Hindawi Publishing Corporation
Advances in Artificial Neural Systems
Volume 2015, Article ID 157983, 8 pages
http://dx.doi.org/10.1155/2015/157983

Hindawi

Research Article

Generalisation over Details: The Unsuitability of Supervised
Backpropagation Networks for Tetris

Ian J. Lewis and Sebastian L. Beswick

School of Engineering and ICT, University of Tasmania, Private Bag 87, Sandy Bay, TAS 7001, Australia
Correspondence should be addressed to Ian J. Lewis; ian.lewis@utas.edu.au

Received 19 January 2015; Accepted 1 April 2015

Academic Editor: Matt Aitkenhead

Copyright © 2015 I. J. Lewis and S. L. Beswick. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We demonstrate the unsuitability of Artificial Neural Networks (ANNSs) to the game of Tetris and show that their great strength,
namely, their ability of generalization, is the ultimate cause. This work describes a variety of attempts at applying the Supervised
Learning approach to Tetris and demonstrates that these approaches (resoundedly) fail to reach the level of performance of hand-
crafted Tetris solving algorithms. We examine the reasons behind this failure and also demonstrate some interesting auxiliary
results. We show that training a separate network for each Tetris piece tends to outperform the training of a single network for
all pieces; training with randomly generated rows tends to increase the performance of the networks; networks trained on smaller
board widths and then extended to play on bigger boards failed to show any evidence of learning, and we demonstrate that ANNs

trained via Supervised Learning are ultimately ill-suited to Tetris.

1. Introduction

Tetris, created by Pajitnov for the Elektronika-60 machine
in 1984 [1], is one of the most continuously popular video
games of all time [2]. While many versions of the game have
incorporated hand-crafted AI opponents, research has also
been performed into applying biologically inspired methods
such as Artificial Neural Networks (ANNGs) to the problem.

ANN:G, as first developed by McCulloch and Pitts [3], are
a network of neurons [4], called nodes, that each fires when
the sum of their inputs exceeds a certain threshold value.
The simplest type of ANN is the single-layer feedforward
network (perceptron network), in which every input is
directly connected to every output.

It was realised that perceptron networks cannot be used
to solve complex problems [3, 4]; however, this can be
overcome by adding extra layers of neurons to the network,
and connecting every neuron in each layer to every neuron
in the next layer to create multilayer feed-forward ANNs.

Backpropagation, first developed by Bryson and Ho [5],
is the most common learning method in multilayer feed-
forward ANNs [4]. Backpropagation networks differ from
perceptron networks in that, after the output is assessed,

the net error is calculated and individual neurons are
rewarded or punished depending on how much they con-
tributed to the error. This procedure is performed after every
epoch, and is a training technique known as Supervised
Learning (SL). ANNs have been used to successfully solve
problems that are trivial to humans but typically difficult to
approach algorithmically, such as classification [6].

Every Tetris game must terminate at some point; it is
statistically impossible to continue playing for an infinite
amount of time, as a nontessellatable alternating sequence of
S and Z pieces is inevitable (however, as the piece sequence
must in be reality generated pseudorandomly, it is extremely
unlikely that this sequence will be generated in practice) [7].
Farias and Roy [8] state that it would be possible to use
dynamic programming to find an optimal strategy for Tetris
but that it would be computationally infeasible due to the
large state space of the game.

Breukelaar et al. [9] proved that even if the entire
piece sequence is known in advance, Tetris is NP-complete.
Importantly, they suggest that it is computationally unfeasible
to compute the entire set of state spaces algorithmically
and this justifies the use of machine learning approaches to
approximate solutions to the optimal policy. To date, such



o
Lo T

FIGURE 1: The standard naming convention for the seven Tetromi-
noes.

research has been primarily focused on the Reinforcement
Learning (RL) approach or on restricted versions of the game
(see Section 2.2).

In this paper, we attempt to train an ANN using Super-
vised Learning to play Tetris successfully. A number of strate-
gies are considered, including training separate networks for
each piece, adding random rows to the training set, and
training the networks on a board of reduced width.

