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This paper presents two methods for dual-rate sampled-data nonlinear output-error systems. One method is the missing output
estimation based stochastic gradient identification algorithm and the other method is the auxiliary model based stochastic gradient
identification algorithm. Different from the polynomial transformation based identification methods, the two methods in this
paper can estimate the unknown parameters directly. A numerical example is provided to confirm the effectiveness of the proposed
methods.

1. Introduction

System identification plays an important part in many
engineering applications [1–6]. Many identification methods
assume that the input-output data at every sampling instant
are available for linear systems [7–11] and nonlinear systems
[12–20], which is usually not the case in practice. When
the input and output signals of the systems have different
sampling rates, these systems are usually called irregularly
sampled-data systems [21–27], for example, dual-rate or
multirate systems [28–30]. Dual-rate/multirate systems in
which the input and the output are sampled at different
frequencies arise widely in robust filtering and control [31–
33], adaptive control [34–37], and system identification [38–
43]. In the literature of dual-rate system identification, the so-
called polynomial transformation technique is often used to
transform the dual-rate model [44, 45].

As far as we know, the identification methods based
on the polynomial transformation technique cannot directly
estimate the parameters of the dual-rate system and the
number of the unknown parameters to be estimated is more
than the number of the unknown parameters of the original
dual-rate system.

The nonlinear system consisting of a static nonlin-
ear block followed by a linear dynamic system is called

a Hammerstein system [46–49]. The nonlinearity of the
Hammerstein system is usually expressed by some known
basis functions [50, 51] or by a piece-wise polynomial func-
tion [52, 53]. When the Hammerstein system is a dual-rate
system and has a preload nonlinearity, to the best of our
knowledge, there is nowork on identification of such systems.
The main contributions of this paper are presenting the two
methods directly for estimating the parameters of the dual-
rate system.Theproposedmethods of this paper can combine
the auxiliary model identification methods [54–57], the iter-
ative identification methods [58–62], the multi-innovation
identification methods [63–70], the hierarchical identifi-
cation methods [71–83], and the two-stage or multistage
identification methods [84, 85] to study identification prob-
lems for other linear systems [86–90] or nonlinear systems
[91–97].

The rest of this paper is organized as follows. Section 2
introduces the dual-rate nonlinear output-error systems.
Section 3 gives a missing output identification model based
stochastic gradient algorithm. Section 4 provides an auxiliary
model based stochastic gradient algorithm. Section 5 intro-
duces an illustrative example. Finally, concluding remarks are
given in Section 6.
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2. Problem Formulation

Let “𝐴 =: 𝑋” or “𝑋 := 𝐴” stand for “𝐴 is defined as𝑋,” let the
norm of a column vector 𝑋 be ‖X‖

2
:= tr[XTX], and let the

superscript T denote the matrix transpose.
Consider the following dual-rate nonlinear output-error

system with colored noise:

𝑦 (𝑡) =
𝐵 (𝑧)

𝐴 (𝑧)
𝑓 (𝑢 (𝑡)) + V (𝑡) , (1)

where𝑦(𝑡) is the systemoutput,𝑢(𝑡) is the system input, V(𝑡) is
a stochastic white noise with zeromean,𝐴(𝑧) and𝐵(𝑧) are the
polynomials in the unit backward shift operator [𝑧

−1
𝑦(𝑡) =

𝑦(𝑡 − 1)],

𝐴 (𝑧) = 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑎
𝑛
𝑧
−𝑛

,

𝐵 (𝑧) = 𝑏
1
𝑧
−1

+ 𝑏
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
𝑧
−𝑛

,

(2)

and 𝑓(𝑢(𝑡)) is a preload nonlinearity shown in Figure 1 and
can be expressed as [98, 99]

𝑓 (𝑢 (𝑡)) =

{{

{{

{

𝑢 (𝑡) + 𝑚
1
, 𝑢 (𝑡) > 0,

0, 𝑢 (𝑡) = 0,

𝑢 (𝑡) − 𝑚
2
, 𝑢 (𝑡) < 0,

(3)

where 𝑚
1
and −𝑚

2
are two preload points.

