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Owing to the high dimensionality of multilabel data, feature selection in multilabel learning will be necessary in order to reduce
the redundant features and improve the performance of multilabel classification. Rough set theory, as a valid mathematical tool
for data analysis, has been widely applied to feature selection (also called attribute reduction). In this study, we propose a variable
precision attribute reduct for multilabel data based on rough set theory, called 𝛿-confidence reduct, which can correctly capture the
uncertainty implied among labels. Furthermore, judgement theory and discernibility matrix associated with 𝛿-confidence reduct
are also introduced, from which we can obtain the approach to knowledge reduction in multilabel decision tables.

1. Introduction

Conventional supervised learning deals with the single-label
data, where each instance is associated with a single class
label. However, in many real-world tasks, one instance may
simultaneously belong to multiple class lultilabel decision
tablabels, for example, in text categorization problems, where
every document may be labeled as several predefined topics,
such as religion and political topics [1]; in image annotation
problems, a photograph may be associated with more than
one tag, such as elephant, jungle, and Africa [2]; in functional
genomics, each gene may be related to a set of functional
classes, such as metabolism, transcription, and protein syn-
thesis [3]. Such data are called multilabel data.

Owing to the high dimensionality of multilabel data,
feature selection in multilabel learning will be necessary in
order to reduce the redundant features and improve the per-
formance of multilabel classification. Among various feature
selection approaches, rough set theory, proposed by Pawlak
[4], has attracted much attention due to its special advantage,
that is, the capability of studying imprecise, incomplete, or
vague information without requiring prior information.

Feature selection in rough set theory is also called
attribute reduction. Generally speaking, attribute reduction
can be interpreted as a process of finding the minimal set of
attributes that can preserve or improve one or several criteria.
The minimal set of attributes is called an attribute reduct.
In past few years, many researchers have done much work
on attribute reduction and the summarization of important
results has been done in [5, 6].The idea of attribute reduction
using positive region was first originated in [7, 8], aiming
to remove redundant attributes as much as possible while
retaining the so-called positive regions. Afterwards, Ziarko
introduced the variable precision rough set model and 𝛽-
reduct to improve the ability of modeling uncertain infor-
mation [9]. Furthermore, Kryszkiewicz proposed five kinds
of attribute reducts for inconsistent information systems
[10] and the relationships in these five reducts and some
related results are reconsidered and rectified in [11]. Applying
discernibility matrix, Skowron and Rauszer [12] proposed
an attribute reduction algorithm by computing disjunctive
normal form, which is able to obtain all attribute reducts of a
given information system. On the other hand, for obtaining a
single reduct from a given information system in a relatively
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short time, many heuristic attribute reduction algorithms
have been developed. In order to reduce computational time,
Xu et al. [13] proposed a quick attribute reduction algorithm
with complexity of max(𝑂(|𝐶||𝑈|), 𝑂(|𝐶|2|𝑈/𝐶|)). Further,
Qian et al. [14] developed a common accelerator based on
four kinds of heuristic reduction algorithms to improve the
time efficiency of a heuristic search process.

As far as we know, however, little work has been done on
applying rough set theory to feature selection in multilabel
learning. Although directly applying the existing attribute
reduction methods to multilabel data is possible, it does not
take into account the uncertainty conveyed by labels and thus
can be enhanced further. In this paper, we propose a new
attribute reduct for multilabel data, namely, 𝛿-confidence
reduct, which overcomes the limitations of existing attribute
reduction methods to multilabel data. Furthermore, judge-
ment theory and discernibility matrix associated with 𝛿-
confidence reduct are also established. These results provide
approaches to knowledge reduction for multilabel data,
which are significant in both the theoretic and applied
perspectives.

The rest of this paper is organized as follows. Some
basic notions in rough set theory are briefly reviewed in
Section 2. Section 3 is devoted to introducing multilabel
decision table and analyzing the limitations of the existing
attribute reduction methods to multilabel data. In Section 4,
the new attribute reduct, 𝛿-confidence reduct, is proposed
and the corresponding judgement theorem and discernibility
matrix are also introduced. A computative example is also
given to illustrate our approaches. Finally, in Section 5, we
conclude the paper with a summary and outlook for further
research.

2. Preliminaries

In this section, we will review several basic concepts in rough
set theory.

A decision table is an information system 𝑆 = (𝑈, 𝐴 ∪ 𝐷)

with 𝐴 ∩ 𝐷 = 0, where 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is a nonempty,

finite set of objects called universe; 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
}

is a nonempty, finite set of condition attributes; 𝐷 =

{𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑞
} is a nonempty, finite set of decision attributes.