2. Background

The gameplay of Tetris consists of a random sequence of
pieces that gradually fall down a gridded board at a rate of
one square per game cycle. The pieces are all seven pos-
sible/Tetrominoes/: polyominoes that contain exactly four
squares [10]. In standard Tetris, the set of Tetrominoes are
created from exactly four squares and follow the standard
naming scheme as shown in Figure 1.

The pieces, which can be rotated by any 90 degree factor
during a move, fall one at a time until any further movement
would cause a collision with the floor of the well or a block
that has already been placed into the well.

When one of these collisions occur, the piece is placed
on to the board, and cannot be subsequently moved. When
a horizontal row in the well is completely filled with squares,
it is removed from the board, and each column above it
is dropped vertically by one row. Using the I piece, it is
possible to clear up to four rows in a single move and
most implementations have a scoring mechanism that awards
additional points for solving more than one row in a single
move, placing a premium on such moves.

The game ends when a block from a piece that has just
been placed protrudes off the top of the game board into the
(n+ 1)th row.

2.1. Deterministic Algorithms for Playing Tetris. The most
successful Tetris solving systems were implemented algorith-
mically rather than via machine learning methods [12]. These
methods can be split up into one-piece methods, which do
not take into account the next piece in the queue, and two-
piece methods, which consider the next piece as well as the
current one when calculating the optimal solution.

Advances in Artificial Neural Systems

B el I

FIGURE 2: The restricted set of pieces used by Melax [11].

The best one-piece method was developed by Pierre Del-
lacherie, solving on average 650,000 rows [12]. Dellacherie’s
algorithm considers the current piece at each possible rota-
tion and translation on the board and produces a heuristic
evaluation derived from punishing the height a piece lands;
row and column transitions; cellars (buried holes); and wells
(deep valleys), and rewarding for erased lines.

El-Ashi [13], in an unreviewed self-published report,
recently claimed to have refined Dellacherie’s one-piece algo-
rithm, improving it such that it solves on average 16,000,000
rows, an improvement of more than an order of magnitude.

2.2. Neural Network Approaches for Playing Tetris. As Tetris
has a large number of board states (1022"° x 1023 possible
states) (as each square in the upper 19 rows can be either
full of empty, but not all or none them, and the bottom row
can be in all the same states, but also empty), it is practically
impossible to define a nonlearning strategy [14]. Because of
this, many simplifications have been made to the standard
game as defined above in order to reduce the state space as
discussed below.

Melax [11] drastically reduced the size and complexity
of the pieces to those shown in Figure 2. This allowed him
to show that artificial learning techniques, in particular RL,
could be applied successfully to Tetris.

Bdolah and Livnat [14] reduced the size of the game board
to six columns but allowed for an (essentially) infinite number
of rows, using the justification that the limitation exists only
to add an element of stress for a human player. Whether
or not this is a desirable relaxation is debatable; one of the
main challenges of Tetris is keeping the size of the stack
low so that there is less chance of an unlucky sequence of
pieces resulting in the game ending. They also restrict the
set of available pieces to those of Melax. Their success metric
is the height of the highest column after n moves. While
they were unsuccessful in training a network that played
Tetris exceptionally well, they verified the results of Melax
and justified their additional optimizations. They discovered
much about applying RL to Tetris, in particular evaluating
different board representations, as discussed below.

Other research has been done on Tetris, including apply-
ing ANNs to the task of solving Tetris by Hashieda and
Yoshida [15], and a subset of Tetris by Harter and Kozma [16].
RL has been applied to Tetris by Girgin and Preux [17] and
Sarjant [18]. Driessens and Dzeroski [19] looked at relational
RL on a subset of Tetris. Grob et al. [20] considered Temporal
Difference RL (TDRL) on a subset of Tetris. This body of
research follows largely from Tesauro [21], who successfully
used RL in conjunction with an ANN to learn Backgammon.

Because of the “Curse of Dimensionality” [22], it is
important to carefully consider a suitable board representa-
tion. Melax encoded each square on the board as a binary



Advances in Artificial Neural Systems

I starcard Tetris 007 June) S ==

- B

Standard Tetris (2007 June)

FIGURE 3: Two Tetris boards that should be treated in the same way by the player.

value [11]. Storing the whole state of the board after each move
is clearly undesirable as the state space is enormous, and it
would be wasteful to not take advantage of the optimizations
that would stop the network, having to relearn the same
patterns at different offsets, but it is surprisingly difficult to
devise a condensed board representation without losing a
significant amount of relevant information [23].