For the dual-rate sampled-data system, all the input data
{𝑢(𝑡), 𝑡 = 0, 1, 2, . . .} and only the scarce output data {𝑦(𝑡𝑞),
𝑡 = 0, 1, 2, . . . , (𝑞 ⩾ 2)} are known. The intersample outputs
ormissing outputs 𝑦(𝑡𝑞+𝑗), 𝑗 = 1, 2, . . . , 𝑞−1 are unavailable.

Define a sign function

sgn (𝑢 (𝑡)) :=

{{

{{

{

1, if 𝑢 (𝑡) > 0,

0, if 𝑢 (𝑡) = 0,

−1, if 𝑢 (𝑡) < 0.

(4)

Then the function 𝑓(𝑢(𝑡)) can be expressed as

𝑓 (𝑢 (𝑡)) = 𝑢 (𝑡) +
𝑚
1
+ 𝑚
2

2
sgn (𝑢 (𝑡))

+
𝑚
1
− 𝑚
2

2
sgn (𝑢

2
(𝑡)) .

(5)

Let

𝑔
1
=

𝑚
1
+ 𝑚
2

2
, 𝑔

2
=

𝑚
1
− 𝑚
2

2
. (6)

Hence, we have
𝑓 (𝑢 (𝑡)) = 𝑢 (𝑡) + 𝑔

1
sgn (𝑢 (𝑡)) + 𝑔

2
sgn (𝑢

2
(𝑡)) . (7)

Once 𝑔
1
and 𝑔

2
are estimated, the parameters𝑚

1
and𝑚

2
can

be computed by 𝑚
1
= 𝑔
1
+ 𝑔
2
, 𝑚
2
= 𝑔
1
− 𝑔
2
.

3. The Missing Outputs Identification Model
Based Stochastic Gradient Algorithm

Substituting (7) into (1) gets

𝐴 (𝑧) 𝑦 (𝑡) = 𝐵 (𝑧) (𝑢 (𝑡) + 𝑔
1
sgn (𝑢 (𝑡)) + 𝑔

2
sgn (𝑢

2
(𝑡)))

+ 𝐴 (𝑧) V (𝑡) .

(8)

m1

−m2
u

f(u)

Figure 1: The preload characteristics.

Define the parameter vector 𝜃 and information vector 𝜑
1
(𝑡)

as

𝜃 := [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
, 𝑏
1
𝑔
1
, 𝑏
2
𝑔
1
, . . . ,

𝑏
𝑛
𝑔
1
, 𝑏
1
𝑔
2
, 𝑏
2
𝑔
2
, . . . , 𝑏

𝑛
𝑔
2
]
T
∈ R
4𝑛
,

(9)

𝜑
1
(𝑡) := [ − 𝑦 (𝑡 − 1) + V (𝑡 − 1) ,

− 𝑦 (𝑡 − 2) + V (𝑡 − 2) , . . . , −𝑦 (𝑡 − 𝑛) + V (𝑡 − 𝑛) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛) ,

sgn (𝑢 (𝑡 − 1)) , sgn (𝑢 (𝑡 − 2)) , . . . ,

sgn (𝑢 (𝑡 − 𝑛)) , sgn (𝑢
2
(𝑡 − 1)) ,

sgn (𝑢
2
(𝑡 − 2)) , . . . , sgn (𝑢

2
(𝑡 − 𝑛))]

T
∈ R
4𝑛
.

(10)

From (9) and (10), we get

𝑦 (𝑡) = 𝜑
T
1
(𝑡) 𝜃 + V (𝑡) (11)

or

𝑦 (𝑡𝑞) = 𝜑
T
1
(𝑡𝑞) 𝜃 + V (𝑡𝑞) . (12)

Let �̂�(𝑡) be the estimate of 𝜃. Defining and minimizing the
cost function

𝐽 (𝜃) := [𝑦(𝑡𝑞) − 𝜑
T
1
(𝑡𝑞)𝜃]

2 (13)

give the following stochastic gradient (SG) algorithm for
estimating 𝜃:

�̂� (𝑡𝑞) = �̂� (𝑡𝑞 − 𝑞) +
�̂�
1
(𝑡𝑞)

𝑟
1
(𝑡𝑞)

𝑒
1
(𝑡𝑞) , (14)

�̂� (𝑡𝑞 − 𝑖) = �̂� (𝑡𝑞 − 𝑞) , 𝑖 = 𝑞 − 1, 𝑞 − 2, . . . , 1,

𝑒
1
(𝑡𝑞) = 𝑦 (𝑡𝑞) − �̂�

T
1
(𝑡𝑞) �̂� (𝑡𝑞 − 𝑞) ,

(15)
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�̂�
1
(𝑡𝑞) = [ − 𝑦 (𝑡𝑞 − 1) + V̂ (𝑡𝑞 − 1) ,

− 𝑦 (𝑡𝑞 − 2) + V̂ (𝑡𝑞 − 2) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑛) + V̂ (𝑡𝑞 − 𝑛) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛) ,

sgn (𝑢 (𝑡 − 1)) , sgn (𝑢 (𝑡 − 2)) , . . . ,

sgn (𝑢 (𝑡 − 𝑛)) , sgn (𝑢
2
(𝑡 − 1)) ,

sgn (𝑢
2
(𝑡 − 2)) , . . . , sgn (𝑢

2
(𝑡 − 𝑛))]

T
,

(16)

V̂ (𝑡𝑞 − 𝑖) = 𝑦 (𝑡𝑞 − 𝑖) − �̂�
T
1
(𝑡𝑞 − 𝑖) �̂� (𝑡𝑞 − 𝑖) , (17)

𝑟
1
(𝑡𝑞) = 𝑟

1
(𝑡𝑞 − 𝑞) +

�̂�1(𝑡𝑞)


2

, 𝑟 (0) = 1. (18)

Since the information �̂�
1
(𝑡𝑞) on the right-hand sides of (16)

contains the unknown variables −𝑦(𝑡𝑞 − 𝑖) + V̂(𝑡𝑞 − 𝑖), 𝑖 =

𝑞 − 1, 𝑞 − 2, . . . , 1, the SG algorithm in (14)–(18) is impossible
to implement. In this section, we use the missing outputs
identification model (MOI) to overcome this difficulty; these
unknown −𝑦(𝑡𝑞 − 𝑖) + V̂(𝑡𝑞 − 𝑖) are replaced with the output
estimates −𝑦(𝑡𝑞 − 𝑖) + V̂(𝑡𝑞 − 𝑖) of an MOI model,

− 𝑦 (𝑡𝑞 − 𝑖) + V̂ (𝑡𝑞 − 𝑖) = −�̂�
T
1
(𝑡𝑞 − 𝑖) �̂� (𝑡𝑞 − 𝑖) ,

𝑖 = 𝑞 − 1, 𝑞 − 2, . . . , 1,

�̂�
1
(𝑡𝑞 − 𝑖 + 1)

= [ − 𝑦 (𝑡𝑞 − 𝑖) + V̂ (𝑡𝑞 − 𝑖) ,

− 𝑦 (𝑡𝑞 − 𝑖 − 1) + V̂ (𝑡𝑞 − 𝑖 − 1) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑞 + 1) + V̂ (𝑡𝑞 − 𝑞 + 1) ,

− 𝑦 (𝑡𝑞 − 𝑞) + V̂ (𝑡𝑞 − 𝑞) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑖 + 1 − 𝑛) + V̂ (𝑡𝑞 − 𝑖 + 1 − 𝑛) ,

𝑢 (𝑡𝑞 − 𝑖) , 𝑢 (𝑡𝑞 − 𝑖 − 1) , . . . ,

𝑢 (𝑡𝑞 − 𝑖 + 1 − 𝑛) , sgn (𝑢 (𝑡𝑞 − 𝑖)) ,

sgn (𝑢 (𝑡𝑞 − 𝑖 − 1)) , . . . ,

sgn (𝑢 (𝑡𝑞 − 𝑖 + 1 − 𝑛)) , sgn (𝑢
2
(𝑡𝑞 − 𝑖)) ,

sgn (𝑢
2
(𝑡𝑞 − 𝑖 − 1)) , . . . ,

sgn (𝑢
2
(𝑡𝑞 − 𝑖 + 1 − 𝑛))]