Each nonempty subset 𝐵 ⊆ 𝐴 determines an indiscernibility
relation in the following way:

𝑅
𝐵
= {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 : 𝑎 (𝑥) = 𝑎 (𝑦) , ∀𝑎 ∈ 𝐵} . (1)

The indiscernibility relation 𝑅
𝐵

partitions 𝑈 into some
equivalence classes given by 𝑈/𝑅

𝐵
= {[𝑥]

𝐵
: 𝑥 ∈ 𝑈},

where [𝑥]
𝐵
denotes the equivalence class determined by 𝑥

with respect to 𝐵; that is,

[𝑥]𝐵 = {𝑦 ∈ 𝑈 : (𝑥, 𝑦) ∈ 𝑅
𝐵
} . (2)

Let 𝑋 ⊆ 𝑈 and 𝐵 ⊆ 𝐴. One can define a lower
approximation of𝑋 and an upper approximation of𝑋 by

𝑅
𝐵
(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐵 ⊆ 𝑋} = ⋃{[𝑥]𝐵 : [𝑥]𝐵 ⊆ 𝑋} , (3)

𝑅
𝐵
(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐵 ∩ 𝑋 ̸= 0}=⋃{[𝑥]𝐵 : [𝑥]𝐵 ∩ 𝑋 ̸= 0} ,

(4)

respectively. The lower approximation is called the positive
region of𝑋 and denoted alternatively as POS

𝐵
(𝑋). If𝑅

𝐵
(𝑋) ̸=

𝑅
𝐵
(𝑋), then𝑋 is called a rough set.
Attribute reduct is one of the most important topics

in rough set theory, which aims to delete the irrelevant or
redundant attributes while retaining the discernible abil-
ity of original attributes. Among many attribute reduction
methods, the positive region reduct [7, 8] is a representative
method.

Definition 1. Let 𝑆 = (𝑈, 𝐴∪𝐷) be a decision table and𝐵 ⊆ 𝐴.
𝐵 is a positive region reduct of 𝑆 if and only if 𝐵 satisfies the
following conditions:

(1) POS
𝐵
(𝐷) = POS

𝐴
(𝐷),

(2) POS
𝐵
󸀠(𝐷) ̸= POS

𝐴
(𝐷) for any 𝐵󸀠 ⊆ 𝐵,

where POS
𝐵
(𝐷) = ⋃

𝑟

𝑖=1
POS
𝐵
(𝐷
𝑖
) and 𝐷

𝑖
(𝑖 = 1, 2, . . . , 𝑟) are

the equivalence classes, called decision classes generated by
the indiscernibility relation 𝑅

𝐷
= {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 : 𝑑(𝑥) =

𝑑(𝑦), ∀𝑑 ∈ 𝐷}.

3. The Multilabel Data

In this section, we first introduce the multilabel decision
table and then analyze the limitations of existing attribute
reduction approaches to multilabel data.

3.1.TheMultilabel Data. Multilabel data can be characterized
by a multilabel decision table 𝑆 = (𝑈, 𝐴, 𝐹, 𝐿, 𝐺) with 𝐴∩ 𝐿 =
0, where 𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} is a nonempty finite set of

objects, called universe; 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
} is a nonempty

finite set of condition attributes, called condition attribute set;
𝐹 = {𝑎

𝑘
: 𝑈 → 𝑉

𝑘
, 𝑘 = 1, 2, . . . , 𝑝} is a set of information

functions with respect to condition attributes and 𝑉
𝑘
is the

domain of 𝑎
𝑘
; 𝐿 = {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑞
} is a nonempty finite set of

𝑞 possible labels called label set; 𝐺 = {𝑙
𝑘
: 𝑈 → 𝑉

󸀠

𝑘
, 𝑘 =

1, 2, . . . , 𝑞} is a set of information functions with respect to
labels and 𝑉󸀠

𝑘
= {0, 1} is the domain of the label 𝑙

𝑘
. If the

object 𝑥 is associated with label 𝑙
𝑘
, then 𝑙

𝑘
(𝑥) = 1; otherwise

𝑙
𝑘
(𝑥) = 0. The 5-tuple (𝑈, 𝐴, 𝐹, 𝐿, 𝐺) can be expressed more

simply as (𝑈, 𝐴, 𝐿) if 𝐹 and 𝐺 are understood.
Some conventions in multilabel learning are shown as

follows.

(1) The object having no labels is irrelevant to multilabel
learning and thus is not taken into account in the set-
ting [15, 16]. Note that this convention is a prerequisite
for the proposed approach, as discussed in Section 4.

(2) Each label from 𝐿 associates with at least one object
in 𝑈 [17].

The following example depicts a multilabel decision table
in more detail.

Example 2. A multilabel decision table 𝑆 = (𝑈, 𝐴, 𝐿) is
presented in Table 1, which is a part of document topic classi-
fication problem. It consists of nine documents that belong to
one or more of three labels: religion, science, and politics. It



The Scientific World Journal 3

Table 1: A multilabel decision table.

𝑈 𝑎 𝑏 𝑐 𝑙
1

𝑙
2

𝑙
3

𝑥
1

2 1 0 1 0 0

𝑥
2

2 1 1 1 0 0

𝑥
3

2 1 0 1 1 0

𝑥
4

1 3 0 1 1 1

𝑥
5

1 3 0 0 1 0

𝑥
6

3 2 1 1 1 1

𝑥
7

1 3 0 0 1 1

𝑥
8

2 3 0 0 1 0

𝑥
9

2 3 0 0 1 1

can be seen that 𝑈 = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
}, 𝐴 =

{𝑎, 𝑏, 𝑐}, and 𝐿 = {𝑙
1
, 𝑙
2
, 𝑙
3
}. Note that each object in 𝑈 is

associated with at least one label from 𝐿 and each label from
𝐿 is associated with at least one object in 𝑈.

3.2.The Limitations of Existing Attribute Reduction Approach-
es to Multilabel Data. In this section, we mainly analyze
the limitations of existing attribute reduction approaches to
multilabel data.

