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The aim of this paper is to develop an effective method for solving bimatrix games with payoffs of intuitionistic fuzzy value. Firstly,
bimatrix game model with intuitionistic fuzzy payoffs (IFPBiG) was put forward. Secondly, two kinds of nonlinear programming
algorithmswere discussed with theNash equilibrium of IFPBiG.Thirdly, Nash equilibrium of the algorithmwas proved by the fixed
point theory and the algorithm was simplified by linear programming methods. Finally, an example was solved through Matlab; it
showed the validity, applicability, and superiority.

1. Introduction

Since the 1940s, game theory [1, 2] has been developed to
descript, analyze, and solve the duels among a group of
rational agents with strategical behavior. Among the game
theory, matrix games have been extensively studied [3–23]
and successfully applied to somefields [24–27]. It is becoming
an important research field which can be classified into
cooperative games and noncooperative games, zero sum
games and nonzero sum games (bimatrix games), and crisp
matrix games and fuzzy matrix games. In this paper, we
mainly deal with fuzzy bimatrix game, one of the most
important types of noncooperative games.

In real game situations, due to a lack of information
or imprecision of the available information, players could
only estimate the payoff value approximately with some
imprecise degree. The fuzzy set [28] uses only a membership
function to indicate a degree of belongingness to the fuzzy
set under consideration. A degree of nonbelongingness is
just automatically the complement to one. In 1986, Atanassov
[29] introduced the concept of intuitionistic fuzzy sets (IF-
sets), which is characterized by two functions expressing the
degree of belongingness and the degree of nonbelongingness,

respectively. The idea of the IF-sets made the description
more close to the actual situation in fuzzy matrix games.

Matrix games with mathematical programming are a
mainstream research direction [9–23], also the fuzzy matrix
games and the bimatrix games. Recently, the studies of
intuitionistic fuzzy matrix games have successfully applied
to more fields, such as marketing, finance, and advertising.
In theoretical research [9–11], Larbani, 2009, solved bimatrix
games with fuzzy payoffs by introducing nature as a third
player. Li and his team get a lot of research results [15–20]
in intuitionistic fuzzy matrix games, such as intuitionistic
fuzzy objective, biobjective, payoffs of triangular intuitionis-
tic fuzzy numbers, payoffs of interval-valued fuzzy numbers,
payoffs of interval-valued intuitionistic fuzzy numbers and so
forth.

However, fuzzy bimatrix games with intuitionistic fuzzy
payoffs (IFPBiG) are less studied, although in the real game
problems, IFPBiG is very common. For example, in the
research about market share games between real estate enter-
prises, the expectations of market share were very difficult
to accurately estimate under the complicated situation, but
fuzzy language could be used to express the satisfaction
degree and rejection degree of themarket share. For example,
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under the one of the situation, player I has the payoff value as
(0.7 and 0.1) which means that for player I, the satisfaction
degree is 0.7, the rejection degree is 0.1, and the hesitation
degree is 0.2. It could be made clear by voting model that
there are 70% of people voted satisfied, 10% of people voted
against, and 20% of people abstained from voting. Due to the
incompleteness and uncertainty of the market information,
the payoff value of players I and II is not necessarily a zero-
sum, and this kind of phenomenon was very common.

The focus of this paper is considering the effectivemethod
for solving IFPBiG problem, with the Nash equilibrium being
proved by the fixed point theory.

This paper is arranged as follows. Section 2 briefly reviews
some concepts such as IF-sets, IFPBiG, and solution concepts
of IFPBiG. Section 3 obtains linear programming methods
for IFPBiG with the transforms. In Section 4, the proposed
methodwas illustratedwith a numerical example and showed
the validity and applicability. Conclusion was made in
Section 5.

2. Preliminaries

In this section, some basic definitions and operations of intu-
itionistic fuzzy sets and game theory were briefly reviewed,
which are used in the following sections.