T
,

(19)

where −𝑦(𝑡𝑞− 𝑖) + V̂(𝑡𝑞 − 𝑖) represents the estimate of −𝑦(𝑡𝑞−

𝑖) + V(𝑡𝑞 − 𝑖) at time 𝑡𝑞 − 𝑖, �̂�(𝑡𝑞 − 𝑖) represents the estimate
of 𝜃 at time 𝑡𝑞 − 𝑖, and �̂�

1
(𝑡𝑞 − 𝑖) represents the estimate of

𝜑
1
(𝑞 − 𝑖).

Thus, we have the following missing output estimates
based SG (MOE-SG) algorithm for estimating the parameter
vector 𝜃 in (9):

�̂� (𝑡𝑞) = �̂� (𝑡𝑞 − 𝑞) +
�̂�
1
(𝑡𝑞)

𝑟
1
(𝑡𝑞)

𝑒
2
(𝑡𝑞) , (20)

�̂� (𝑡𝑞 − 𝑖) = �̂� (𝑡𝑞 − 𝑞) , 𝑖 = 𝑞 − 1, 𝑞 − 2, . . . , 1, (21)

−𝑦 (𝑡𝑞 − 𝑖) + V̂ (𝑡𝑞 − 𝑖) = −�̂�
T
1
(𝑡𝑞 − 𝑖) �̂� (𝑡𝑞 − 𝑖) , (22)

�̂�
1
(𝑡𝑞 − 𝑖 + 1)

= [ − 𝑦 (𝑡𝑞 − 𝑖) + V̂ (𝑡𝑞 − 𝑖) ,

− 𝑦 (𝑡𝑞 − 𝑖 − 1) + V̂ (𝑡𝑞 − 𝑖 − 1) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑞 + 1) + V̂ (𝑡𝑞 − 𝑞 + 1) ,

− 𝑦 (𝑡𝑞 − 𝑞) + V̂ (𝑡𝑞 − 𝑞) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑖 + 1 − 𝑛) + V̂ (𝑡𝑞 − 𝑖 + 1 − 𝑛) ,

𝑢 (𝑡𝑞 − 𝑖) , 𝑢 (𝑡𝑞 − 𝑖 − 1) , . . . ,

𝑢 (𝑡𝑞 − 𝑖 + 1 − 𝑛) , sgn (𝑢 (𝑡𝑞 − 𝑖)) ,

sgn (𝑢 (𝑡𝑞 − 𝑖 − 1)) , . . . , sgn (𝑢 (𝑡𝑞 − 𝑖 + 1 − 𝑛)) ,

sgn (𝑢
2
(𝑡𝑞 − 𝑖)) , sgn (𝑢

2
(𝑡𝑞 − 𝑖 − 1)) , . . . ,

sgn (𝑢
2
(𝑡𝑞 − 𝑖 + 1 − 𝑛))]

T
,

(23)

𝑒
1
(𝑡𝑞) = 𝑦 (𝑡𝑞) − �̂�

T
1
(𝑡𝑞) �̂� (𝑡𝑞 − 𝑞) , (24)

𝑟
1
(𝑡𝑞) = 𝑟

1
(𝑡𝑞 − 𝑞) +

�̂�1(𝑡𝑞)


2

, 𝑟 (0) = 1. (25)

The steps of computing the parameter estimate �̂�(𝑡𝑞) by the
MOE-SG algorithm are listed as follows.

(1) Let 𝑢(−𝑗) = 0, 𝑦(−𝑗) = 0, 𝑗 = 0, 1, 2, . . . , 𝑛 − 1, and
give a small positive number 𝜀.

(2) Let 𝑡 = 1, 𝑟(0) = 1, and �̂�(0) = 1/𝑝
0
with 1 being

a column vector whose entries are all unity and 𝑝
0
=

10
6.