For a multilabel decision table 𝑆 = (𝑈, 𝐴, 𝐿), each label
attribute can be viewed as a binary decision attribute and then
form an indiscernibility relation 𝑅

𝐿
as follows:

𝑅
𝐿
= {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 : 𝑙 (𝑥) = 𝑙 (𝑦) , ∀𝑙 ∈ 𝐿} . (5)

𝑅
𝐿
partitions 𝑈 into a family of equivalence classes given by

𝑈/𝑅
𝐿
= {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑟
}. In this case, most existing attribute

reduction approaches can be directly applied to multilabel
data. Here we consider, for instance, positive region reduct, to
delete redundant condition attributes in multilabel decision
tables. The following example illustrates this process.

Example 3. For the multilabel decision table 𝑆 = (𝑈, 𝐴, 𝐿)

given by Table 1, we can conclude that

𝑈

𝑅
𝐴

= {𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑋
4
, 𝑋
5
}

= {{𝑥
1
, 𝑥
3
} , {𝑥
2
} , {𝑥
4
, 𝑥
5
, 𝑥
7
} , {𝑥
6
} {𝑥
8
, 𝑥
9
}} ;

𝑈

𝑅
𝐿

= {𝐷
1
, 𝐷
2
, 𝐷
3
, 𝐷
4
, 𝐷
5
}

= {{𝑥
1
, 𝑥
2
} , {𝑥
3
} , {𝑥
4
, 𝑥
6
} {𝑥
5
, 𝑥
8
} , {𝑥
7
, 𝑥
9
}} .

(6)

Thus, we have POS
𝐴
(𝐷) = {𝑥

2
, 𝑥
6
} = 𝑋

2
∪ 𝑋
4
. It means

that the other equivalence classes 𝑋
1
, 𝑋
3
, and 𝑋

5
in 𝑈/𝑅

𝐴

are all uncertain with respect to the label set 𝐿. For instance,
consider the equivalence class 𝑋

1
= {𝑥
1
, 𝑥
3
}. Notice that 𝑥

1

and 𝑥
3
are indiscernible with respect to 𝐴 while their respect

label sets {𝑙
1
} and {𝑙

1
, 𝑙
2
} are discernible with respect to 𝐿.

This means 𝑋
1
is uncertain with respect to the label set 𝐿.

Furthermore, we can calculate that
𝑈

𝑅
{𝑎,𝑐}

= {𝑌
1
, 𝑌
2
, 𝑌
3
, 𝑌
4
}

= {𝑋
1
∪ 𝑋
5
, 𝑋
2
, 𝑋
3
, 𝑋
4
}

= {{𝑥
1
, 𝑥
3
, 𝑥
8
, 𝑥
9
} , {𝑥
2
} , {𝑥
4
, 𝑥
5
, 𝑥
7
} , {𝑥
6
}} ;

𝑈

𝑅
{𝑏,𝑐}

= {𝑍
1
, 𝑍
2
, 𝑍
3
, 𝑍
4
}

= {𝑋
1
, 𝑋
2
, 𝑋
3
∪ 𝑋
5
, 𝑋
4
}

= {{𝑥
1
, 𝑥
3
} , {𝑥
2
} , {𝑥
4
, 𝑥
5
, 𝑥
7
, 𝑥
8
, 𝑥
9
} , {𝑥
6
}} .

(7)

Since 𝑋
1
, 𝑋
3
, and 𝑋

5
are all uncertain with respect to 𝐿,

they can be safely merged without any information loss. In
other words, removing the attribute 𝑏 or 𝑎 is valid from the
perspective of rough sets. Moreover, one can check that no
more attributes can be removed from either {𝑎, 𝑐} or {𝑏, 𝑐}; so
{𝑎, 𝑐} and {𝑏, 𝑐} are both positive region reducts.

However, notice that all objects in 𝑋
1
must be associated

with label 𝑙
1
and may be associated with label 𝑙

2
in the

probability of 1/2 and must not be associated with label 𝑙
3
,

whereas all objects in𝑋
5
must not be associated with label 𝑙

1

and must be associated with label 𝑙
2
and may be associated

with label 𝑙
3
in the probability of 1/2.Thus, the uncertainty of

𝑋
1
and𝑋

5
is different, and the equivalence class𝑌

1
, the union

of 𝑋
1
and 𝑋

5
, cannot preserve the uncertainty conveyed by

labels. This implies that {𝑎, 𝑐} is not an appropriate attribute
reduct. Similarly, {𝑏, 𝑐} is also not an appropriate attribute
reduct for multilabel data.

Through the above analysis, we know that some positive
region reducts cannot preserve uncertainty implied among
labels for multilabel data. In fact, since the computation of
positive region reduct has to refer to the indiscernibility
relation 𝑅

𝐿
, the uncertainty conveyed by labels may be not

analyzed thoroughly. Furthermore, note that the uncertainty
characterized by 𝑅

𝐿
is also considered by the other existing

attribute reduction methods; so they have the same limita-
tions for multilabel data like positive region reduct. Thus
it is necessary to reconsider attribute reduction method for
multilabel data.

4. The New Attribute Reduction Approach in
Multilabel Data Decision Tables

In this section, we will introduce a new attribute reduct
referred to as 𝛿-confidence reduct and show some advantages
of 𝛿-confidence reduct in unraveling the uncertainty of
multilabel data. Moreover, judgement theory and discerni-
bility matrix associated with 𝛿-confidence reduct are also
established.