2.1. The Concept and Operations of IF-Sets

Definition 1 (Atanassov [29]). Let

𝐴 = ⟨𝑥, 𝜇
𝐴 (𝑥) , V𝐴 (𝑥)⟩ , ∀𝑥 ∈ 𝑈, 0 ≤ 𝜇

𝐴 (𝑥) + V
𝐴 (𝑥) ≤ 1,

𝐵 = ⟨𝑥, 𝜇
𝐵 (𝑥) , V𝐵 (𝑥)⟩ , ∀𝑥 ∈ 𝑈, 0 ≤ 𝜇

𝐵 (𝑥) + V
𝐵 (𝑥) ≤ 1

(1)

be two IF-sets of 𝑈. Then they have the following properties.

(1) 𝐴 = ⟨𝑥, V
𝐴
(𝑥), 𝜇
𝐴
(𝑥)⟩.

(2) 𝐴 ⊆ 𝐵 ⇔ 𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥), V
𝐴
(𝑥) ≤ V

𝐵
(𝑥).

(3) 𝐴 = 𝐵 ⇔ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴.

(4) 𝐴 ∩ 𝐵 = ⟨𝑋, 𝜇
𝐴
(𝑥) ∧ 𝜇

𝐵
(𝑥), V
𝐴
(𝑥) ∨ V

𝐵
(𝑥)⟩.

(5) 𝐴 ∪ 𝐵 = ⟨𝑋, 𝜇
𝐴
(𝑥) ∨ 𝜇

𝐵
(𝑥), V
𝐴
(𝑥) ∧ V

𝐵
(𝑥)⟩.

(6) 𝐴+𝐵 = ⟨𝑋, 𝜇
𝐴
(𝑥)+𝜇

𝐵
(𝑥)−𝜇

𝐴
(𝑥)𝜇
𝐵
(𝑥), V
𝐴
(𝑥)V
𝐵
(𝑥)⟩.

(7) 𝐴𝐵 = ⟨𝑋, 𝜇
𝐴
(𝑥)𝜇
𝐵
(𝑥), V
𝐴
(𝑥) + V

𝐵
(𝑥) − V

𝐴
(𝑥)V
𝐵
(𝑥)⟩.

(8) 𝜆𝐴 = ⟨𝑥, 1 − (1 − 𝜇
𝐴
(𝑥))
𝜆
, (V
𝐴
(𝑥))
𝜆
⟩.

(9) 𝐴
𝜆
= ⟨𝑥, (𝜇

𝐴
(𝑥))
𝜆
, 1 − (1 − V

𝐴
(𝑥))
𝜆
⟩.

2.2. IFPBiG and Solution Concepts. Let 𝑆
1
and 𝑆

2
be sets of

pure strategies for players I and II, respectively;

𝛼
𝑖
∈ 𝑆
1 (𝑖 ∈ 𝐼, 𝐼 = {1, 2, . . . , 𝑚} )

𝛽
𝑗
∈ 𝑆
2

(𝑗 ∈ 𝐽, 𝐽 = {1, 2, . . . , 𝑛} ) .

(2)

𝑋 and 𝑌 are known as the mixed strategies for players I
and II, respectively. Consider

𝑋 = {𝑥
𝑖
∈ 𝑅
𝑚
,

𝑚

∑

𝑖=1

𝑥
𝑖
= 1, 𝑥

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑚} ,

𝑌 =
{

{

{

𝑦
𝑖
∈ 𝑅
𝑛
,

𝑛

∑

𝑗=1

𝑦
𝑗
= 1, 𝑦

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛

}

}

}

,

(3)

where 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑚) and 𝑦

𝑗
(𝑗 = 1, 2, . . . , 𝑛) are

probabilities in which players I and II choose their pure
strategies.

At the outcome (𝛼
𝑖
, 𝛽
𝑗
), the payoffs of players I and II

are represented as IF-sets ⟨𝜇
𝐴

𝑖𝑗
, ]𝐴
𝑖𝑗
⟩, ⟨𝜇𝐵
𝑖𝑗
, ]𝐵
𝑖𝑗
⟩. Thus IFPBiG is

concisely expressed in the intuitionistic fuzzy matrix form as
follows:

𝐴 = (⟨𝜇
𝐴

𝑖𝑗
, ]𝐴
𝑖𝑗
⟩)
𝑚×𝑛

,

𝐵 = (⟨𝜇
𝐵

𝑖𝑗
, ]𝐵
𝑖𝑗
⟩)
𝑚×𝑛

.