(3) Collect the input data 𝑢(𝑡𝑞), 𝑢(𝑡𝑞 − 1), . . . , 𝑢(𝑡𝑞 − 𝑛),
and collect the output data 𝑦(𝑡𝑞).

(4) Let 𝑖 = 𝑞−1 and compute −𝑦(𝑡𝑞−𝑖)+ V̂(𝑡𝑞− 𝑖) by (22).
(5) Form �̂�

1
(𝑡𝑞 − 𝑖 + 1) by (23).

(6) Decrease 𝑖 by 1; if 𝑖 ⩾ 1, go to step (4); otherwise, go
to the next step.

(7) Compute 𝑒
1
(𝑡𝑞) and 𝑟

1
(𝑡𝑞) by (24) and (25), respec-

tively.
(8) Update the parameter estimation vector �̂�(𝑡𝑞) by (20).
(9) Compare �̂�(𝑡𝑞) and �̂�(𝑡𝑞 − 𝑞); if ‖�̂�(𝑡𝑞) − �̂�(𝑡𝑞 − 𝑞)‖ ⩽

𝜀, then terminate the procedure and obtain the �̂�(𝑡𝑞);
otherwise, increase 𝑡 by 1 and go to step (3).
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Start

Initialize: t = 1

Update I/O data
u(tq) and y(tq)

Initialize: i = q − 1

Compute −ŷ(tq − i) +

�̂(tq − i)

Form �̂�1(tq − i + 1)

i:= i − 1

Yes

Yes

i 1?

No

No

t:= t + 1

Compute e1(tq) and r1(tq)

Update (tq)

‖ (tq) − (tq − q)‖ 𝜀?

End

�̂�

�̂� �̂�

⩾

⩽

Figure 2: The flowchart of computing the estimate �̂�(𝑡𝑞).

The flowchart of computing the MOE-SG parameter
estimate �̂�(𝑡𝑞) is shown in Figure 2.

4. The Auxiliary Model Based Stochastic
Gradient Algorithm

Define

𝑥 (𝑡) =
𝐵 (𝑧)

𝐴 (𝑧)
(𝑢 (𝑡) + 𝑔

1
sgn (𝑢 (𝑡)) + 𝑔

2
sgn (𝑢

2
(𝑡))) .

(26)

From (8) and (26), we have

𝑦 (𝑡) = 𝑥 (𝑡) + V (𝑡) . (27)

Define the information vector 𝜑
2
(𝑡) as

𝜑
2
(𝑡) := [ − 𝑥 (𝑡 − 1) , −𝑥 (𝑡 − 2) , . . . , −𝑥 (𝑡 − 𝑛) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛) ,

sgn (𝑢 (𝑡 − 1)) , sgn (𝑢 (𝑡 − 2)) , . . . ,

sgn (𝑢 (𝑡 − 𝑛)) ,

sgn (𝑢
2
(𝑡 − 1)) , sgn (𝑢

2
(𝑡 − 2)) , . . . ,

sgn (𝑢
2
(𝑡 − 𝑛))]

T
∈ R
4𝑛
.

(28)

Then we get

𝑥 (𝑡) = 𝜑
T
2
(𝑡) 𝜃, (29)

𝑦 (𝑡) = 𝜑
T
2
(𝑡) 𝜃 + V (𝑡) . (30)

Assume 𝑡 is an integer multiple of 𝑞 and rewrite (30) as

𝑦 (𝑡𝑞) = 𝜑
T
2
(𝑡𝑞) 𝜃 (𝑡𝑞) + V (𝑡𝑞) . (31)

Let �̂�(𝑡) be the estimate of 𝜃. Defining andminimizing the
cost function

𝐽 (𝜃) := [𝑦(𝑡𝑞) − 𝜑
T
2
(𝑡𝑞)𝜃]

2 (32)

give the following SG algorithm of estimating 𝜃:

�̂� (𝑡𝑞) = �̂� (𝑡𝑞 − 𝑞) +
𝜑
2
(𝑡𝑞)

𝑟
2
(𝑡𝑞)

𝑒
2
(𝑡𝑞) , (33)