4.1. 𝛿-Confidence Reduct in Multilabel Decision Tables. First,
we present the following definition.
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Definition 4. Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table,
where 𝐴 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑝
} and 𝐿 = {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑞
}. For each

label 𝑙
𝑖
, one defines the label decision set as the collection of

all possible objects having the label:

𝐻
𝑖
= {𝑥 ∈ 𝑈 : 𝑙

𝑖
(𝑥) = 1} . (8)

Considering Convention 1 of multilabel learning, one has
∪
𝑞

𝑖=1
𝐻
𝑖
= 𝑈; that is,𝐻

1
, 𝐻
2
, . . . , 𝐻

𝑞
form a cover of 𝑈.

In the following, we present a particular function to
characterize the uncertainty implied among labels.

Definition 5. Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table,
let 𝑃(𝐿) be the power set of label set 𝐿, and let𝐻

1
, 𝐻
2
, . . . , 𝐻

𝑞

be 𝑞 label decision sets. Given a subset 𝐵 ⊆ 𝐴 and 𝛿 ∈ [0, 1],
one defines a 𝛿-confidence label function 𝜂𝛿

𝐵
: 𝑈 → 𝑃(𝐿), as

follows:

𝜂
𝛿

𝐵
(𝑥) =

{{{{

{{{{

{

{𝑙
𝑖
∈ 𝐿 :

󵄨󵄨󵄨󵄨[𝑥]𝐵 ∩ 𝐻𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

≥ 𝛿} if 0 < 𝛿 ≤ 1;

{𝑙
𝑖
∈ 𝐿 :

󵄨󵄨󵄨󵄨[𝑥]𝐵 ∩ 𝐻𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

> 0} if 𝛿 = 0.
(9)

The 𝛿-confidence label function 𝜂
𝛿

𝐵
(𝑥) is the collection

of the labels that associate with at least 𝛿% objects in [𝑥]
𝐵
.

In other words, 𝜂𝛿
𝐵
(𝑥) is the collection of the labels which

associate with each object in [𝑥]
𝐵
by at least 𝛿% confidence

level.

Example 6. Consider the multilabel decision table 𝑆 =

(𝑈, 𝐴, 𝐿) given by Table 1. If 𝛿 = 0.6, then the 0.6-confidence
label functionwith respect to attribute set A can be calculated
that

𝜂
0.6

𝐴
(𝑥
1
) = 𝜂
0.6

𝐴
(𝑥
3
) = {𝑙
1
} ,

𝜂
0.6

𝐴
(𝑥
2
) = {𝑙

1
} ,

𝜂
0.6

𝐴
(𝑥
4
) = 𝜂
0.6

𝐴
(𝑥
5
) = 𝜂
0.6

𝐴
(𝑥
7
) = {𝑙
2
, 𝑙
3
} ,

𝜂
0.6

𝐴
(𝑥
6
) = {𝑙

1
, 𝑙
2
, 𝑙
3
} ,

𝜂
0.6

𝐴
(𝑥
8
) = 𝜂
0.6

𝐴
(𝑥
9
) = {𝑙
2
} .

(10)

We have the following property.

Theorem 7. Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table,
𝐵, 𝐶 ⊆ 𝐴. Then

(1) if 0 ≤ 𝛿
1
≤ 𝛿
2
≤ 1, then 𝜂𝛿2

𝐵
(𝑥) ⊆ 𝜂

𝛿
1

𝐵
(𝑥);

(2) if 𝐵 ⊆ 𝐶, then 𝜂1
𝐵
(𝑥) ⊆ 𝜂

1

𝐶
(𝑥) ⊆ 𝜂

0

𝐶
(𝑥) ⊆ 𝜂

0

𝐵
(𝑥);

(3) for any 𝑥 ∈ 𝑈, 𝜂0
𝐵
(𝑥) ̸= 0;

(4) if [𝑥]
𝐵
= [𝑦]
𝐵
, then 𝜂𝛿

𝐵
(𝑥) = 𝜂

𝛿

𝐵
(𝑦).

Proof. (1) Let 𝑙
𝑖
∈ 𝜂
𝛿
2

𝐵
(𝑥). Then we have |[𝑥]

𝐵
∩𝐻
𝑖
|/[𝑥]
𝐵
≥ 𝛿
2
.

Note that 𝛿
2
≥ 𝛿
1
; thus |[𝑥]

𝐵
∩ 𝐻
𝑖
|/[𝑥]
𝐵
≥ 𝛿
1
. It means that

𝑙
𝑖
∈ 𝜂
𝛿
1

𝐵
(𝑥). Therefore 𝜂𝛿2

𝐵
(𝑥) ⊆ 𝜂

𝛿
1

𝐵
(𝑥).

(2) Since 𝐵 ⊆ 𝐶, we have [𝑥]
𝐶
⊆ [𝑥]
𝐵
.

If 𝑙
𝑖
∈ 𝜂
1

𝐵
(𝑥), then [𝑥]

𝐵
⊆ 𝐻
𝑖
. Since [𝑥]

𝐶
⊆ [𝑥]
𝐵
, we have

[𝑥]
𝐶
⊆ 𝐻
𝑖
. Thus 𝑙

𝑖
∈ 𝜂
1

𝐶
(𝑥). Therefore 𝜂1

𝐵
(𝑥) ⊆ 𝜂

1

𝐶
(𝑥).