For example, it is clearly recognizable to a human player
that the boards in Figure 3 should be treated in the same way
(in most situations) essentially, but this cannot be expressed
in many representations.

Bdolah and Livnat [14] ran experiments with the first
of their two representations: the contour representation.
The representation only considers the highest block in each
column. It takes the height of the highest block in the first
column to be zero and stores the height of the highest block
in each other column as an integral offset from the height
of this first column. This has the advantage of succinctly
representing an approximation of the shape of the top of
the board and the locations of holes and large gaps between
the highest blocks in each column, on the board. They
note that, for Tetris and other related problems, considering
any information other than the state of the surface of the
board only marginally contributes to the representation of
the system, whilst greatly decreasing the chance of the ANN
converging.

Counter-intuitively however, they found that an alterna-
tive approach, called Top Two Levels (TTL) representation, is
superior to the contour representation. In TTL, the height of
the highest block on the board is taken to be 1, and the state
of each square on the n and (1 — 1)th row is stored as a binary
digit (and all the other board information is discarded). As
this finding was discovered only during the final stages of
this research, there was no time to perform comparative tests
using this representation; see Section 4.1.

2.3. Summary. While some excellent deterministic algo-
rithms have been devised to solve Tetris, previous work using
machine learning techniques has seen relatively little success.
Researchers have had to severely restrict the rules of the
game to achieve learning, whilst results on the complete game
have been poor. The ANNs that have been unsuccessfully

applied to the problem have exclusively used the RL training
technique. No research has been done previously on applying
SL to Tetris. Lundgaard and McKee [24] suggest that this is
due to the ambiguity between “good” and “bad” moves.

Regarding the research that has been carried out using
RL, one of the major challenges was developing a way of
representing the board in a condensed form (to decrease
the change of the ANN diverging), whilst retaining ample
relevant information about the state of the board [23].

This project will attempt to counter this by using Del-
lacherie’s [12] excellent hand-coded one-piece Tetris solving
algorithm, in conjunction with the contour board represen-
tation [14], to train an ANN using SL.

3. Methodology and Results

3.1. Tools. This project used the existing frameworks for both
the ANN and Tetris implementations.

The ANN implementation was provided by the Fast
Artificial Neural Network Library (FANN), a fast ANN
implementation that supports multilayer backpropagation
networks [25].

The Tetris implementation was provided by Fahey’s Stan-
dard Tetris Library, as it was easy to extend and modify, and
it already had an implementation of Dellacherie’s one-piece
Tetris solving algorithm [12].

3.2. Board Representation. Because Tetris is NP-complete
[9] and has a large state space, it would be impractical to
attempt to apply an ANN directly to a problem with such a
large state space, so ways to condense the most important
information into a compressed representation of the board
must be considered.

This project uses a board representation that is function-
ally equivalent to the contour representation of Bdolah and
Livnat [14]. The height of the highest block in the first column
was normalised at 0, and the height of the highest block
in each succeeding column was stored as an integral offset
from 0. These offsets were clamped in [—4,4], as the height
differences of more than four squares between the rows have
no influence on the correct piece placement. This represents



arguably the most important information stored in the board
and the shape of its skyline in a very compact way.

Dellacherie’s algorithm only considers one factor that is
not represented by the skyline representation: cellars and
holes that lie under the skyline. However, it punishes moves
that create cellars with a much higher weight than those of
any other undesirable position.

3.3. Representation of Piece Rotations and Translations. Each
possible rotation and translation combination was stored in a
separate output (for a total of 40 outputs), in order to reduce
the confusion for the network between the correct location to
place a piece and the correct rotation for a piece. Each of these
displacements was used as an input to the network, which
was trained against the rotation and translation generated by
Dellacherie’s algorithm.