𝑒
2
(𝑡𝑞) = 𝑦 (𝑡𝑞) − 𝜑

T
2
(𝑡𝑞) �̂� (𝑡𝑞 − 𝑞) , (34)

𝜑
2
(𝑡𝑞) = [ − 𝑥 (𝑡𝑞 − 1) , −𝑥 (𝑡𝑞 − 2) , . . . , −𝑥 (𝑡𝑞 − 𝑛) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛) ,

sgn (𝑢 (𝑡 − 1)) , sgn (𝑢 (𝑡 − 2)) , . . . ,

sgn (𝑢 (𝑡 − 𝑛)) ,

sgn (𝑢
2
(𝑡 − 1)) , sgn (𝑢

2
(𝑡 − 2)) , . . . ,

sgn(𝑢2(𝑡 − 𝑛))]
T
,

(35)

𝑟
2
(𝑡𝑞) = 𝑟

2
(𝑡𝑞 − 𝑞) +

𝜑2(𝑡𝑞)


2

, 𝑟 (0) = 1. (36)

Because of the unknown variables 𝑥(𝑡𝑞 − 𝑖) in (33), the SG
algorithm in (33)–(36) is impossible to implement. In this
section, we use the auxiliary model; these unknown 𝑥(𝑡𝑞 − 𝑖)

are replaced with the outputs 𝑥
𝑎
(𝑡𝑞− 𝑖) of an auxiliary model,

𝑥
𝑎
(𝑡𝑞 − 𝑖) = 𝜃

T
𝑎
(𝑡𝑞 − 𝑖)𝜑

𝑎
(𝑡𝑞 − 𝑖) , (37)

where 𝜃
𝑎
(𝑡𝑞 − 𝑖) is the estimate �̂�(𝑡𝑞 − 𝑖) of 𝜃 and 𝜑

𝑎
(𝑡𝑞 − 𝑖) is

the estimate �̂�
2
(𝑡𝑞−𝑖) of𝜑

2
(𝑡𝑞−𝑖). We can obtain an auxiliary

model based stochastic gradient (AM-SG) algorithm:

�̂� (𝑡𝑞) = �̂� (𝑡𝑞 − 𝑞) +
�̂�
2
(𝑡𝑞)

𝑟
2
(𝑡𝑞)

𝑒
2
(𝑡𝑞) , (38)

�̂� (𝑡𝑞 − 𝑖) = �̂� (𝑡𝑞 − 𝑞) , 𝑖 = 𝑞 − 1, 𝑞 − 2, . . . , 1, (39)

𝑥
𝑎
(𝑡𝑞 − 𝑖) = �̂�

T
(𝑡𝑞 − 𝑖) �̂�

2
(𝑡𝑞 − 𝑖) , (40)
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�̂�
2
(𝑡𝑞 − 𝑖 + 1) = [ − 𝑥

𝑎
(𝑡𝑞 − 𝑖) , −𝑥

𝑎
(𝑡𝑞 − 𝑖 − 1) , . . . ,

− 𝑥
𝑎
(𝑡𝑞 − 𝑖 + 1 − 𝑛) ,

𝑢 (𝑡 − 𝑖) , 𝑢 (𝑡 − 𝑖 − 1) , . . . ,

𝑢 (𝑡 − 𝑖 + 1 − 𝑛) ,

sgn (𝑢 (𝑡 − 𝑖)) , sgn (𝑢 (𝑡 − 𝑖 − 1)) , . . . ,

sgn (𝑢 (𝑡 − 𝑖 + 1 − 𝑛)) ,

sgn (𝑢
2
(𝑡 − 𝑖)) ,

sgn (𝑢
2
(𝑡 − 𝑖 − 1)) , . . . ,

sgn(𝑢2(𝑡 − 𝑖 + 1 − 𝑛))]
T
,

(41)

𝑒
2
(𝑡𝑞) = 𝑦 (𝑡𝑞) − �̂�

T
2
(𝑡𝑞) �̂� (𝑡𝑞 − 𝑞) , (42)

𝑟
2
(𝑡𝑞) = 𝑟

2
(𝑡𝑞 − 𝑞) +

�̂�2(𝑡𝑞)


2

, 𝑟 (0) = 1. (43)

The steps of computing the parameter estimate �̂�(𝑡𝑞) by the
AM-SG algorithm are listed as follows.

(1) Let𝑢(−𝑗) = 0,𝑦(−𝑗) = 0,𝑥(−𝑗) = 0, 𝑗 = 0, 1, 2, . . . , 𝑛−

1, and give a small positive number 𝜀.

(2) Let 𝑡 = 1, 𝑟(0) = 1, and �̂�(0) = 1/𝑝
0
with 1 being

a column vector whose entries are all unity and 𝑝
0
=

10
6.

(3) Collect the input data 𝑢(𝑡𝑞), 𝑢(𝑡𝑞 − 1), . . . , 𝑢(𝑡𝑞 − 𝑛),
and collect the output data 𝑦(𝑡𝑞).

(4) Let 𝑖 = 𝑞 − 1 and compute 𝑥
𝑎
(𝑡𝑞 − 𝑖) by (40).

(5) Form �̂�
2
(𝑡𝑞 − 𝑖 + 1) by (41).

(6) Decrease 𝑖 by 1; if 𝑖 ⩾ 1, go to step (4); otherwise, go
to next step.

(7) Compute 𝑒
2
(𝑡𝑞) and 𝑟

2
(𝑡𝑞) by (42) and (43), respec-

tively.

(8) Update the parameter estimation vector �̂�(𝑡𝑞) by (38).

(9) Compare �̂�(𝑡𝑞) and �̂�(𝑡𝑞 − 𝑞); if ‖�̂�(𝑡𝑞) − �̂�(𝑡𝑞 − 𝑞)‖ ⩽

𝜀, then terminate the procedure and obtain the �̂�(𝑡𝑞);
otherwise, increase 𝑡 by 1 and go to step (3).

The flowchart of computing the AM-SG parameter esti-
mate �̂�(𝑡𝑞) is shown in Figure 3.

Remark 1. Compared with the polynomial transformation
technique, theMOE-SGmethod and theAM-SGmethod can
estimate the unknown parameters directly.

Start

Yes

No

Yes
End

No

Initialize: t = 1

Update I/O data
u(tq) and y(tq)

Initialize: i = q − 1

Compute xa(tq − i)

Form �̂�2(tq − i + 1)

i 1?

Compute e2(tq) and r2(tq)

Update (tq)

‖ (tq) − (tq − q)‖ 𝜀?

t:= t + 1

i:= i − 1

�̂�

�̂�

�̂� ⩽

⩾

Figure 3: The flowchart of computing the estimate �̂�
2
(𝑡𝑞).

5. Example

Consider the following nonlinear output-error system with
the updating period 𝑞 = 2:

𝑦 (𝑡) =
𝐵 (𝑧)

𝐴 (𝑧)
𝑓 (𝑢 (𝑡)) + V (𝑡) ,

𝐴 (𝑧) = 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

= 1 + 0.49𝑧
−1

− 0.2𝑧
−2

,

𝐵 (𝑧) = 𝑏
1
𝑧
−1

+ 𝑏
2
𝑧
−2

= 0.2𝑧
−1

+ 0.4𝑧
−2

,

𝑓 (𝑢 (𝑡)) = 𝑢 (𝑡) +
𝑚
1
+ 𝑚
2

2
sgn (𝑢 (𝑡))

+
𝑚
1
− 𝑚
2

2
sgn (𝑢

2
(𝑡))

= 𝑢 (𝑡) +
0.5 + 0.3

2
sgn (𝑢 (𝑡))

+
0.5 − 0.3

2
sgn (𝑢

2
(𝑡))
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Table 1: The MOE-SG algorithm estimates and errors.