According toTheorem 7 (1), we have 𝜂1
𝐶
(𝑥) ⊆ 𝜂

0

𝐶
(𝑥).

If 𝑙
𝑗
∈ 𝜂
0

𝐶
(𝑥), then [𝑥]

𝐶
∩ 𝐻
𝑗

̸= 0. Since [𝑥]
𝐶
⊆ [𝑥]

𝐵
,

we have [𝑥]
𝐵
∩ 𝐻
𝑗

̸= 0. That means 𝑙
𝑗
∈ 𝜂
0

𝐵
(𝑥). Therefore

𝜂
0

𝐶
(𝑥) ⊆ 𝜂

0

𝐵
(𝑥).

(3) If there exists 𝑥 ∈ 𝑈 such that 𝜂0
𝐵
(𝑥) = 0, then [𝑥]

𝐵
∩

𝐻
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑞.Thus [𝑥]

𝐵
∩(𝐻
1
∪𝐻
2
∪⋅ ⋅ ⋅𝐻

𝑞
) = 0. Since

∪
𝑞

𝑖=1
𝐻
𝑖
= 𝑈, we have [𝑥]

𝐵
∩(𝐻
1
∪𝐻
2
∪⋅ ⋅ ⋅ 𝐻

𝑞
) = [𝑥]

𝐵
∩𝑈 ̸= 0.

It is a contradiction.
(4) It is straightforward by the definition of 𝜂𝛿

𝐵
(𝑥) and

[𝑥
𝐵
] = [𝑦]

𝐵
.

Now we define the consistent 𝛿-confidence set using
𝛿-confidence label function. Furthermore, we present the
definition of new attribute reduct.

Definition 8. Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table
and 𝐵 ⊆ 𝐴. If 𝜂𝛿

𝐵
(𝑥) = 𝜂

𝛿

𝐴
(𝑥), for all 𝑥 ∈ 𝑈, one says that

𝐵 is a consistent 𝛿-confidence set of 𝑆. If 𝐵 is a consistent 𝛿-
confidence set and no proper subset of 𝐵 is a consistent 𝛿-
confidence set, then 𝐵 is called a 𝛿-confidence reduct of 𝑆.

A 𝛿-confidence reduct is the minimal set of condition
attributes that preserves the invariances of the 𝛿-confidence
label function of all objects in 𝑈.

Example 9 (continued from Example 6.). For the multilabel
decision table 𝑆 = (𝑈, 𝐴, 𝐿) given by Table 1, we have

𝜂
0.6

{𝑎}
(𝑥
1
) = {𝑙

1
, 𝑙
2
} ̸= 𝜂
0.6

𝐴
(𝑥
1
) ,

𝜂
0.6

{𝑏}
(𝑥
8
) = {𝑙

2
, 𝑙
3
} ̸= 𝜂
0.6

𝐴
(𝑥
8
) ,

𝜂
0.6

{𝑐}
(𝑥
6
) = {𝑙

1
} ̸= 𝜂
0.6

𝐴
(𝑥
6
) ,

𝜂
0.6

{𝑎,𝑐}
(𝑥
1
) = {𝑙

2
} ̸= 𝜂
0.6

𝐴
(𝑥
1
) ,

𝜂
0.6

{𝑏,𝑐}
(𝑥
8
) = {𝑙

2
, 𝑙
3
} ̸= 𝜂
0.6

𝐴
(𝑥
8
) ,

𝜂
0.6

{𝑎,𝑏}
(𝑥) = 𝜂

0.6

𝐴
(𝑥) for any 𝑥 ∈ 𝑈.

(11)

Therefore, we obtain the unique 0.6-confidence reduct: {𝑎, 𝑏}.
Considering Example 3, however, we know that {𝑎, 𝑐}

and {𝑏, 𝑐} are two positive region reducts for the same
multilabel decision table. We think 𝛿-confidence reduct is
more appropriate for multilabel data than positive region
reduct. This is because 𝛿-confidence label function can more
reasonably characterize the uncertainty implied among labels
than the indiscernibility relation 𝑅

𝐿
.

Note that the uncertainty characterized by 𝑅
𝐿
is also

considered by the other existing attribute reduction meth-
ods. Therefore, for multilabel data, 𝛿-confidence reduct has
significant advantages when compared with existing attribute
reduction methods.

4.2. Discernibility Matric of 𝛿-Confidence Reduct. This sec-
tion provides a discernibility matrice approach [12] to obtain
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all 𝛿-confidence reducts. Firstly, we present the judgement
theorem of consistent 𝛿-confidence set.

Theorem 10 (judgement theorem of consistent 𝛿-confidence
set). Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table, 𝐵 ⊆ 𝐴

and 𝛿 ∈ [0, 1]. Then the following conditions are equivalent:

(1) 𝐵 is a consistent 𝛿-confidence set;

(2) for any 𝑥, 𝑦 ∈ 𝑈, if 𝜂𝛿
𝐴
(𝑥) ̸= 𝜂

𝛿

𝐴
(𝑦), then [𝑥]

𝐵
∩ [𝑦]
𝐵
=

0.

Proof. (1) ⇒ (2). If there exist𝑥, 𝑦 ∈ 𝑈 such that [𝑥]
𝐵
∩[𝑦]
𝐵

̸=

0, then [𝑥]
𝐵
= [𝑦]
𝐵
. ByTheorem 7(4), we have 𝜂𝛿

𝐵
(𝑥) = 𝜂

𝛿

𝐵
(𝑦).