(4)

If players I and II choose 𝑋 and 𝑌 as mixed strategies,
respectively, according to (7) and (8) of properties followed
Definition 1, the expected payoff of player I can be calculated
as follows:

𝐸
𝐴
(𝑥, 𝑦) = 𝑥

𝑇
𝐴𝑦 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)

×(

⟨𝜇
𝐴

11
, ]𝐴
11
⟩ ⟨𝜇

𝐴

12
, ]𝐴
12
⟩ ⋅ ⋅ ⋅ ⟨𝜇

𝐴

1𝑛
, ]𝐴
1𝑛
⟩

⟨𝜇
𝐴

21
, ]𝐴
21
⟩ ⟨𝜇

𝐴

22
, ]𝐴
22
⟩ ⋅ ⋅ ⋅ ⟨𝜇

𝐴

2𝑛
, ]𝐴
2𝑛
⟩

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⟨𝜇
𝐴

𝑚1
, ]𝐴
𝑚1

⟩ ⟨𝜇
𝐴

𝑚2
, ]𝐴
𝑚2

⟩ ⋅ ⋅ ⋅ ⟨𝜇
𝐴

𝑚𝑛
, ]𝐴
𝑚𝑛

⟩

)

×(

𝑦
1

𝑦
2

...
𝑦
𝑛

)

= (⟨1−

𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

(1 − 𝜇
𝐴

𝑖𝑗
)
𝑥𝑖𝑦𝑗

,

𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

(]𝐴
𝑖𝑗
)
𝑥𝑖𝑦𝑗

⟩)

𝑚×𝑛

Δ

= (𝜇
𝐸𝐴

, ]
𝐸𝐴

) .

(5)

In the same way, the expected payoff of player II can be
calculated as follows:

𝐸
𝐵
(𝑥, 𝑦) = 𝑥

𝑇
𝐵𝑦

= (⟨1 −

𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

(1 − 𝜇
𝐵

𝑖𝑗
)
𝑥𝑖𝑦𝑗

,

𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

(]𝐵
𝑖𝑗
)
𝑥𝑖𝑦𝑗

⟩)

𝑚×𝑛

Δ

= (𝜇
𝐸𝐵

, ]
𝐸𝐵

) .

(6)

Definition 2. IFPBiG may be expressed as 𝐺
𝑃

IF = (𝑋, 𝑌; 𝐴,

𝐵; 𝑆
1
, 𝑆
2
).
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Definition 3. (𝑥
∗
, 𝑦
∗
) ∈ (𝑋×𝑌) is called a reasonable solution

if and only if

𝑥
∗𝑇

𝐴𝑦
∗
≥ 𝑥
𝑇
𝐴𝑦
∗
,

𝑥
∗𝑇

𝐴𝑦
∗
≥ 𝑥
∗𝑇

𝐵𝑦.

(7)

Combining with Definition 1 and Definition 3, it gets the
following theorem.

Theorem 4. (𝑥
∗
, 𝑦
∗
) ∈ (𝑋×𝑌) is called a reasonable solution

if and only if

∃ (𝑥
∗
, 𝑦
∗
)

{{{{{

{{{{{

{

𝜇
𝐸𝐴

(𝑥
∗
, 𝑦
∗
) ≥ 𝜇
𝐸𝐴

(𝑥
𝑖
, 𝑦
𝑗
)

]
𝐸𝐴

(𝑥
∗
, 𝑦
∗
) ≤ ]
𝐸𝐴

(𝑥
𝑖
, 𝑦
𝑗
)

𝜇
𝐸𝐵

(𝑥
∗
, 𝑦
∗
) ≥ 𝜇
𝐸𝐵

(𝑥
𝑖
, 𝑦
𝑗
)

]
𝐸𝐵

(𝑥
∗
, 𝑦
∗
) ≤ ]
𝐸𝐵

(𝑥
𝑖
, 𝑦
𝑗
) .

