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1. Introduction

One of the important computational problems in the applied science and engineering is the
solution of n × n nonsingular linear systems of equations:

Ax = b, (1.1)

where A ∈ Rn×n is a symmetric positive definite matrix (referred to as an SPD matrix), b ∈ Rn

is given, and x ∈ Rn is unknown. To solve this problem, usually an iterative method is spurred
by demands, which can be found in excellent papers [1, 2]. Most of the existing practical
iterative techniques for solving larger linear systems of (1.1) utilize a projection process in
one way or another; see, for example, [3–9].

Projection techniques are presented in different forms in many other areas of scientific
computing, which can be formulated in abstract Hilbert functional spaces and finite element
spaces. Furthermore, projection techniques are the process in which one attempts to solve
a set of equations by solving each separate equation by correcting so that it is small in
some norm. The idea of projection process is to extract an approximate solution to (1.1)
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from a subspace of Rn. Denote K and L the search subspace and the constraints subspace,
respectively. Let m be their dimension and x0 ∈ Rn be an initial guess to the solution of (1.1).
A projection method onto the subspace K and orthogonal to L is a process which finds an
approximation solution x ∈ Rn to (1.1) by imposing the Petrov-Galerkin conditions that x
belongs to the affine space x0 +K and the new residual vector is orthogonal to L, that is,

find x ∈ x0 +K, such that b −Ax ⊥ L. (1.2)

From this point of view, the basic iterative methods for solving (1.1), such as Gauss-
Seidel Iteration (GS), Steepest Descent Iteration (SD), Minimal Residual Iteration (MR), and
Residual Norm Steepest Descent Iteration (RNSD), all can be viewed as a special case of the
projection techniques.

In [2], Ujević obtained a new iterative method for solving (1.1), which is considered as
a modification of Gauss-Seidel method. In [10], Jing and Huang pointed that this iterative
method is also a projection process and named this method as “one-dimensional double
successive projection method” (referred to as 1D-DSPM). In the same paper [10], the authors
obtained another iterative method, which is named as “two-dimensional double successive
projection method” (referred to as 2D-DSPM). The theory indicates that 2D-DSPM gives a
better reduction of error than 1D-DSPM.

2. Notations and Preliminaries

In this paper, we will consider the following linear system of equations:

Ax = b, (2.1)

where A ∈ Rn×n is not a symmetric but a positive definite matrix of order n, b ∈ Rn is a
given element, and x unknown. For linear systems (2.1), we can use the classical minimal
residual iteration to solve, which can be found in [11]. Here, we will give a modification of
minimal residual iteration to solve linear system (2.1). We call the modification method as one
vector double successive MR (abbreviated 1V-DSMR) and compare reduction of the residual
error at step k + 1 between the modification iteration and original MR. Hence, we find that
the modification iteration gives a better reduction of the residual error than the original MR.
〈x, y〉 = yTx denotes a vector inner product between the vector x, y ∈ Rn.

We define the inner products as

a =
〈
Av1, Av1

〉
, c =

〈
Av1, Av2

〉
=
〈
Av2, Av1

〉
, d =

〈
Av2, Av2

〉
, (2.2)

p =
〈
b −Axk,Av1

〉
=
〈
rk,Av1

〉
, q =

〈
b −Axk,Av2

〉
=
〈
rk,Av2

〉
. (2.3)

In this subsection, we will recall minimal residual iterative method and give some
properties of this iteration.

For the linear system (2.1), we can use the following algorithm which is called minimal
residual iteration, viewed in [11].
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Algorithm 2.1. (1) Choose an initial guess solution x0 ∈ Rn to (2.1), k := 0.
(2) Calculate

r0 = b −Ax0,

α0 =

〈
Ar0, r0

〉

〈
Ar0, Ar0

〉 .
(2.4)

(3) If rk = 0, then stop; else,
(4) calculate

xk+1 = xk + αkrk,

rk+1 = b −Axk+1,

αk+1 =

〈
Ark+1, rk+1

〉

〈
Ark+1, Ark+1

〉 ,

k := k + 1.

(2.5)

(5) Go to step (3).

The minimal residual iteration can be interpreted with projection techniques. Here we
represent the principles of this method in our uniform notation as follows:

xk+1 = xk + αv1, (2.6)

where α = p/a.
If we chooseK = span{v1} and L = span{Av1}, then (1.2) turns to find

xk+1 ∈ xk +K, such that b −Axk+1 ⊥ L, (2.7)

where xk+1 = xk + αv1.
Equation (2.7) can be represented in terms of inner product as

〈
b −Axk+1, Av1

〉
= 0, (2.8)

which is

〈
b −Axk −Aαv1, Av1

〉
=
〈
b −Axk,Av1

〉
− α

〈
Av1, Av1

〉

= p − αa = 0,
(2.9)

giving rise to α = p/a, which is the same as in (2.6).
If we choose a special v1 = rk, then (2.6) is the minimal residual iteration (MR); up to

now, it is clear that MR is a special case of projection methods.
For the MR, we have the following property.
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Lemma 2.2. Let {xk} and {rk} be generated by Algorithm 2.1, then we have

∥
∥rk+1

∥
∥2 =

∥
∥rk

∥
∥2 −

p2

a
, (2.10)

where a, p are defined in (2.2) and (2.3), respectively.

Proof. Using (2.6), we obtain

rk+1 = b −Axk+1

= b −Ax̂k − αAv1

= rk − αAv1,

(2.11)

where v1 = rk. Hence we have

∥∥rk+1
∥∥2 =

〈
rk+1, rk+1

〉

=
〈
b −Axk − αAv1, b −Axk − αAv1

〉

=
∥∥rk

∥∥2 − α
〈
rk,Av1

〉
− α

〈
Av1, rk

〉
+ α2〈Av1, Av1

〉

=
∥∥rk

∥∥2 − 2αp + α2a

=
∥∥rk

∥∥2 −
p2

a
.

(2.12)

From Lemma 2.2, easily, we can get the reduction of the residual error of MR as
follows:

∥∥rk
∥∥2 −

∥∥rk+1
∥∥2 =

p2

a
. (2.13)

3. An Interpretation of 1V-DSMR with Projection Technique

In this section, we will give the modification of the minimal residual iterative method, which
is abbreviated to 1V-DSMR; we can present this method in our uniform notation as follows:

x̂k+1 = x̂k + α̂v1 + β̂v2, (3.1)

where α̂ = p/a and β̂ = (aq − cp)/ad.
We will have a two-step investigation of 1V-DSMR.
The first step is to choose K1 = span{v1} and L1 = AK1 = span{Av1}, then it turns

into the proceeding of MR, so we have α̂ = p/a.
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The next step is a similar way to chooseK2 = span{v2} and L2 = AK2 = span{Av2};
denote xk+1 = x̂k + α̂v1 and (1.2) turns to find

x̂k+1 ∈ xk+1 +K2, such that b −Ax̂k+1 ⊥ L2, (3.2)

where x̂k+1 = xk+1 + β̂v2.
Equation (3.2) can be represented as in terms of inner product as

〈
b −Ax̂k+1, Av2

〉
= 0, (3.3)

which is

〈
b −Axk+1 − β̂Av2, Av2

〉
=
〈
b −Axk − α̂Av1 − β̂Av2, Av2

〉

=
〈
b −Axk,Av2

〉
− α̂

〈
Av1, Av2

〉
− β̂

〈
Av2, Av2

〉

= q − α̂c − β̂d = 0.

(3.4)

This gives rise to β̂ = (aq − cp)/ad, which is the same as in (3.1).
If we choose a special v1 = rk, then (3.1) is a modification of the minimal residual

iteration, which is named as 1V-DSMR; up to now, it is clear that 1V-DSMR is also a special
case of projection methods.

As 1V-DSMR, we have the following relation of residual errors.

Theorem 3.1. Let {x̂k+1} generated by (3.1) and r̂k+1 = b −Ax̂k+1, then we have

∥∥r̂k+1
∥∥2 =

∥∥r̂k
∥∥2 − 1

a2d

[(
ad + c2)p2 + a2q2 − 2acpq

]
, (3.5)

where r̂k is the same as in Lemma 2.2, and a, c, d, p, q are defined in (2.2) and (2.3).

Proof. Using (3.1), we have

r̂k+1 = b −Ax̂k+1

= b −Axk − α̂Av1 − β̂Av2

= r̂k − α̂Av1 − β̂Av2.

(3.6)

By deduction, we get

∥∥r̂k+1
∥∥2 =

〈
r̂k − α̂Av1 − β̂Av2, r̂k − α̂Av1 − β̂Av2

〉

=
〈
r̂k, r̂k

〉
− 2α̂

〈
r̂k, Av1

〉
− 2β̂

〈
r̂k, Av2

〉
+ α̂ 2〈Av1, Av1

〉
+ 2α̂β̂

〈
Av1, Av2

〉

+ β̂ 2〈Av2, Av2
〉

=
∥∥r̂k

∥∥2 − 2α̂p − 2β̂q + α̂ 2a + 2α̂β̂c + β̂ 2d.

(3.7)
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If we substitute α̂ = p/a and β̂ = (aq − cp)/ad into (3.7), then we obtain

∥
∥r̂k+1

∥
∥2 =

∥
∥r̂k

∥
∥2 − 1

a2d

[(
ad + c2)p2 + a2q2 − 2acpq

]
. (3.8)

From Theorem 3.1, we also get a reduction of residual error of 1V-DSMR as follows:

∥
∥r̂k

∥
∥ 2 −

∥
∥r̂k+1

∥
∥2 =

1
a2d

[(
ad + c2)p2 + a2q2 − 2acpq

]
. (3.9)

Next we will depict the comparison results with respect to residual error reduction
between 1V-DSMR and MR.

Theorem 3.2. 1V-DSMR gives a better (at least the same) reduction of the residual error than MR.

Proof. From the equalities (2.13) and (3.9), we have

(∥∥r̂k
∥∥ 2 −

∥∥r̂k+1
∥∥2
)
−
(∥∥rk

∥∥2 −
∥∥rk+1

∥∥2
)
=

1
a2d

[(
ad + c2)p2 + a2q2 − 2acpq

]
−
p2

a

=
1

a2d

(
cp − aq

)2 ≥ 0,

(3.10)

which proves the assertion of Theorem 3.2.

Theorem 3.2 implies that the residual error of MR is bigger than that of 1V-DSMR at
k + 1 step if the residual vectors rk and r̂k at the kth iteration are equal to each other.

4. A Particular Method of 1V-DSMR

In this section, particular v1 and v2 will be chosen, and an algorithm to interpret 1V-DSMR is
obtained.

Since 1V-DSMR is a modification of minimal residual iteration, take v1 = r̂k. In general,
v2 may be chosen in different ways. Here, we choose a particular v2 = x̂k−1, then from (3.1),
each step of 1V-DSMR is as follows:

x̂k+1 = x̂k + α̂r̂k + β̂x̂k−1, for k = 0, 1, . . . , (4.1)

where r̂−1 = 0 and

α̂ =
p

a
=

〈
Ar̂k, r̂k

〉

〈
Ar̂k,Ar̂k

〉 ,

β̂ =
aq − cp

ad
=

〈
Ar̂k,Ar̂k

〉〈
r̂k, Ax̂k−1

〉
−
〈
Ar̂k,Ax̂k−1

〉〈
r̂k, Ar̂k

〉

〈
Ar̂k,Ar̂k

〉〈
Ax̂k−1, Ax̂k−1

〉 .

(4.2)

In this case, the first step of 1V-DSMR is the same as minimal residual iteration.
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The above results provide the following algorithm of 1V-DSMR.

Algorithm 4.1 (A particular implementation of 1V-DSMR in a generalized way). (1) Choose
an initial guess solution x̂0 of (2.1), k := 0.

(2) Calculate

r̂0 = b −Ax̂0,

α̂0 =

〈
Ar̂0, r̂0

〉

〈
Ar̂0, Ar̂0

〉 .
(4.3)

(3) Calculate

x̂1 = x̂0 + α̂0r̂0 = x̂0 +

〈
Ar̂0, r̂0

〉

〈
Ar̂0, Ar̂0

〉 r̂0,

r̂1 = b −Ax̂1 = r̂0 −
〈
Ar̂0, r̂0

〉

〈
Ar̂0, Ar̂0

〉Ar̂0.

(4.4)

(4) If r̂k = 0, then stop; else,
(5) calculate

α̂k =

〈
Ar̂k, r̂k

〉

〈
Ar̂k,Ar̂k

〉 ,

β̂k =

〈
Ar̂k,Ar̂k

〉〈
r̂k, Ax̂k−1

〉
−
〈
Ar̂k,Ax̂k−1

〉〈
r̂k, Ar̂k

〉

〈
Ar̂k,Ar̂k

〉〈
Ax̂k−1, Ax̂k−1

〉 ,

x̂k+1 = x̂k + α̂kr̂k + β̂kx̂k−1,

r̂k+1 = b −Ax̂k+1,

k := k + 1.

(4.5)

(6) Goto step (4).

About Algorithm 4.1, we have the following basic property.

Theorem 4.2. IfA is a positive matrix, then the sequence of the iterations of Algorithm 4.1 converges
to the solution of the linear system Ax = b.

Proof. From the equality (3.9), we get

∥∥r̂k
∥∥2 −

∥∥r̂k+1
∥∥2 ≥

p2

a
=

〈
r̂k, Ar̂k

〉2

〈
Ar̂k,Ar̂k

〉 ≥
λ2

min

∥∥r̂k
∥∥4

λ2
max

∥∥r̂k
∥∥2

=
λ2

min

λ2
max

∥∥r̂k
∥∥2

. (4.6)

This means that the sequence ‖r̂k‖ 2 is a decreasing and bounded one. Thus, the
sequence in question is convergent implying that the left-hand side tends to zero. Obviously,
‖r̂k‖ 2 tends to zero, and the proof is complete.
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Figure 1: Comparison of convergence curve of residual norm (1.1) between Algorithm 2.1 and
Algorithm 4.1.

5. Numerical Examples

In this section, we use examples to further examine the effectiveness and show the advantages
of 1V-DSMR over MR.

We compare the numerical behavior of Algorithm 4.1 with Algorithm 2.1. All the tests
are performed by MATLAB 7.0. Because of the influence of the error of roundoff, we regard
the matrix A as zero matrix if ‖A‖< 10−10.

For convenience of comparison, consider the two-dimensional partial differential
equations on the unit square region Ω = [0, 1] × [0, 1] of the form

−
(
pux

)
x −

(
quy

)
y
+ rux + (ru)x + suy + (su)y + tu = f, (5.1)

where p, q, r, s, and t are all given real valued function of x and y, which are as follows:
p = e−xy, q = exy, r = 20(x + y), s = 10(x + y), and t = 1/(1 + x + y).

Here, we use a five-point finite difference scheme to discretize the above problem with
a uninform grid of mesh spacing Δx = Δy = 1/m in x and y directions, respectively; we can
obtain a matrix of order m×m as m varies, which is called PDE matrix. Now, we take m = 30,
then we get a matrix, which is called PDE900, and denoted by P . It is easy to check that P is
real unsymmetrical and nonsingular.

If we take the coefficient matrix A of linear system (2.1) as P , the right vector b =
(1, 1, . . . , 1)T , and initial iterative vector x0 = b, then we use Algorithms 2.1 and 4.1 to compute
the linear system (2.1), respectively. The comparison results between MR and 1V-DSMR are
shown in Figure 1.

From Figure 1, we can see that the convergence velocity of Algorithm 4.1 is always
faster than that of Algorithm 2.1. In fact, when we use Algorithm 2.1 to compute the linear
system (2.1), we only need to iterate 814 steps, and the residual norm is ‖r814‖ ≤ 9.8625×10−11.
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While using Algorithm 4.1, we only need to iterate 647 steps, and the residual norm is ‖r647‖ ≤
9.8465 × 10−11.
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[2] N. Ujević, “A new iterative method for solving linear systems,” Applied Mathematics and Computation,
vol. 179, no. 2, pp. 725–730, 2006.
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