𝑡 1000 2000 3000 4000 5000 True values
𝑎
1

0.30790 0.43409 0.48162 0.49513 0.49505 0.49000
𝑎
2

−0.16601 −0.20319 −0.20626 −0.20656 −0.20341 −0.20000
𝑏
1

0.19508 0.19548 0.19462 0.19665 0.19816 0.20000
𝑏
2

0.36487 0.39043 0.39879 0.40105 0.39987 0.40000
𝑏
1
𝑔
1

0.09729 0.09384 0.08995 0.08769 0.08705 0.08000
𝑏
2
𝑔
1

0.13565 0.14818 0.15401 0.15931 0.15867 0.16000
𝑏
1
𝑔
2

0.02161 0.02602 0.02558 0.02764 0.02770 0.02000
𝑏
2
𝑔
2

0.02641 0.03181 0.03127 0.03378 0.03385 0.04000
𝛿 (%) 26.70140 8.46344 2.72656 2.15284 1.91759

Table 2: The AM-SG algorithm estimates and errors.

𝑡 1000 2000 3000 4000 5000 True values
𝑎
1

0.39201 0.46141 0.50310 0.49802 0.48917 0.49000
𝑎
2

−0.18980 −0.19696 −0.19784 −0.20113 −0.20307 −0.20000
𝑏
1

0.18974 0.19349 0.19872 0.20192 0.20281 0.20000
𝑏
2

0.40122 0.41674 0.39648 0.40109 0.40350 0.40000
𝑏
1
𝑔
1

0.09799 0.08924 0.08427 0.08475 0.08276 0.08000
𝑏
2
𝑔
1

0.14716 0.15484 0.15489 0.16514 0.16040 0.16000
𝑏
1
𝑔
2

0.02005 0.02781 0.02034 0.02761 0.02600 0.02000
𝑏
2
𝑔
2

0.02674 0.03708 0.02712 0.03682 0.03467 0.04000
𝛿 (%) 14.27547 5.08770 2.79209 1.91002 1.41209

= 𝑢 (𝑡) + 𝑔
1
sgn (𝑢 (𝑡)) + 𝑔

2
sgn (𝑢

2
(𝑡))

= 𝑢 (𝑡) + 0.4 sgn (𝑢 (𝑡)) + 0.1 sgn (𝑢
2
(𝑡)) ;

(44)

the input {𝑢(𝑡)} is taken as a persistent excitation signal
sequence with zero mean and unit variance and {V(𝑡)} is a
white noise sequence with zero mean and variance 𝜎

2
=

0.10
2. The unknown parameters are as follows:

𝜃 = [𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
, 𝑏
1
𝑔
1
, 𝑏
2
𝑔
1
, 𝑏
1
𝑔
2
, 𝑏
2
𝑔
2
]
T

= [0.49, −0.2, 0.2, 0.4, 0.08, 0.16, 0.02, 0.04]
T
.

(45)

Applying the MOE-SG algorithm and the AM-SG algorithm
to estimate the parameters, the parameter estimates and their
errors based on the MOE-SG algorithm and the AM-SG
algorithm are shown in Tables 1 and 2 and the parameter
estimation errors 𝛿 := ‖�̂� − 𝜃‖/‖𝜃‖ versus 𝑡 are shown in
Figures 4 and 5.

From Tables 1 and 2 and Figures 4 and 5, we can draw the
following conclusions.

(1) Both the MOE-SG algorithm and the AM-SG algo-
rithm can estimate the unknown parameters directly.

(2) The parameter estimation errors become smaller and
smaller and go to zero with 𝑡 increasing.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

t

𝛿

Figure 4: The parameter estimation errors 𝛿 versus 𝑡 (MOE-SG).

6. Conclusions

Two identification methods for dual-rate nonlinear output-
error systems are presented to estimate the unknown param-
eters directly and can avoid estimating more parameters than
the original systems. Furthermore, the two methods can also
be extended to other systems such as

𝑦 (𝑡) =
𝐵 (𝑧)

𝐴 (𝑧)
𝑓 (𝑢 (𝑡)) +

𝐷 (𝑧)

𝐶 (𝑧)
V (𝑡) ,

𝐴 (𝑧) 𝑦 (𝑡) = 𝐵 (𝑧) 𝑓 (𝑢 (𝑡)) + 𝐷 (𝑧) V (𝑡) .

(46)
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Figure 5: The parameter estimation errors 𝛿 versus 𝑡 (AM-SG).
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