(8)

Proof. (1) Consider

∀𝑦 ∈ 𝑌, let 𝑋(𝑦) = {𝑥
∗
∈ 𝑋, 𝜇

𝐸𝐴
(𝑥
∗
, 𝑦
∗
) ≥ 𝜇
𝐸𝐴

(𝑥
𝑖
, 𝑦
𝑗
) ,

]
𝐸𝐴

(𝑥
∗
, 𝑦
∗
) ≤ ]
𝐸𝐴

(𝑥
𝑖
, 𝑦
𝑗
) } ;

(9)

then𝑋(𝑦) ⊂ 𝑋 and𝑋(𝑦) are themixed strategies whichmake
the expected satisfaction degree of player I be maximum and
the expected reject degree be minimum of player II, when
player II use the mixed strategies 𝑦.

In the same way,

∀𝑥 ∈ 𝑋, 𝑌 (𝑥) = {𝑦
∗
∈ 𝑌, 𝜇

𝐸𝐵
(𝑥
∗
, 𝑦
∗
) ≥ 𝜇
𝐸𝐵

(𝑥
𝑖
, 𝑦
𝑗
) ,

]
𝐸𝐵

(𝑥
∗
, 𝑦
∗
) ≤ ]
𝐸𝐵

(𝑥
𝑖
, 𝑦
𝑗
) } ,

(10)

where 𝑌(𝑥) ⊂ 𝑌 and 𝑌(𝑥) are the mixed strategies which
make the expected satisfaction degree of player II be maxi-
mum and the expected reject degree be minimum of player I,
when player I uses the mixed strategies 𝑥.

From the properties of Definition 1, it gets

∀𝑥
∗

1
, 𝑥
∗

2
∈ 𝑋 (𝑦) ⊂ 𝑋, 𝜆

1
𝑥
∗

1
+ (1 − 𝜆

1
) 𝑥
∗

2
∈ 𝑋

𝜇
𝐸𝐴

(𝜆
1
𝑥
∗

1
+ (1 − 𝜆

1
) 𝑥
∗

2
, 𝑦)

= 𝜇
𝐸𝐴

(𝜆
1
𝑥
∗

1
, 𝑦) + 𝜇

𝐸𝐴
((1 − 𝜆

1
) 𝑥
∗

2
, 𝑦)

= 𝜆
1
𝜇
𝐸𝐴

(𝑥
∗

1
, 𝑦) + (1 − 𝜆

1
) 𝜇
𝐸𝐴

(𝑥
∗

2
, 𝑦)

]
𝐸𝐴

(𝜆
1
𝑥
∗

1
+ (1 − 𝜆

1
) 𝑥
∗

2
, 𝑦)

= ]
𝐸𝐴

(𝜆
1
𝑥
∗

1
, 𝑦) + ]

𝐸𝐴
((1 − 𝜆

1
) 𝑥
∗

2
, 𝑦)

= 𝜆
1
]
𝐸𝐴

(𝑥
∗

1
, 𝑦) + (1 − 𝜆

1
) ]
𝐸𝐴

(𝑥
∗

2
, 𝑦)

∀𝑥
∗

1
, 𝑥
∗

2
∈ 𝑋 (𝑦) ⊂ 𝑋, 𝜆 ∈ [0, 1]

𝜆 𝜇
𝐸𝐴

(𝑥
∗

1
, 𝑦) ≥ 𝜆𝜇

𝐸𝐴
(𝑥, 𝑦)

(1 − 𝜆) 𝜇𝐸𝐵 (𝑥
∗

2
, 𝑦) ≥ (1 − 𝜆) 𝜇𝐸𝐵 (𝑥, 𝑦)

𝜆]
𝐸𝐴

(𝑥
∗

1
, 𝑦) ≤ 𝜆]

𝐸𝐴
(𝑥, 𝑦)

(1 − 𝜆) ]𝐸𝐵 (𝑥
∗

2
, 𝑦) ≤ (1 − 𝜆) ]𝐸𝐵 (𝑥, 𝑦) .