Note that 𝐵 is a consistent 𝛿-confidence set; we have 𝜂𝛿
𝐵
(𝑥) =

𝜂
𝛿

𝐴
(𝑥) and 𝜂𝛿

𝐵
(𝑦) = 𝜂

𝛿

𝐴
(𝑦). Therefore 𝜂𝛿

𝐴
(𝑥) = 𝜂

𝛿

𝐴
(𝑦).

(2) ⇒ (1). Since 𝐵 ⊆ 𝐴, it is easy to verify that I([𝑥]
𝐵
) =

{[𝑦]
𝐴
: [𝑦]
𝐴
⊆ [𝑥]
𝐵
} forms a partition of [𝑥]

𝐵
.

For any 𝑥 ∈ 𝑈, if [𝑦]
𝐴
⊆ [𝑥]
𝐵
, then [𝑥]

𝐵
∩ [𝑦]
𝐵

̸= 0. By
the assumption we obtain 𝜂𝛿

𝐴
(𝑥) = 𝜂

𝛿

𝐴
(𝑦).

Let 𝑙
𝑖
∈ 𝜂
𝛿

𝐴
(𝑥). Then for all [𝑦]

𝐴
∈ I([𝑥]

𝐵
), we have 𝑙

𝑖
∈

𝜂
𝛿

𝐴
(𝑦); that is to say, |[𝑦]

𝐴
∩ 𝐻
𝑖
|/|[𝑦]
𝐴
| ≥ 𝛿.

Therefore we have that
󵄨󵄨󵄨󵄨[𝑥]𝐵 ∩ 𝐻𝑖

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨[𝑥]𝐵

󵄨󵄨󵄨󵄨

=
∑ {

󵄨󵄨󵄨󵄨[𝑦]𝐴 ∩ 𝐻𝑖
󵄨󵄨󵄨󵄨 : [𝑦]𝐴 ∈ I ([𝑥]𝐵)}

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

= ∑{

󵄨󵄨󵄨󵄨[𝑦]𝐴 ∩ 𝐻𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑦]𝐴
󵄨󵄨󵄨󵄨

⋅

󵄨󵄨󵄨󵄨[𝑦]𝐴
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

: [𝑦]
𝐴
∈ I ([𝑥]𝐵)}

⩾ 𝛿 ⋅ ∑{

󵄨󵄨󵄨󵄨[𝑦]𝐴
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

: [𝑦]
𝐴
∈ I ([𝑥]𝐵)}

= 𝛿.

(12)

As a result, 𝑙
𝑖
∈ 𝜂
𝛿

𝐵
(𝑥).

On the other hand, we assume that 𝑙
𝑖
∈ 𝜂
𝛿

𝐵
(𝑥); however,

𝑙
𝑖
∉ 𝜂
𝛿

𝐴
(𝑥). For any [𝑦]

𝐴
∈ I([𝑥]

𝐵
), we have 𝜂𝛿

𝐴
(𝑥) = 𝜂

𝛿

𝐴
(𝑦);

hence 𝑙
𝑖
∉ 𝜂
𝛿

𝐴
(𝑦); that is to say, |[𝑦]

𝐴
∩ 𝐻
𝑖
|/|[𝑦]
𝐴
| < 𝛿. Since

[𝑥]
𝐵
= ∪{[𝑦]

𝐴
: [𝑦]
𝐴
∈ I([𝑥]

𝐵
)}, we have

󵄨󵄨󵄨󵄨[𝑥]𝐵 ∩ 𝐻𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

=
∑ {

󵄨󵄨󵄨󵄨[𝑦]𝐴 ∩ 𝐻𝑖
󵄨󵄨󵄨󵄨 : [𝑦]𝐴 ∈ I ([𝑥]𝐵)}

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

= ∑{

󵄨󵄨󵄨󵄨[𝑦]𝐴 ∩ 𝐻𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑦]𝐴
󵄨󵄨󵄨󵄨

⋅

󵄨󵄨󵄨󵄨[𝑦]𝐴
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

: [𝑦]
𝐴
∈ I ([𝑥]𝐵)}

< 𝛿 ⋅ ∑{

󵄨󵄨󵄨󵄨[𝑦]𝐴
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝐵
󵄨󵄨󵄨󵄨

: [𝑦]
𝐴
∈ I ([𝑥]𝐵)}

= 𝛿.

(13)

Therefore 𝑙
𝑖
∉ 𝜂
𝛿

𝐵
(𝑥), which is a contradiction.

Thus we conclude that 𝜂𝛿
𝐴
(𝑥) = 𝜂

𝛿

𝐵
(𝑥) for any 𝑥 ∈ 𝑈.

According to Definition 8, we have that 𝐵 is a consistent 𝛿-
confidence set.

Theorem 10 provides an approach to judge whether a sub-
set of attributes is a consistent 𝛿-confidence set in multilabel
decision tables. Now we present a method for computing all
𝛿-confidence reducts. First, we give the following notion.

Definition 11. Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table
and 𝑈/𝑅

𝐴
= {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
}. One denotes

Δ
𝛿
= {([𝑥]𝐴, [𝑦]𝐴) : 𝜂

𝛿

𝐴
(𝑥) ̸= 𝜂

𝛿

𝐴
(𝑦)} . (14)

By 𝑎
𝑘
(𝑋
𝑖
) the value of 𝑎

𝑘
with respect to the objects in𝑋

𝑖
.