The game was run through n moves using Dellacherie’s
algorithm, storing the list of displacements (the contour
representation of the board) at the start of each move, along
with the move that Dellacherie chooses as the best one. These
were used as input/output pairs when training the networks.
In the following results, 30 random trials were run on each
network, using the same piece sequence between approaches.
In each training set, 2500 moves were made. The tests were
halted after 2000 rows (approximately 5000 pieces) had been
completed.

3.4. Experiments

3.4.1. With 10 Nets with O and I Pieces Only. Initially, the
game was restricted to a subset of Tetris containing only the
O and I pieces, as it was desirable to ascertain that the ANN
could learn a small subset of Tetris before attempting to tackle
the whole game. These pieces were chosen because they are
the simplest to tessellate.

A single network on a board of width 10 was trained under
a training set using training pairs generated by applying
Dellacherie’s algorithm on a random set of pieces. The
network tended to perform extremely well, displaying some
generalisation; often when it chose a different move to the
“optimal” move found by Dellacherie’s algorithm, it was an
equally good choice.

The network performed much better than what would
be expected from random chance. It completed more than
2000 rows in roughly half of the trials, but, in the trials where
the game ended, an average of 599 rows was completed. Del-
lacheries” algorithm, on the other hand, completed more than
2000 rows on every trial (and, if left to run to completion,
it would have been expected to solve approximately 650,000
rows [12]), after which it was stopped due to time constraints.

The ANN, however, often makes suboptimal moves. At
some stage in the game, the network would inevitably make
a terrible move, from which it was not able to recover. This is
due to the fact that after the network makes one bad move, it
is often presented with a large gap between blocks in adjacent
columns on the next move, a case that was not presented
in the training set because these simple mistakes were never
made by Dellacherie’s algorithm.

Advances in Artificial Neural Systems

60 Network of width10, 1 Net versus 7 Nets

55
50
45
40
35
30
25
20
15

Pieces placed

10

—— 1 Net Random

—— 7 Nets

FIGURE 4: For a board of width 10, 7 Nets slightly outperform the 1
Net in terms of pieces placed with both outperforming randomly.

3.4.2. Junk Rows. To try to counter this problem, and hence
improve the performance of the network, one or two individ-
ual rows with randomly placed blocks (junk rows) were added
to the training set after approximately every twenty moves,
and the network was retrained.

With junk rows in the training set, the ANN solved more
than 2000 rows on every trial. It appears that adding the
junk rows substantially improved performance as that forces
the training set to include examples of poor board positions.
Adding junk rows to the training set increased the amount of
time the network took to train substantially, but the increase
in performance seems to justify this.

3.4.3. 1 Net versus 7 Nets. When considering the optimal
move from the set of possible moves at each turn, the piece
that is to be placed clearly has a large impact on where it
should be placed. After training a network of width 10 using
all seven pieces and having little success, a new strategy was
devised.

From this point, two different types of ANN were trained.
The first was trained on the complete training set, learning
the moves of all seven pieces: I Net. In the second split, the
training was set up into the moves made by each of the seven
piece types and trained a separate ANN for each, resulting in
a total of seven ANNS: 7 Nets.

3.4.4. Networks of Width 10 on the Full Set of Seven Pieces.
These two approaches were subsequently trained on the full
set of seven pieces. Both approaches performed substantially
better than what could be explained by chance (Figure 4), but
they never manage to place more than 60 pieces in a single
game.

On average, the 7 Nets outperformed the single net
on both number of pieces placed (45 to 38) and number
of rows completed (3 to 1), respectively and substantially
outperformed random piece placement, which placed 21
pieces and solved 0 rows on average.



Advances in Artificial Neural Systems

30 Network of width 4, 1 Net versus 7 Nets
70
60
50

40

Pieces placed

30

20

10

—— 1 Net Random

—— 7 Nets

FIGURE 5: For a board of width 4, 7 networks slightly outperform
1 network (in terms of pieces placed) with both outperforming
randomly.

60 Network of width 4, 1 Net versus 7 Nets

50
40

30

Rows solved

20

10

— 1 Net Random

—— 7 Nets

FIGURE 6: For a board of width 4, 7 Nets slightly outperforms 1 Net
(in terms of rows solved) with both outperforming randomly.