(11)

Then,

𝜇
𝐸𝐴

(𝜆𝑥
∗

1
+ (1 − 𝜆) 𝑥

∗

2
, 𝑦) ≥ 𝜇

𝐸𝐴
(𝑥, 𝑦)

]
𝐸𝐴

(𝜆𝑥
∗

1
+ (1 − 𝜆) 𝑥

∗

2
, 𝑦) ≤ ]

𝐸𝐴
(𝑥, 𝑦)

𝜆𝑥
∗

1
+ (1 − 𝜆) 𝑥

∗

2
∈ 𝑋 (𝑦) ,

(12)

so 𝑋(𝑦) is a convex set and 𝑌(𝑥) is also a convex set.
(2) Consider𝐹 : 𝑋 × 𝑌 → 𝑃(𝑋 × 𝑌), 𝐹(𝑧) = 𝑋(𝑦) ×

𝑌(𝑥), ∀𝑧 = (𝑥, 𝑦) ∈ (𝑋 × 𝑌),

(𝜓, 𝜑) ∈ 𝐹 (𝑧) ⇐⇒ 𝜓 ∈ 𝑋 (𝑦) , 𝜑 ∈ 𝑌 (𝑥) . (13)

Let 𝑧
𝑛
= (𝑥
𝑛
, 𝑦
𝑛
)
𝑇 and (𝜓

𝑛
, 𝜑
𝑛
) ∈ 𝐹(𝑧

𝑛
)

when 𝑛 → +∞, 𝜓
𝑛

→ 𝜓
0
, 𝜑
𝑛

→ 𝜑
0
, 𝑥
𝑛

→ 𝑥
0
,

𝑦
𝑛

→ 𝑦
0

as (𝜓
𝑛
, 𝜑
𝑛
) ∈ 𝐹(𝑧

𝑛
) so 𝜓

𝑛
∈ 𝑋(𝑦

𝑛
)

∀𝑥 ∈ 𝑋, 𝜇 (𝜓
𝑇

𝑛
𝐴𝑦) ≥ 𝜇 (𝑥

𝑇
𝐴𝑦
𝑛
) . (14)

So lim
𝑛→∞

𝜇(𝜓
𝑇

𝑛
𝐴𝑦) ≥ lim

𝑛→∞
𝜇(𝑥
𝑇
𝐴𝑦
𝑛
)

as lim
𝑛→∞

𝜇(𝑥
𝑇

𝑛
𝐴𝑦
𝑛
) = 𝜇(𝑥

𝑇

0
𝐴𝑦
0
) and so

𝜇(𝜓
𝑇

0
𝐴𝑦
0
) ≥ 𝜇(𝑥

𝑇
𝐴𝑦
0
) that means 𝜓

0
∈ 𝑋(𝑦

0
).

Same as 𝜑
0

∈ 𝑌(𝑥
0
), then 𝑋(𝑦), 𝑌(𝑥) are all convex

sets, so 𝐹(𝑧) is convex set too.

As (𝜓, 𝜑) ∈ 𝐹(𝑧) ⇔ 𝜓 ∈ 𝑋(𝑦), 𝜑 ∈ 𝑌(𝑥)

so (𝜓
0
, 𝜑
0
) ∈ 𝐹(𝑧

0
).

𝐹 is the upper continuous; meanwhile, set-valued
mapping 𝐹 exists fixed point.

There is a point; make 𝑧
∗
∈ 𝐹(𝑧

∗
)

𝑥
∗𝑇

𝐴𝑦
∗
≥ 𝑥
𝑇
𝐴𝑦
∗

𝑥
∗𝑇

𝐴𝑦
∗
≥ 𝑥
∗𝑇

𝐵𝑦.