Define

𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
)

= {
{𝑎
𝑘
∈ 𝐴 : 𝑎

𝑘
(𝑋
𝑖
) ̸= 𝑎
𝑘
(𝑋
𝑗
)} , (𝑋

𝑖
, 𝑋
𝑗
) ∈ Δ
𝛿
;

𝐴, (𝑋
𝑖
, 𝑋
𝑗
) ∉ Δ
𝛿
.

(15)

Then 𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
) is called 𝛿-confidence discernibility

attribute sets. And M𝛿 = (𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
), 𝑖, 𝑗 ≤ 𝑚) is called the

𝛿-confidence discernibility matrix.
For the 𝛿-confidence discernibility matrix, we have the

following property.

Theorem 12. The discernibility matrix M𝛿 = (𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
),

𝑖, 𝑗 ≤ 𝑚) satisfies the following properties:

(1) M𝛿 is a symmetric matrix; that is, for any 𝑖, 𝑗 ≤ 𝑚,
𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
) = 𝑀

𝛿
(𝑋
𝑗
, 𝑋
𝑖
);

(2) elements in themain diagonals are all𝐴; that is, for any
𝑖 ≤ 𝑚,𝑀𝛿(𝑋

𝑖
, 𝑋
𝑖
) = 𝐴;

(3) for any 𝑖, 𝑠, 𝑗 ≤ 𝑚, 𝑀𝛿(𝑋
𝑖
, 𝑋
𝑗
) ⊆ 𝑀

𝛿
(𝑋
𝑖
, 𝑋
𝑠
) ∪

𝑀
𝛿
(𝑋
𝑠
, 𝑋
𝑗
).

Proof. The proofs of (1) and (2) are straightforward. We only
need to prove (3). If there exists 𝑎

𝑘
∈ 𝐴 such that 𝑎

𝑘
∈

𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
) but 𝑎

𝑘
∉ 𝑀

𝛿
(𝑋
𝑖
, 𝑋
𝑠
) ∪ 𝑀

𝛿
(𝑋
𝑠
, 𝑋
𝑗
), that is,

𝑎
𝑘
∉ 𝑀

𝛿
(𝑋
𝑖
, 𝑋
𝑠
) and 𝑎

𝑘
∉ 𝑀

𝛿
(𝑋
𝑠
, 𝑋
𝑗
), then according

to Definition 11, we have 𝑎
𝑘
(𝑋
𝑖
) = 𝑎

𝑘
(𝑋
𝑠
) and 𝑎

𝑘
(𝑋
𝑠
) =

𝑎
𝑘
(𝑋
𝑗
). Thus 𝑎

𝑘
(𝑋
𝑖
) = 𝑎

𝑘
(𝑋
𝑗
); that is, 𝑎

𝑘
∉ 𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
), a

contradiction.

In the following, we establish some connections between
consistent 𝛿-confidence set and discernibility matrix.

Theorem 13. Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table,
𝐵 ⊆ 𝐴 and 𝛿 ∈ [0, 1]. Then, 𝐵 is a consistent 𝛿-confidence set
if and only if 𝐵 ∩𝑀𝛿(𝑋

𝑖
, 𝑋
𝑗
) ̸= 0 for all (𝑋

𝑖
, 𝑋
𝑗
) ∈ Δ
𝛿.

Proof. “⇒” For any (𝑋
𝑖
, 𝑋
𝑗
) ∈ Δ
𝛿, there exist 𝑥, 𝑦 ∈ 𝑈, such

that 𝑋
𝑖
= [𝑥]

𝐴
and 𝑋

𝑗
= [𝑦]

𝐴
. From the definition of Δ𝛿,

we have 𝜂𝛿
𝐴
(𝑥) ̸= 𝜂

𝛿

𝐴
(𝑦). Since 𝐵 is a consistent 𝛿-confidence

set, we have [𝑥]
𝐵
∩[𝑦]
𝐵
= 0 fromTheorem 10.Therefore there

exists 𝑎
𝑘
∈ 𝐵 such that 𝑎

𝑘
(𝑥) ̸= 𝑎

𝑘
(𝑦); that is, 𝑎

𝑘
(𝑋
𝑖
) ̸= 𝑎
𝑘
(𝑋
𝑗
).

Hence 𝑎
𝑘
∈ 𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
); that is, 𝐵 ∩𝑀𝛿(𝑋

𝑖
, 𝑋
𝑗
) ̸= 0.

“⇐” Let (𝑋
𝑖
, 𝑋
𝑗
) ∈ Δ
𝛿. Since 𝐵 ∩ 𝑀𝛿(𝑋

𝑖
, 𝑋
𝑗
) ̸= 0, for all

(𝑋
𝑖
, 𝑋
𝑗
) ∈ Δ
𝛿, there exists 𝑎

𝑙
∈ 𝐵 such that 𝑎

𝑙
∈ 𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
).
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Then we have 𝑎
𝑙
(𝑋
𝑖
) ̸= 𝑎

𝑙
(𝑋
𝑗
); that is, 𝑎

𝑙
(𝑥) ̸= 𝑎

𝑙
(𝑦) for

[𝑥]
𝐴
= 𝑋
𝑖
and [𝑦]

𝐴
= 𝑋
𝑗
. It means [𝑥]

𝐵
∩ [𝑦]
𝐵
= 0. We

then conclude that if (𝑋
𝑖
, 𝑋
𝑗
) ∈ Δ

𝛿, that is, 𝜂𝛿
𝐴
(𝑥) ̸= 𝜂

𝛿

𝐴
(𝑦),

then [𝑥]
𝐵
∩ [𝑦]
𝐵
= 0. It follows from Theorem 10 that 𝐵 is a

consistent 𝛿-confidence set.