3.4.5. Board Width Restriction. As the networks were failing
to converge when trained on a board of width 10, the width
of the board used in the training set was restricted to four
squares, and the two approaches were retrained and retested.

Again, the 7 Nets were slightly more successful than 1
Net; the 7 Nets placed on average 47 pieces and completed
33 rows, whilst the single network placed 40 pieces and solved
27 rows. Both approaches performed substantially better than
random piece placement (see Figures 5 and 6) but they are still
massively worse than hand-coded techniques.

When junk rows were added to these training sets, 1
Net performed better than 7 Nets, solving an average of
41 pieces and 27 rows compared to 36 rows and 23 pieces.
Both outperformed random piece placement. However, no
improvement was seen over the equivalent networks that
were trained without junk (Figure 7).

Network of width 4 on board of width 4
1 Net versus 1 Net with junk

60
50
\\
3 40 &
: |
o 30
[
3
A 20
10 W
0
—— 1 Net 1 Net
—— Random

FIGURE 7: For a board of width 4, networks trained with or without
junk performed comparably.

Network of width 4 on board of width 10

1 Net versus 7 Nets
35

30

Al

10

S

Pieces placed

—— Random 7 Nets

—— 1 Net

FIGURE 8: Networks trained for a board of width 4 applied multiple
times across a board of width 10 performed no better than random.

3.4.6. Reduced Width Network Applied to Full Board. These
networks were then tested on boards of width 10. This was
achieved by subdividing the board horizontally into its seven
component (4 x n) grids, applying the network to each grid
in turn, and choosing the strongest output of all the ANNGs.

This significantly decreased the time it took the networks
to train, and it was hoped that the results similar to the
previous tests could be achieved.

However, this approach was unsuccessful. Neither net-
works performed better than what would be expected by
chance (Figure 8) and both performed substantially worse
than the networks that were specifically trained to play on a
board of width ten (see Figures 9 and 10). On average, 1 Net
placed 18 pieces and solved 0.00 rows, while 7 Nets placed
22 pieces and solved 0.16 rows. Random piece placement
achieved an average of 21 pieces and 0.00 rows.

These networks were then retrained, with random junk
added to the training set. As can be seen from Figure 11, little
improvement in the number of pieces placed was made. On
average, 1 Net and 7 Nets both placed 24 pieces, compared



Network of width 10 on board of width 10

6 versus network of width 4 on board of width 10

50

40

30

Pieces placed

20

10

—— 7 Nets trained on width 10
—— 7 Nets with junk trained on width 4

FIGURE 9: Networks trained for a board of width 4 applied multiple
times across a board of width 10 performed substantially worse (in
terms of pieces placed) than networks trained for a board of width
10.

Network of width 10 on board of width 10

versus network of width 4 on board of width 10
10

Rows solved

2 J\/LA
—— 7 Nets trained on width 10
—— 7 Nets with junk trained on width 4

FIGURE 10: Networks trained for a width of 4 boards applied multiple
times across a width of 10 boards performed substantially worse (in
terms of rows solved) than a network trained for a width of 10 boards.

to randomly placing pieces on the board, which placed 21.
However, a slight improvement was observed in the number
of rows solved. On average, 1 Net solved 0.32 rows, and 7 Nets
solved 0.35 rows, a doubling of effectiveness (Figure 12).

3.5. Further Discussion. As also reported by Bdolah and
Livnat [14], this project found that the size of the state space
had by far the biggest influence on the time it took the
network to achieve learning. Reducing the representation of
the board from the full (1022'° x 1023) states to the contour
representation of 99 possible states made it possible to
train the ANNs—convergence would not have been achieved
without this drastic reduction to the state space.

In examining the situations in which the ANNs deviated
from the correct move (i.e., one that would be made in that
circumstance by Dellacherie’s algorithm), some interesting

Advances in Artificial Neural Systems

Network of width 4 on board of width 10
1 Net with junk versus 7 Nets with junk

40

30
E y 2m\NA
f A AN UV
; RN I
(5]
]
2

10

0

—— Random 7 Nets with junk

—— 1 Net

F1GuRre 11: The addition of junk did not increase the number of pieces
places for retrained networks.