(15)

The proof is completed.
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3. Linear Programming Methods for IFPBiG

From the above, the mixed Nash equilibrium solution of IFP-
BiG can be obtained by solving the following programming
problems:

max {𝜇
1
− ]
1
}

1−

𝑚

∏

𝑖=1

(1 − 𝜇
𝐴

𝑖𝑗
)
𝑥𝑖

≥ 𝜇
1

𝑚

∏

𝑖=1

(]𝐴
𝑖𝑗
)
𝑥𝑖

≤ ]
1

𝑚

∑

𝑖=1

𝑥
𝑖
= 1

0 ≤ 𝜇
1
+ ]
1
≤ 1

𝑥
𝑖
≥ 0, 𝜇

1
≥ 0, ]

1
≥ 0,

max {𝜇
2
− ]
2
}

1 −

𝑛

∏

𝑗=1

(1 − 𝜇
𝐵

𝑖𝑗
)
𝑌𝑗

≥ 𝜇
2

𝑛

∏

𝑗=1

(]𝐵
𝑖𝑗
)
𝑌𝑗

≤ ]
2

𝑛

∑

𝑗=1

𝑦
𝑗
= 1

0 ≤ 𝜇
2
+ ]
2
≤ 1

𝑦
𝑗
≥ 0, 𝜇

2
≥ 0, ]

2
≥ 0.

(16)

The above two nonlinear programming models can be
transformed into the following linear programmingmodel by
“linear exchange”:

max {𝜇
1
− ]
1
+ 𝜇
2
− ]
2
}

𝜆
1

𝑚

∑

𝑖=1

𝑥
𝑖
ln (1 − 𝜇

𝐴

𝑖𝑗
) + (1 − 𝜆

1
)

𝑚

∑

𝑖=1

𝑥
𝑖
ln ]𝐴
𝑖𝑗

≤ 𝜆
1
ln 𝜇
1
+ (1 − 𝜆

1
) ln ]
1

𝜆
2

𝑛

∑

𝑗=1

𝑦
𝑗
ln (1 − 𝜇

𝐵

𝑖𝑗
) + (1 − 𝜆

2
)

𝑛

∑

𝑗=1

𝑦
𝑗
ln ]𝐵
𝑖𝑗

≤ 𝜆
2
ln 𝜇
2
+ (1 − 𝜆

2
) ln ]
2

𝑚

∑

𝑖=1

𝑥
𝑖
= 1

𝑛

∑

𝑗=1

𝑦
𝑗
= 1

0 ≤ 𝜇
1
+ ]
1
≤ 1, 0 ≤ 𝜇

2
+ ]
2
≤ 1

𝑥
𝑖
≥ 0, 𝜇

1
≥ 0, ]

1
≥ 0, 0 ≤ 𝜆

1
≤ 1

𝑦
𝑗
≥ 0, 𝜇

2
≥ 0, ]

2
≥ 0, 0 ≤ 𝜆

2
≤ 1,

(17)

where 𝜆
1
, 𝜆
2
are “optimistic coefficient” of players I and II,

respectively, which is standard for the rationality of players.

4. Numerical Example

To test our algorithm above, the following experiment was
made.

There were two major hydropower enterprises competed
for the power supply qualification through bidding. Both
sides can take the fact that the bidding prices strategies are
“high, flat, and low.” And both sides made up a think-tank to
vote about the satisfaction degree and reject degree of each
situation. The data of corresponding enterprises 𝐴 and 𝐵 is

