · ·

· · · · · ·· · ·· · ·· · ·· · ·· · ·

1st year 2nd year 10th year

Figure 1: GA code for the solution.

Table 3: Human resources utilization in highway maintenance with and without resource sharing
(working days).

Labor types Maintenance without resource sharing Maintenance under
resource sharing

Total available
human resourcesPavement Bridge deck Total

Technical chiefs 4.7 8.6 13.3 21.7 26.0
Drivers 8.3 15.9 24.2 35.0 35.0
Ordinary workers (1) 8.3 0.0 8.3 16.1 30.0
Ordinary workers (2) 0.0 19.5 19.5 18.9 30.0
Equipment operators (1) 13.0 0.0 13.0 28.3 40.0
Equipment operators (2) 0.0 18.3 18.3 18.9 30.0

There are two steps in solving the problem. At the first step, we obtain the optimized
solutions for pavement maintenance and bridge deck maintenance, without considering
resource sharing. The second step uses the results from the first step as input and generates
the final solution to the resource sharing problem.

The GA parameters are determined with some preliminary analyses. In solving
the pavement maintenance problem at the first step, the population size and iteration
number, mutation rate are set at 500, 600, and 0.02, respectively. In solving the bridge deck
maintenance problem, the population size, iteration, mutation rate to 300, 200, and 0.02,
respectively. At the second step computation (with resource sharing), the values of these 3
parameters are set at 500, 2000, and 0.03, respectively.

Table 3 shows the human resources utilization in the base year for maintenances with
and without resource sharing. It is apparent that the utilization efficiency for the six types
of labors is increased, respectively. Table 4 compares equipments utilization in maintenances
with and without resource sharing.

Figure 2 indicates the performance changes of pavement and bridge decks after
maintenance. It can be easily seen that for all planning years, both pavement performance
and bridge deck performance are improved with resources sharing.

4. Conclusions

The objective of highway asset maintenance management is to maximize the overall
conditions of the highway system after maintenance with limited resources. This is
achieved through integrated management for different types of highway facilities. The paper
presents a new approach for optimal allocation of highway maintenance resources based
on compromise programming. With the concepts of compromise programming, one can
consider the relative importance of different highway facilities by introducing associated
weights into the objective function. A bilevel model has been developed to analyze the
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Table 4: Equipments utilization in highway maintenance with and without resource sharing (Working
Days).

Equipment types Maintenance without resource sharing Maintenance under
resource sharing

Total available
equipmentsPavement Bridge deck Total

Dual-use mini vans 4.7 7.4 12.1 21.7 25.0
Backhoe/loaders 3.6 2.4 6.0 3.8 11.0
Pavement saws 2.9 8.6 11.5 19.8 23.0
Grinders 2.9 9.7 12.6 19.8 26.0
Compressors 6.5 1.2 7.7 14.2 18.5
Scrapers 1.8 0.0 1.8 1.9 5.0
Welding torch 0.0 1.2 1.2 0.0 3.0
Vibrating compactors 0.0 8.6 8.6 9.5 10.0
Cement mixers 0.0 1.2 1.2 0.0 3.2
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Figure 2: Comparison of condition changes for pavement and bridge-decks with and without resource
sharing.

resource allocation problem in pavement and bridge deck maintenance. Two scenarios in
maintenance activities are analyzed: first without and then with sharing of resources between
pavement maintenance and bridge deck maintenance. With a robust GA searching for an
optimal solution to the problem, it is found that the performance of pavements and bridge
decks improves significantly under resource sharing. The maintenance resources (e.g., funds,
labor, and equipment) are utilized more efficiently in the resource-sharing scenario. The
results of experimental analyses clearly show the promising features of the model in solving
complex resource allocation problems in highway maintenance management. The method
developed in this paper is useful to highway agencies in their decision-making activities such
as developing maintenance programs, budgeting, and resource allocation.
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