Network of width 4 on board of width 10
35 1 Net with junk versus 7 Nets with junk

2.5

1.5

0.5 /
0 ",,

7 Nets

Rows solved

—— Random
—— 1 Net

FIGURE 12: The addition of junk did increase the number of rows
solved for retrained networks.

effects were noted and some conclusions can be drawn from
these.

Errors are often catastrophic in Tetris, as they require
a long sequence of correct play to repair. The lack of
representation of cellars only exacerbates this problem as the
ANNSs are not actively seeking to intelligently regain access to
such regions.

The ANNSs often contained many outputs of similar value
that sometimes represented a group of similar moves but
more often represented entirely dissimilar moves. This could
result in good moves never being made as they are beaten out
by other moves that are only slightly better.

Dellacherie’s algorithm considers cellars when deciding
on the best move, and these are not represented in the contour
form. It is likely that, in many circumstances, the ANNs
were presented with two “correct” placements for the same
input (ie., two different boards with cellars with identical
contours).

The selected move was often close to correct in that a piece
would be placed only one column away from the optimal



Advances in Artificial Neural Systems

column, or would be in the correct column, but with the
wrong rotation.

When presented with two similar board layouts with
vastly different best placements, ANNs tend to produce
a combination of those two placements. This property of
generalisation is one of the great strengths of ANNs, but in
Tetris, moves that lie “between” good moves are typically
terrible ones.

4. Conclusion

This paper shows that although supervised ANNs exhibit
some learning for Tetris, the properties of the game are ill-
suited to such a learning approach. Supervised ANNs are far
too susceptible to inappropriate generalisations and, as such,
prone to catastrophic errors in piece placement.

The large state space requires a suitable board representa-
tion and the contour representation of Bdolah and Livnat [14]
was found to be lacking, as it is unable to represent important
information in the board, such as cellars.

Despite the general failure of the ANNSs to learn, this work
attempted some interesting alternative design approaches. It
was found that adding junk rows to the training set favorably
improves the performance of the networks, especially the
number of rows completed.

Training a separate network for each piece, as opposed to
a single network that deals with all the pieces, also improved
the performance. Reducing the training sets to boards of
width 4, and sequentially applying them to boards of width
10, though drastically reducing training time, resulted in
substantially worse performance than training the networks
specifically on boards of width 10; no evidence of learning was
shown with this approach.

4.1. Further Work. Despite acknowledging that SL is unlikely
to be capable of learning Tetris to the level of playing
compared with that of hand-crafted approaches, there is a still
scope for further work.

The approaches outlined in this paper could be attempted
in conjunction with Melax’s [11] restricted piece set in order
to compare the success of RL versus SL.

As Bdolah and Livnat [14] showed that their TTL board
representation outperformed the contour representation, ad
one could attempt to train an ANN using SL with this
technique. It is expected that this would substantially improve
the performance of the networks considered in this paper as
it would directly address some of the issues outlined above.

It would be interesting to use RL or a genetic algorithm
to evolve a better set of weights for the factors considered
by Dellacherie’s algorithm. This is essentially an optimisation
problem, with the fitness function being the amount of rows
completed after a whole game has been played, so it is
well suited to either of these approaches. First, one could
attempt to derive the metrics of different board positions: the
amount of holes, board height, and gaps between columns.
This output could be sent to another algorithm that would
attempt to learn the weights associated with each metric and
output a heuristic evaluation of the piece placement. This is

essentially the problem that has been discussed in this paper,
broken down into its core components. If a good Tetris solver
was unable to be created using this method, it would reveal
interesting information about the applicability of ANNs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] A. Pajitnov, Tetris, Spectrum HoloByte, Alameda, Calif, USA,
1985.

[2] P. Franklin, At 25, Tetris Still Eyeing Growth, 2009, http://

www.reuters.com/article/2009/06/02/us-videogames-tetris-
idUSTRE5510V020090602.

[3] W. S. McCulloch and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity, Bulletin of Mathematical
Biophysics, vol. 5, pp. 115-133, 1943.

[4] S. Russel and P. Norvig, Artificial Intelligence A Modern
Approach, Pearson Education, Cranbury, NJ, USA, 3rd edition,
2010.