𝐴 =

high
flat
low

(

⟨0.95, 0.05⟩ ⟨0.7, 0.25⟩ ⟨0.5, 0.4⟩

⟨0.7, 0.25⟩ ⟨0.7, 0.25⟩ ⟨0.25, 0.7⟩

⟨0.25, 0.7⟩ ⟨0.5, 0.4⟩ ⟨0.05, 0.95⟩

)

high flat low

𝐵 =

high
flat
low

(

⟨0.5, 0.4⟩ ⟨0.25, 0.7⟩ ⟨0.05, 0.95⟩

⟨0.5, 0.4⟩ ⟨0.7, 0.25⟩ ⟨0.5, 0.4⟩

⟨0.7, 0.25⟩ ⟨0.7, 0.25⟩ ⟨0.5, 0.4⟩

)

high flat low
(18)

where 𝑎
12

= ⟨0.7, 0.25⟩ means that if enterprise 𝐴 chooses
high price, enterprise𝐵 chooses flat price, with 70%of experts
believe that the expected profit is satisfied, 25% of experts
argue that it is not satisfied, and 5% of the experts cannot
judge.The other elements in the matrix can be also explained
like this:

“optimistic coefficients” 𝜆
1
, 𝜆
2
of different players have

been taking several common situations in this example.Then
it gets the following linear programming model:

max {𝜇
1
− V
1
+ 𝜇
2
− V
2
} ,

𝜆
1
(𝑥
1
ln 0.05 + 𝑥

2
ln 0.3 + 𝑥

3
ln 0.75) + (1 − 𝜆

1
)

× (𝑥
1
ln 0.05 + 𝑥

2
ln 0.25 + 𝑥

3
ln 0.7)

− [𝜆
1
ln 𝜇
1
+ (1 − 𝜆

1
) ln V
1
] ≤ 0,

𝜆
1
(𝑥
1
ln 0.5 + 𝑥

2
ln 0.3 + 𝑥

3
ln 0.5) + (1 − 𝜆

1
)

× (𝑥
1
ln 0.25 + 𝑥

2
ln 0.25 + 𝑥

3
ln 0.4)

− [𝜆
1
ln 𝜇
1
+ (1 − 𝜆

1
) ln V
1
] ≤ 0,

𝜆
1
(𝑥
1
ln 0.5 + 𝑥

2
ln 0.75 + 𝑥

3
ln 0.95) + (1 − 𝜆

1
)

× (𝑥
1
ln 0.4 + 𝑥

2
ln 0.7 + 𝑥

3
ln 0.95)

− [𝜆
1
ln 𝜇
1
+ (1 − 𝜆

1
) ln V
1
] ≤ 0,

𝜆
2
(𝑦
1
ln 0.5 + 𝑦

2
ln 0.5 + 𝑦

3
ln 0.3) + (1 − 𝜆

2
)

× (𝑦
1
ln 0.4 + 𝑦

2
ln 0.4 + 𝑦

3
ln 0.25)

− [𝜆
2
ln 𝜇
2
+ (1 − 𝜆

2
) ln V
2
] ≤ 0,
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Table 1: The solution and expectation of satisfaction degree and reject degree.

𝜆
1

𝜆
2

𝑥 𝑦 𝑋𝐴𝑌 𝑋𝐵𝑌

0.5 0.5 (0.41, 0.31, 0.28) (0.18, 0.57, 0.25) (0.67, 0.31) (0.51, 0.42)
0.1 0.1 (0.11, 0.53, 0.36) (0.38, 0.34, 0.28) (0.56, 0.41) (0.48, 0.43)
0.9 0.9 (0.21, 0.49, 0.30) (0.28, 0.42, 0.3) (0.75, 0.17) (0.78, 0.20)
0.1 0.9 (0.22, 0.31, 0.47) (0.31, 0.43, 0.26) (0.40, 0.41) (0.52, 0.33)
0.9 0.1 (0.61, 0.14, 0.25) (0.17, 0.35, 0.48) (0.49, 0.41) (0.48, 0.45)

𝜆
2
(𝑦
1
ln 0.75 + 𝑦

2
ln 0.3 + 𝑦

3
ln 0.3) + (1 − 𝜆

2
)

× (𝑦
1
ln 0.7 + 𝑦

2
ln 0.25 + 𝑦

3
ln 0.25)

− [𝜆
2
ln 𝜇
2
+ (1 − 𝜆

2
) ln V
2
] ≤ 0,

𝜆
2
(𝑦
1
ln 0.95 + 𝑦

2
ln 0.5 + 𝑦

3
ln 0.5) + (1 − 𝜆

2
)

× (𝑦
1
ln 0.95 + 𝑦

2
ln 0.4 + 𝑦

3
ln 0.4)

− [𝜆
2
ln 𝜇
2
+ (1 − 𝜆

2
) ln V
2
] ≤ 0,

𝑚

∑

𝑖=1

𝑥
𝑖
= 1

𝑚

∑

𝑗=1

𝑦
𝑗
= 1

0 ≤ 𝜇
1
+ V
1
≤ 1, 0 ≤ 𝜇

2
+ V
2
≤ 1

𝑥
𝑖
≥ 0, 𝜇

1
≥ 0, V

1
≥ 0, 0 ≤ 𝜆

1
≤ 1

𝑦
𝑗
≥ 0, 𝜇

2
≥ 0, V

2
≥ 0, 0 ≤ 𝜆

2
≤ 1.

(19)

Matlab 7.0 was used to solve the above nonlinear program-
ming and the results were as shown in Table 1.

4.1. The Solution and Expectation of Satisfaction Degree and
Reject Degree. The first two columns were the optimistic
coefficient of enterprises𝐴 and𝐵, respectively. Column 𝑥 and
𝑦 were mixed strategies, respectively. The last two columns
were total expectations, respectively; they were shown as the
intuitionistic fuzzy sets and they stand for the satisfaction
degree and reject degree.

(1) Consider 𝜆
1
= 𝜆
2
= 0.5: it means that the satisfaction

degree and reject degree of both enterprises are equal. It
stands for a moderate rationality and it is the most common
case.

At this time, enterprise 𝐴 will take the “high” strategy; its
probability is 0.41, and enterprise 𝐵 will take “flat” strategy,
the probability of 0.57. The satisfaction degree and reject
degree of forecast expected profit for 𝐴 and 𝐵 are (0.67 and
0.31) and (0.51 and 0.42), respectively.

(2) Consider 𝜆
1
= 𝜆
2
= 0.1: itmeans that both enterprises

are very careful about reject degree; it stands for a pessimistic
rationality.

At this time, enterprise 𝐴 will take the “flat” strategy; its
probability is 0.53, and enterprise 𝐵 will take “high” strategy,
the probability of 0.38. The satisfaction degree and reject

degree of forecast expected profit for 𝐴 and 𝐵 are (0.56 and
0.41) and (0.48 and 0.43), respectively, and they both declined
compared with Case (1).

(3) Consider 𝜆
1
= 𝜆
2
= 0.9: itmeans that both enterprises

are very careful about satisfaction degree; it stands for an
optimistic rationality.

At this time, enterprise 𝐴 will take the “flat” strategy; its
probability is 0.49, and enterprise 𝐵 will take “flat” strategy,
the probability of 0.42. The satisfaction degree and reject
degree of forecast expected profit for enterprises 𝐴 and 𝐵 are
(0.75 and 0.17) and (0.78 and 0.20), respectively, and they both
increase significantly compared with Case (1); it looks like a
win-win situation.

(4) Consider 𝜆
1
= 0.1 𝜆

2
= 0.9 or 𝜆

1
= 0.9 𝜆

2
= 0.1: it

means that both enterprisesmeet each other with the extreme
rationality.

From Table 1, the optimal solution is 𝜆
1
= 0.9 𝜆

2
= 0.9;

both enterprises take “flat” strategy; they could get maximum
expected profit of 0.75 and 0.78, respectively.

5. Conclusion

(1) Under the complicated decision environment, the
model and method of this paper were more simple
and practical than other general equilibrium game
model because of the “linear exchange.” Meanwhile
“optimistic coefficients”𝜆

1
,𝜆
2
of different players also

can fully express the opinions of the experts, as well as
the rationality of decision makers.

(2) Further study can be focused on more people’s bid-
ding online intuitionistic fuzzy matrix game model,
dynamic intuitionistic fuzzy bimatrix game model,
more people cooperation game model, and so on.
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