Next we introduce the concept of discernibility function
which helps us to compute 𝛿-confidence reduct.

Definition 14. Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table,
let 𝛿 ∈ [0, 1], and let M𝛿 = (𝑀

𝛿
(𝑋
𝑖
, 𝑋
𝑗
), 𝑖, 𝑗 ≤ 𝑚) be the 𝛿-

confidence discernibility matrix, where𝐴 = {𝑎
1
, . . . , 𝑎

𝑝
}. A 𝛿-

confidence discernibility function𝐹𝛿
𝑆
for amultilabel decision

table 𝑆 is a boolean function of 𝑝 boolean variables 𝑎
1
, . . . , 𝑎

𝑝

corresponding to the attributes 𝑎
1
, . . . , 𝑎

𝑝
, respectively, and is

defined as follows:

𝐹
𝛿

𝑆
(𝑎
1
, . . . , 𝑎

𝑝
) = ⋀{⋁𝑀

𝛿
(𝑋
𝑖
, 𝑋
𝑗
) , 𝑖, 𝑗 ≤ 𝑚}

= ⋀{⋁𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
) , (𝑋
𝑖
, 𝑋
𝑗
) ∈ Δ
𝛿
} ,

(16)

where⋁𝑀
𝛿
(𝑋
𝑖
, 𝑋
𝑗
) is the disjunction of all variables 𝑎 such

that 𝑎 ∈ 𝑀𝛿(𝑋
𝑖
, 𝑋
𝑗
).

In the sequel we will write 𝑎
𝑖
instead of 𝑎

𝑖
when no

confusion arises. Furthermore, according to related logical
knowledge, we have the following theorem.

Theorem 15. Let 𝑆 = (𝑈, 𝐴, 𝐿) be a multilabel decision table.
Then an attribute subset 𝐵 of 𝐴 is a 𝛿-confidence reduct of 𝑆 if
and only if ∧𝐵 is a prime implicant of 𝑆.

Theorem 15 provides a discernibility matrix based
method to compute all 𝛿-confidence reducts. The following
example illustrates the validity of the approach.

Example 16. Consider the multilabel decision table given by
Table 1. We have 𝑈/𝑅

𝐴
= {𝑋
1
, . . . , 𝑋

5
}, where

𝑋
1
= {𝑥
1
, 𝑥
3
} ,

𝑋
2
= {𝑥
2
} ,

𝑋
3
= {𝑥
4
, 𝑥
5
, 𝑥
7
} ,

𝑋
4
= {𝑥
6
} ,

𝑋
5
= {𝑥
8
, 𝑥
9
} .

(17)

According to the calculation results of 𝜂0.6
𝐴
(𝑥) in Example 6,

we have

Δ
0.6
= {(𝑋

1
, 𝑋
3
) , (𝑋
1
, 𝑋
4
) , (𝑋
1
, 𝑋
5
) , (𝑋
2
, 𝑋
3
) ,

(𝑋
2
, 𝑋
4
) , (𝑋
2
, 𝑋
5
) , (𝑋
3
, 𝑋
4
) , (𝑋
3
, 𝑋
5
) , (𝑋
4
, 𝑋
5
)} .

(18)

Table 2: The 𝛿-confidence discernibility matrixM.

𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
1

𝑋
2

𝑎, 𝑏, 𝑐

𝑋
3

𝑎, 𝑏 𝑎, 𝑏, 𝑐

𝑋
4

𝑎, 𝑏, 𝑐 𝑎, 𝑏 𝑎, 𝑏, 𝑐

𝑋
5

𝑏 𝑏, 𝑐 𝑎 𝑎, 𝑏, 𝑐

Note that 𝜂0.6
𝐴
(𝑥
1
) = 𝜂
0.6

𝐴
(𝑥
2
) = 𝜂
0.6

𝐴
(𝑥
3
). Therefore (𝑋

1
, 𝑋
2
) ∉

Δ
0.6.
We can calculate the 𝛿-confidence discernibility matrix

shown in Table 2.
Consequently, we have

𝐹 = (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑏) ∧ (𝑎) ∧ (𝑏) ∧ (𝑏 ∨ 𝑐)

= 𝑎 ∧ 𝑏.

(19)

By Theorem 15 we derive that {𝑎, 𝑏} is the unique 0.6-
confidence reduct which accords with the results in Exam-
ple 9.

5. Conclusion

The 𝛿-confidence reduct presented in this paper is an
attribute reduction method designed for multilabel deci-
sion tables. Compared with the existing attribute reduction
methods, the 𝛿-confidence reduct accurately characterizes
uncertainty implied among labels; thus it is more appropri-
ate for multilabel data. Moreover we proposed the corre-
sponding discernibility matrix based method to compute 𝛿-
confidence reduct, which is significant in both the theoretic
and applied perspectives. In further research, the property of
𝛿-confidence reduct and corresponding heuristic algorithm
will be considered.
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