[5] A.E. Bryson and Y. C. Ho, Applied Optimal Control: Optimiza-
tion, Estimation, and Control, Blaisdell, Waltham, Mass, USA,
1969.

[6] G. E Luger, Artificial Intelligence: Structures and Strategies for
Complex Problem Solving, Addison Wesley, Essex, UK, 2004.

[7] J. Brzustowski, Can you win at Tetris? [M.S. thesis], Department
of Mathematics, University of British Columbia, 1992.

[8] V. E. Farias and B. V. Roy, “Tetris: a study of randomized
constraint sampling,” in Probabilistic and Randomized Methods
for Design under Uncertainty, pp. 189-201, Springer, London,
UK, 2006.

[9] R. Breukelaar, E. D. Demaine, S. Hohenberger, H. J. Hooge-
boom, W. A. Kosters, and D. Liben-Nowell, “Tetris is hard,
even to approximate,” International Journal of Computational
Geometry & Applications, vol. 14, no. 1-2, pp. 41-68, 2004.

[10] S. W. Golomb, Polyominoes, Allen & Unwin, 1965.

(11

S. Melax, Reinforcement Learning Tetris Example, 1998, http://
www.melax.com/tetris.html.

[12] C. P. Fahey, Tetris, 2003, http://colinfahey.com/tetris/tetris
html.

I. El-Ashi, El-Tetris—An Improvement on Pierre Dellacherie’s
Algorithm, 2011, http://ielashi.com/el-tetris-an-improvement-
on-pierre-dellacheries-algorithm/.

[13

[14] Y. Bdolah and D. Livnat, Reinforcement Learning Playing
Tetris, 2000, http://www.math.tau.ac.il/~mansour/rl-course/
student_proj/livnat/tetris.html.

[15] T. Hashieda and K. Yoshida, “Online learning system with logi-
cal and intuitive processings using fuzzy Q-learning and neural
network,” in Proceedings of the IEEE International Symposium
on Computational Intelligence in Robotics and Automation, vol.
1, pp. 13-18, IEEE, July 2003.

[16] D. Harter and R. Kozma, “Task environments for the dynamic
development of behavior,” in International Conference Com-
putational Science (ICCS °01), vol. 2074 of Lecture Notes in
Computer Science, pp. 300-309, Springer, Berlin, Germany,
2001.



(17]

[20]

(25]

S. Girgin and P. Preux, “Feature discovery in reinforcement
learning using genetic programming,” in Genetic Programming,
vol. 4971 of Lecture Notes in Computer Science, pp. 218-229,
Springer, Berlin, Germany, 2008.

S.J. Sarjant, Creating reinforcement learning tetris Al [Bachelor
of computer graphic design with honours], University of Waikato,
Hamilton, New Zealand, 2008.

K. Driessens and S. Dzeroski, “Integrating guidance into rela-
tional reinforcement learning,” Machine Learning, vol. 57, no. 3,
pp. 271-304, 2004.

A. Grob, J. Friedland, and F. Schwenker, “Learning to play Tetris
applying reinforcement learning methods,” in Proceedings of the
European Symposium on Artificial Neural Networks—Advances
in Computational Intelligence and Learning, Bruges, Belgium,
April 2008.

G. Tesauro, “Temporal difference learning and TD-gammon,”
Communications of the ACM, vol. 38, no. 3, pp. 58-68, 1995.

R. Bellman, Adaptive Control Processes: A Guided Tour, Prince-
ton University Press, Princeton, NJ, USA, 1961.

D. Carr, Applying reinforcement learning to Tetris [Bachelor of
Science (Honours) Thesis], Department of Computer Science,
Rhodes University, Grahamstown, South Africa, 2005.

N. Lundgaard and B. McKee, Reinforcement Learning and
Neural Networks for Tetris, 2006, http://www.cs.ou.edu/~amy/
courses/cs5033_fall2007/Lundgaard_McKee.pdf.

S. Nissen, Fast Artificial Neural Network Library (FANN), 2009,
http://leenissen.dk/fann/wp/.

Advances in Artificial Neural Systems



Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics




