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Petrov-Galerkin method is used to derive a numerical scheme for the coupled Schrödinger-KdV (SKdV) equations, where we have
used the cubic B-splines as a test functions and a linear B-splines as a trial functions. Product approximation technique is used to
deal with the nonlinear terms. An implicit midpoint rule and the Runge-Kutta method of fourth-order (RK4) are used to discretize
in time. A block nonlinear pentadiagonal system is obtained. We solve this system by the fixed point method.The resulting scheme
has a fourth-order accuracy in space direction and second-order in time direction in case of the implicit midpoint rule and it is
unconditionally stable by von Neumann method. Using the RK4 method the scheme will be linear and fourth-order in time and
space directions, and it is also conditionally stable. The exact soliton solution and the conserved quantities are used to assess the
accuracy and to show the robustness and the efficiency of the proposed schemes.

1. Introduction

Thecoupled nonlinear Schrödinger-KdV equation has attrac-
ted extensive interest in physics and mathematics. The non-
linear Schrödinger-KdV equation describing the nonlinear
dynamics.

Describing the nonlinear dynamics of one-dimensional
Langmuir and ion-acoustic waves in a system of coordinates
moving at the ion-acoustic speed has the following form [1, 2]:

𝑖𝜖𝑢
𝑡
+
3

2
𝑢
𝑥𝑥
−
1

2
𝑢V = 0, (𝑥, 𝑡) ∈ (𝑎, 𝑏) × (0, 𝑇)

V
𝑡
+
1

2
V
𝑥𝑥𝑥

+
1

2
(|𝑢|
2
+ V2)
𝑥
= 0

(1)

and the initial condition
𝑢 (𝑥, 0)

= −
6

5

√3𝛼 tanh(√ 𝛼

10
𝑥) sech(√ 𝛼

10
𝑥) exp {𝑖𝛼 [−𝜖𝑥

3
]}

V (𝑥, 0) = −
9

5
𝛼 sech2 (√ 𝛼

10
𝑥) ,

(2)

where 𝛼 and 𝜖 are constants, together with the homogenous
Dirichlet boundary conditions

𝑢 (𝑥
𝑙
, 𝑡) = 𝑢 (𝑥

𝑟
, 𝑡) = 0

V (𝑥
𝑙
, 𝑡) = V (𝑥

𝑟
, 𝑡) = 0.

(3)

Analytical and numerical methods are very important
tools to understand the feature and the behavior of the non-
linear wave equations. Many numerical methods have been
used to solve numerically the single nonlinear Schrödinger
and the single KdV equation using finite element and finite
difference methods [3–6]. Ismail et al. [7–12] solved numer-
ically the coupled nonlinear Schrodinger equation and the
coupled KdV equation using the finite difference and finite
element methods. Recently, Bhatt and Khaliq [13] solve the
coupled nonlinear Schrodinger using high order exponential
differencing method.

In this work we are going to study numerical the SKdV
equation. Analytical solutions for this system using different
methods are given in [14–16]. For numerical methods for
the SKdV equation the literature is not rich. Appert and
Vaclavik [17] solved the SKdV equations using a Crank-
Nicolson scheme. A very good numerical works by Bai and

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 705204, 8 pages
http://dx.doi.org/10.1155/2014/705204



2 Abstract and Applied Analysis

Zhang [1, 2], they have solved this system using a split-step
quadratic B-spline finite element method.

The exact solution of coupled Schrödinger-KdV equa-
tions (1) is

𝑢 (𝑥, 𝑡) = −
6

5

√3𝛼
tanh 𝜉
cosh 𝜉

exp {𝑖𝛼 [( 3

20𝜖
−
𝜖𝛼

6
) 𝑡 −

𝜖𝑥

3
]}

V (𝑥, 𝑡) = −
9

5
𝛼

1

cosh2𝜉
, 𝜉 = √

𝛼

10
(𝑥 + 𝛼𝑡) ,

(4)

where 𝛼 is a free positive parameter. The SKdV equations has
the following conserved quantities [1, 2, 18]:

𝐼
1
= ∫
Ω

|𝑢|
2
𝑑𝑥
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2
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3
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2
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(5)

To avoid complex computation, we assume

𝑢 (𝑥, 𝑡) = 𝑢
1
(𝑥, 𝑡) + 𝑖𝑢

2
(𝑥, 𝑡) , 𝑖

2
= −1

V (𝑥, 𝑡) = 𝑢
3
(𝑥, 𝑡) ,

(6)

where 𝑢
1
(𝑥, 𝑡), 𝑢

2
(𝑥, 𝑡), and 𝑢

3
(𝑥, 𝑡) are real functions. This

will reduce Schrödinger-KdV equations to the coupled sys-
tem
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(7)

2. Numerical Method

Application of the numerical method requires truncation of
the infinite interval to a finite interval [𝑎, 𝑏]. We assume
that the solution of the coupled Schrödinger-KdV equation
is negligible outside this interval. Also we assume all space
derivatives at the boundaries approaches to zero in the region
(𝑥, 𝑡) ∈ [𝑎, 𝑏] × (0, 𝑇].

A standard weak formulation [3–5] of this problem is
obtained by multiplying (7) by a twice differentiable test
function 𝜓(𝑥) and integrating by parts to obtain
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where (, ) denotes the usual 𝐿
2
inner product

(𝑓, 𝑔) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥. (9)

The space interval [𝑎, 𝑏] is discretized by uniform (𝑁+1)

grid points

𝑥
𝑚
= 𝑎 + 𝑚ℎ, 𝑚 = 0, 1, . . . , 𝑁, (10)

where the grid spacing ℎ is given by ℎ = (𝑏 − 𝑎)
𝐿
/𝑁. We

introduce finite elements in space in (7) and approximate the
exact solution of the SKdV equation by

U (𝑥, 𝑡) =

𝑁

∑

𝑚=0

U
𝑚
(𝑡) 𝜙
𝑚
(𝑥) , (11)

and the product approximation technique is used for treating
the nonlinear terms in the following manner:

𝑈
1
(𝑥, 𝑡) 𝑈

3
(𝑥, 𝑡) =

𝑁
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𝑈
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3,𝑚
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𝑈
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[𝑈
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𝑚
(𝑥) .

(12)

The trial functions 𝜙
𝑚
(𝑥) = 𝜙((𝑥 − 𝑥

𝑚
)/ℎ), 𝑚 =

0, 1, . . . , 𝑁, are chosen to be the piecewise linear functions

𝜙 (𝑥) =

{{

{{

{

1 + 𝑥 if − 1 < 𝑥 ≤ 0

1 − 𝑥 if 0 < 𝑥 ≤ 1

0 otherwise.
(13)

The unknown functions [𝑈
1,𝑚

(𝑡), 𝑈
2,𝑚

(𝑡), 𝑈
3,𝑚

(𝑡)], 𝑚 =

0, 1, 2, . . . , 𝑁 are determined from the numerical solution of
the first-order ordinary differential system
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1
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𝑗
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3
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(𝑈
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𝑗
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𝑈
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2
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3
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1
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1
𝑈
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, 𝜓
𝑗
) = 0
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3
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1
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, (𝜓
𝑗
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2

2
+ 𝑈
2

3
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𝑥
, 𝜓
𝑗
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(14)

where �̇�
𝑙
= (𝑑/𝑑𝑡)(𝑈

𝑙
), 𝑙 = 1, 2, 3.

We choose the test functions 𝜓
𝑗
(𝑥) = 𝜓((𝑥 − 𝑥

𝑖
)/ℎ), 𝑗 =

1, 2, . . . , 𝑁, to be the cubic B-spline with compact support

𝜓 (𝑥) =
1

4

{{{{{{{{

{{{{{{{{

{

(𝑥 + 2)
3 if − 2 ≤ 𝑥 ≤ −1

[(2 + 𝑥)
3
− 4(1 + 𝑥)

3
] if − 1 < 𝑥 ≤ 0

[(2 − 𝑥)
3
− 4(𝑥 − 1)

3
] if 0 < 𝑥 ≤ 1

(2 − 𝑥)
3 if 1 < 𝑥 ≤ 2

0 otherwise.

(15)
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Direct calculations of the inner products in (14), using
(11)–(13) and (15), will produce the first-order ordinary dif-
ferential system

𝜖

80
[�̇�
1,𝑚−2

+ 26�̇�
1,𝑚−1

+ 66�̇�
1,𝑚

+ 26�̇�
1,𝑚+1

+ �̇�
1,𝑚+2

]

+
3

8ℎ2
[𝑈
2,𝑚+2

+ 2𝑈
2,𝑚+1
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2,𝑚−1

+ 𝑈
2,𝑚−2

]

−
1
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[(𝑈
2
𝑈
3
)
𝑚−2
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2
𝑈
3
)
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2
𝑈
3
)
𝑚
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2
𝑈
3
)
𝑚+1

+ (𝑈
2
𝑈
3
)
𝑚+2

] = 0,

𝜖
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[�̇�
2,𝑚−2

+ 26�̇�
2,𝑚−1

+ 66�̇�
2,𝑚

+ 26�̇�
2,𝑚+1

+ �̇�
2,𝑚+2

]

−
3

8ℎ2
[𝑈
2,𝑚+2

+ 2𝑈
2,𝑚+1

− 6𝑈
2,𝑚

+ 2𝑈
2,𝑚−1

+ 𝑈
2,𝑚−2

]

+
1

160
[(𝑈
1
𝑈
3
)
𝑚−2

+ 26(𝑈
1
𝑈
3
)
𝑚−1

+ 66(𝑈
1
𝑈
3
)
𝑚

+ 26(𝑈
1
𝑈
3
)
𝑚+1

+ (𝑈
1
𝑈
3
)
𝑚+2

] = 0,

1

80
[�̇�
3,𝑚−2

+ 26�̇�
3,𝑚−1

+ 66�̇�
3,𝑚

+ 26�̇�
3,𝑚+1

+ �̇�
3,𝑚+2

]

+
3

8ℎ3
[𝑈
3,𝑚+2

− 2𝑈
3,𝑚+1

+ 2𝑈
3,𝑚−1

− 𝑈
3,𝑚−2

]

+
1

32ℎ
[𝐺 (𝑈

1,𝑚+2
, 𝑈
2,𝑚+2

, 𝑈
3,𝑚+2

)

+ 10𝐺 (𝑈
1,𝑚+1

, 𝑈
2,𝑚+1

, 𝑈
3,𝑚+1

)

− 10𝐺 (𝑈
1,𝑚−1

, 𝑈
2,𝑚−1

, 𝑈
3,𝑚−1

)

−𝐺 (𝑈
1,𝑚−2

, 𝑈
2,𝑚−2

, 𝑈
3,𝑚−2

)] = 0,

(16)

where

𝐺 (𝑢
1
, 𝑢
2
, 𝑢
3
) = 𝑢
2

1
+ 𝑢
2

2
+ 𝑢
3

2
. (17)

The first order ordinary differential system (16) can be
solved by many ordinary differential equation solver. In this
work, we will choose twomethods, the implicit midpoint rule
and the explicit Runge-Kutta method of fourth-order (RK4).
Thesemethods will be discussed in the following subsections.

2.1. The Implicit Midpoint Rule. By making use of the follow-
ing substitution for the implicit midpoint rule

U̇ =

(U𝑛+1
𝑗,𝑚

− U𝑛
𝑗,𝑚
)

𝑘
, U

𝑗,𝑚
= U∗
𝑗,𝑚

=

(U𝑛+1
𝑗,𝑚

+ U𝑛
𝑗,𝑚
)

2
,

𝑗 = 1, 2, 3,

(18)

where 𝑘 is the time step size, into the system (16), this will lead
us to the nonlinear block pentadiagonal system

𝜖

80𝑘
{[𝑈
𝑛+1

1,𝑚−2
+ 26𝑈

𝑛+1

1,𝑚−1
+ 66𝑈

𝑛+1

1,𝑚
+ 26𝑈

𝑛+1

1,𝑚+1
+ 𝑈
𝑛+1

1,𝑚+2
]

− [𝑈
𝑛

1,𝑚−2
+ 26𝑈

𝑛

1,𝑚−1
+ 66𝑈

𝑛

1,𝑚
+ 26𝑈

𝑛

1,𝑚+1
+ 𝑈
𝑛

1,𝑚+2
]}

+
3

8ℎ2
[𝑈
∗

2,𝑚+2
+ 2𝑈
∗

2,𝑚+1
− 6𝑈
∗

2,𝑚
+ 2𝑈
∗

2,𝑚−1
+ 𝑈
∗

2,𝑚−2
]

−
1

160
[(𝑈
∗

2
𝑈
∗

3
)
𝑚−2

+ 26(𝑈
∗

2
𝑈
∗

3
)
𝑚−1

+ 66(𝑈
∗

2
𝑈
∗

3
)
𝑚

+ 26(𝑈
∗

2
𝑈
∗

3
)
𝑚+1

+ (𝑈
∗

2
𝑈
∗

3
)
𝑚+2

] = 0

𝜖

80𝑘
{[𝑈
𝑛+1

2,𝑚−2
+ 26𝑈

𝑛+1

2,𝑚−1
+ 66𝑈

𝑛+1

2,𝑚
+ 26𝑈

𝑛+1

2,𝑚+1
+ 𝑈
𝑛+1

2,𝑚+2
]

− [𝑈
𝑛

2,𝑚−2
+ 26𝑈

𝑛

2,𝑚−1
+ 66𝑈

𝑛

2,𝑚
+ 26𝑈

𝑛

2,𝑚+1
+ 𝑈
𝑛

2,𝑚+2
]}

−
3

8ℎ2
[𝑈
∗

1,𝑚+2
+ 2𝑈
∗

1,𝑚+1
− 6𝑈
∗

1,𝑚
+ 2𝑈
∗

1,𝑚−1
+ 𝑈
∗

1,𝑚−2
]

+
1

160
[(𝑈
∗

1
𝑈
∗

3
)
𝑚−2

+ 26(𝑈
∗

1
𝑈
∗

3
)
𝑚−1

+ 66(𝑈
∗

1
𝑈
∗

3
)
𝑚

+ 26(𝑈
∗

1
𝑈
∗

3
)
𝑚+1

+ (𝑈
∗

1
𝑈
∗

3
)
𝑚+2

] = 0

1

80𝑘
{[𝑈
𝑛+1

3,𝑚−2
+ 26𝑈

𝑛+1

3,𝑚−1
+ 66𝑈

𝑛+1

3,𝑚
+ 26𝑈

𝑛+1

3,𝑚+1
+ 𝑈
𝑛+1

3,𝑚+2
]

− [𝑈
𝑛

3,𝑚−2
+ 26𝑈

𝑛

3,𝑚−1
+ 66𝑈

𝑛

3,𝑚
+ 26𝑈

𝑛

3,𝑚+1
+ 𝑈
𝑛

3,𝑚+2
]}

+
3

8ℎ3
[𝑈
∗

3,𝑚+2
− 2𝑈
∗

3,𝑚+1
+ 2𝑈
∗

3,𝑚−1
− 𝑈
∗

3,𝑚−2
]

+
1

32ℎ
[𝐺 (𝑈

∗

1,𝑚+2
, 𝑈
∗

2,𝑚+2
, 𝑈
∗

3,𝑚+2
)

+ 10𝐺 (𝑈
∗

1,𝑚+1
, 𝑈
∗

2,𝑚+1
, 𝑈
∗

3,𝑚+1
)

− 10𝐺 (𝑈
∗

1,𝑚−1
, 𝑈
∗

2,𝑚−1
, 𝑈
∗

3,𝑚−1
)

−𝐺 (𝑈
∗

1,𝑚−2
, 𝑈
∗

2,𝑚−2
, 𝑈
∗

3,𝑚−2
)] = 0.

(19)

The numerical solution of the nonlinear system (19) can
be obtained bymany iterativemethods likeNewton’smethod,
fixed point method, and in this work we will adopt the fixed
point method and this will be given next.

2.2. Fixed Point Method. The fixed point method for solving
the nonlinear system (19) can be given as follows:

𝜖

80𝑘
{[𝑈
𝑛+1,𝑠+1

1,𝑚−2
+ 26𝑈

𝑛+1,𝑠+1

1,𝑚−1
+ 66𝑈

𝑛+1,𝑠+1

1,𝑚

+ 26𝑈
𝑛+1,𝑠+1

1,𝑚+1
+ 𝑈
𝑛+1,𝑠+1

1,𝑚+2
]}

+
3

8ℎ2
[𝑈
𝑛+1,𝑠+1

2,𝑚+2
+ 2𝑈
𝑛+1,𝑠+1

2,𝑚+1
− 6𝑈
𝑛+1,𝑠+1

2,𝑚

+ 2𝑈
𝑛+1,𝑠+1

2,𝑚−1
+ 𝑈
𝑛+1,𝑠+1

2,𝑚−2
]
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−
1

160
[(𝑈
𝑛+1,𝑠+1

2
�̃�
3
)
𝑚−2

+ 26(𝑈
𝑛+1,𝑠+1

2
�̃�
3
)
𝑚−1

+ 66(𝑈
𝑛+1,𝑠+1

2
�̃�
3
)
𝑚
+ 26(𝑈

𝑛+1,𝑠+1

2
�̃�
3
)
𝑚+1

+ (𝑈
𝑛+1,𝑠+1

2
�̃�
3
)
𝑚+2

]

=
𝜖

80𝑘
{[𝑈
𝑛

1,𝑚−2
+ 26𝑈

𝑛

1,𝑚−1
+ 66𝑈

𝑛

1,𝑚

+ 26𝑈
𝑛

1,𝑚+1
+ 𝑈
𝑛

1,𝑚+2
]}

+
3

8ℎ2
[𝑈
𝑛

2,𝑚+2
+ 2𝑈
𝑛

2,𝑚+1
− 6𝑈
𝑛

2,𝑚
+ 2𝑈
𝑛

2,𝑚−1
+ 𝑈
𝑛

2,𝑚−2
]

𝜖

80𝑘
{[𝑈
𝑛+1,𝑠+1

2,𝑚−2
+ 26𝑈

𝑛+1,𝑠+1

2,𝑚−1
+ 66𝑈

𝑛+1,𝑠+1

2,𝑚

+ 26𝑈
𝑛+1,𝑠+1

2,𝑚+1
+ 𝑈
𝑛+1,𝑠+1

2,𝑚+2
]}

+
3

8ℎ2
[𝑈
𝑛+1,𝑠+1

1,𝑚+2
+ 2𝑈
𝑛+1,𝑠+1

1,𝑚+1
− 6𝑈
𝑛+1,𝑠+1

1,𝑚

+ 2𝑈
𝑛+1,𝑠+1

1,𝑚−1
+ 𝑈
𝑛+1,𝑠+1

1,𝑚−2
]

−
1

160
[(𝑈
𝑛+1,𝑠+1

1
�̃�
3
)
𝑚−2

+ 26(𝑈
𝑛+1,𝑠+1

1
�̃�
3
)
𝑚−1

+ 66(𝑈
𝑛+1,𝑠+1

1
�̃�
3
)
𝑚
+ 26(𝑈

𝑛+1,𝑠+1

1
�̃�
3
)
𝑚+1

+ (𝑈
𝑛+1,𝑠+1

1
�̃�
3
)
𝑚+2

]

=
𝜖

80𝑘
{[𝑈
𝑛

2,𝑚−2
+ 26𝑈

𝑛

2,𝑚−1
+ 66𝑈

𝑛

2,𝑚

+ 26𝑈
𝑛

2,𝑚+1
+ 𝑈
𝑛

2,𝑚+2
]}

−
3

8ℎ2
[𝑈
𝑛

1,𝑚+2
+ 2𝑈
𝑛

1,𝑚+1
− 6𝑈
𝑛

1,𝑚
+ 2𝑈
𝑛

1,𝑚−1
+ 𝑈
𝑛

1,𝑚−2
] ,

1

80𝑘
{[𝑈
𝑛+1,𝑠+1

3,𝑚−2
+ 26𝑈

𝑛+1,𝑠+1

3,𝑚−1
+ 66𝑈

𝑛+1,𝑠+1

3,𝑚

+ 26𝑈
𝑛+1,𝑠+1

3,𝑚+1
+ 𝑈
𝑛+1,𝑠+1

3,𝑚+2
]}

+
3

8ℎ3
[𝑈
𝑛+1,𝑠+1

3,𝑚+2
− 2𝑈
𝑛+1,𝑠+1

3,𝑚+1
+ 2𝑈
𝑛+1,𝑠+1

3,𝑚−1
− 𝑈
𝑛+1,𝑠+1

3,𝑚−2
]

=
1

80𝑘
{[𝑈
𝑛

3,𝑚−2
+ 26𝑈

𝑛

3,𝑚−1
+ 66𝑈

𝑛

3,𝑚

+ 26𝑈
𝑛

3,𝑚+1
+ 𝑈
𝑛

3,𝑚+2
]}

+
3

8ℎ3
[𝑈
𝑛

3,𝑚+2
− 2𝑈
𝑛

3,𝑚+1
+ 2𝑈
𝑛

3,𝑚−1
− 𝑈
𝑛

3,𝑚−2
]

+
1

32ℎ
[𝐺 (�̃�

1,𝑚+2
, �̃�
2,𝑚+2

, �̃�
3,𝑚+2

)

+ 10𝐺 (�̃�
1,𝑚+1

, �̃�
2,𝑚+1

, �̃�
3,𝑚+1

)

− 10𝐺 (�̃�
1,𝑚−1

, �̃�
2,𝑚−1

, �̃�
3,𝑚−1

)

−𝐺 (�̃�
1,𝑚−2

, �̃�
2,𝑚−2

, �̃�
3,𝑚−2

)] = 0,

(20)

where

�̃�
𝑗,𝑚

=

(𝑈
𝑛+1,𝑠

𝑗,𝑚
+ 𝑈
𝑛

𝑗,𝑚
)

2
, 𝑗 = 1, 2, 3.

𝑈
𝑛+1,0

𝑗,𝑚
= 𝑈
𝑛

𝑗,𝑚
, 𝑗 = 1, 2, 3.

(21)

We apply the iterative scheme (20) until the condition


𝑈
𝑛+1,𝑠+1

− 𝑈
𝑛+1,𝑠∞

≤ 10
−8
, 𝑠 = 0, 1, . . . (22)

is satisfied. Concerning the accuracy of the scheme, the sch-
eme is of second-order in time and fourth-order in space.

2.3. Stability of the Scheme. To study the stability of the result-
ing scheme (19), we use von Neumann stability method.
This method can only be applied for linear schemes, so we
consider the linear version of the proposed scheme (19) by
freezing all terms which make the scheme nonlinear. The
linear version of the proposed method can be displayed as
follows:

[𝑈
𝑛+1

1,𝑚−2
+ 26𝑈

𝑛+1

1,𝑚−1
+ 66𝑈

𝑛+1

1,𝑚
+ 26𝑈

𝑛+1

1,𝑚+1
+ 𝑈
𝑛+1

1,𝑚+2
]

− [𝑈
𝑛

1,𝑚−2
+ 26𝑈

𝑛

1,𝑚−1
+ 66𝑈

𝑛

1,𝑚
+ 26𝑈

𝑛

1,𝑚+1
+ 𝑈
𝑛

1,𝑚+2
]

+ 𝑝
1
[𝑈
∗

2,𝑚+2
+ 2𝑈
∗

2,𝑚+1
− 6𝑈
∗

2,𝑚
+ 2𝑈
∗

2,𝑚−1
+ 𝑈
∗

2,𝑚−2
]

− 𝑝
2
[𝑈
∗

2,𝑚−2
+ 26𝑈

∗

2,𝑚−1
+ 66𝑈

∗

2,𝑚

+ 26𝑈
∗

2,𝑚+1
+ 𝑈
∗

2,𝑚+2
] = 0

[𝑈
𝑛+1

2,𝑚−2
+ 26𝑈

𝑛+1

2,𝑚−1
+ 66𝑈

𝑛+1

2,𝑚
+ 26𝑈

𝑛+1

2,𝑚+1
+ 𝑈
𝑛+1

2,𝑚+2
]

− [𝑈
𝑛

2,𝑚−2
+ 26𝑈

𝑛

2,𝑚−1
+ 66𝑈

𝑛

2,𝑚
+ 26𝑈

𝑛

2,𝑚+1
+ 𝑈
𝑛

2,𝑚+2
]

− 𝑝
1
[𝑈
∗

1,𝑚+2
+ 2𝑈
∗

1,𝑚+1
− 6𝑈
∗

1,𝑚
+ 2𝑈
∗

1,𝑚−1
+ 𝑈
∗

1,𝑚−2
]

+ 𝑝
2
[𝑈
∗

1,𝑚−2
+ 26𝑈

∗

1,𝑚−1
+ 66𝑈

∗

1,𝑚

+ 26𝑈
∗

1,𝑚+1
+ 𝑈
∗

1,𝑚+2
] = 0

1

80𝑘
{[𝑈
𝑛+1

3,𝑚−2
+ 26𝑈

𝑛+1

3,𝑚−1
+ 66𝑈

𝑛+1

3,𝑚
+ 26𝑈

𝑛+1

3,𝑚+1
+ 𝑈
𝑛+1

3,𝑚+2
]

− [𝑈
𝑛

3,𝑚−2
+ 26𝑈

𝑛

3,𝑚−1
+ 66𝑈

𝑛

3,𝑚
+ 26𝑈

𝑛

3,𝑚+1
+ 𝑈
𝑛

3,𝑚+2
]}

+
3

8ℎ3
[𝑈
∗

3,𝑚+2
− 2𝑈
∗

3,𝑚+1
+ 2𝑈
∗

3,𝑚−1
− 𝑈
∗

3,𝑚−2
] = 0,

(23)

where 𝑝
1
= 15𝑘/𝜖ℎ

2, 𝑝
2
= 𝑘𝑈/4𝜖, and 𝑈 is assumed to be

constant on the whole range.
We consider the first two equations and the third equation

can be done in the similar way. We assume that the solution
of (23) to be of the form

𝑈
𝑛

1,𝑚
= 𝑊
𝑛

1
𝑒
𝑖𝛽𝑚ℎ

, 𝑈
𝑛

2,𝑚
= 𝑊
𝑛

2
𝑒
𝑖𝛽𝑚ℎ

. (24)
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By substituting this into (23), this will lead us after some
manipulations to the following system:

𝛾
1
𝑊
𝑛+1

1
+ (𝑝
1
𝛾
2
− 𝑝
2
𝛾
1
)𝑊
𝑛+1

2
= 𝛾
1
𝑊
𝑛

1
− (𝑝
1
𝛾
2
− 𝑝
2
𝛾
1
)𝑊
𝑛

2

− (𝑝
1
𝛾
2
− 𝑝
2
𝛾
1
)𝑊
𝑛+1

1
+ 𝛾
1
𝑊
𝑛+1

2

= (𝑝
1
𝛾
2
− 𝑝
2
𝛾
1
)𝑊
𝑛

1
+ 𝛾
1
𝑊
𝑛

1
,

(25)

where

𝛾
1
= 66 + 2 cos (2𝛽ℎ) + 52 cos (𝛽ℎ) ,

𝛾
2
= 2 cos (2𝛽ℎ) + 4 cos (𝛽ℎ) − 6.

(26)

The system (25) can be written in a matrix-vector form as

Ψ
𝑛+1

= 𝐵Ψ
𝑛
, (27)

where Ψ𝑛 = [𝑊
𝑛

1
,𝑊
𝑛

2
]
𝑡 and 𝐵 is the (2 × 2)matrix

𝐵 = [
𝑐 𝑑

−𝑑 𝑐
]

−1

[
𝑐 −𝑑

𝑑 𝑐
] , (28)

where

𝑐 = 𝛾
1
, 𝑑 = 𝑝

1
𝛾
2
− 𝑝
2
𝛾
1
. (29)

The von Neumann stability condition for the system (27)
is the maximum modulus of the eigenvalues of the matrix 𝐵
are to be less than or equal to one. The eigenvalues of the
matrix 𝐵 are

𝜆
1
=
𝑐 + 𝑖𝑑

𝑐 + 𝑖𝑑
, 𝜆

2
=
𝑐 − 𝑖𝑑

𝑐 + 𝑖𝑑
, (30)

with modulus equal to one.This means the scheme which we
have derived is unconditionally stable according to von Neu-
mann stability analysis.

The same methodology of stability can be applied for the
third equation.

2.4. Runge-Kutta Method of Fourth Order (RK4). Another
approach for solving the semidiscrete system (16) is to use
the Runge-Kutta method of fourth-order. The semidiscrete
system (16) can be written in a matrix vector form as

𝑀
𝑑U
1

𝑑𝑡
= F
1
(U
1
,U
2
,U
3
) ,

𝑀
𝑑U
2

𝑑𝑡
= F
2
(U
1
,U
2
,U
3
) ,

𝑀
𝑑U
3

𝑑𝑡
= F
3
(U
1
,U
2
,U
3
) ,

(31)

where𝑀 is a pentadiagonal matrix of the form

𝑀 =
1

80

(
(
(
(
(
(
(
(
(

(

66 26 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

26 66 26 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 26 66 26 1 0 ⋅ ⋅ ⋅ 0

0 d d d d d d
...

... d d d d d d 0

... d d d d d d 1

... d d d 1 26 66 26

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 26 66

)
)
)
)
)
)
)
)
)

)

, (32)

which can be in a compact form as

Ẇ = 𝑀
−1G, (33)

where

W = [U
1
,U
2
,U
3
]
𝑡

, G = [F
1
(W) , F

2
(W) , F

3
(W)]
𝑡

.

(34)

The RK4 method for the block system (33) can be given as
follows:

W𝑛+1 = W𝑛 + 1

6
(K
1
+ 2K
2
+ 2K
3
+ K
4
) , (35)

where

K
1
= 𝑘𝑀

−1G (W𝑛)

K
2
= 𝑘𝑀

−1G(W𝑛 + 1

2
K
1
)

K
3
= 𝑘𝑀

−1G(W𝑛 + 1

2
K
2
)

K
4
= 𝑘𝑀

−1G (W𝑛 + K
3
) .

(36)

So in order to calculateK
1
,K
2
,K
3
, andK

4
, we need to solve a

linear pentadiagonal system, and this can be done by Crout’s
method as follows.

At the beginning of the calculations, we factor the matrix
𝑀 into 𝐿𝑈, where 𝐿 and 𝑈 are lower and upper triangular
matrices one time only, and then we left only with a lower
and an upper triangular systems which can be solved easily
by forward and backward substitution process, respectively.
This can be easily accomplishedwithminimumcost.TheRK4
method is conditionally stable. In order to get stable resultswe
choose the time step 𝑘 as (𝑘 ≈ ℎ

3
). Regarding the accuracy

in this case the scheme is of fourth-order in time and space
directions.

3. Numerical Results

In this section, we present some numerical results for the
proposed schemes. The accuracy of our methods is tested by
calculating the L

∞
error norms

L𝑢
∞
= max
𝑚

𝑈
𝑛

𝑚
− 𝑢 (𝑥

𝑚
, 𝑡
𝑛
)
 ,

LV
∞
= max
𝑚

𝑉
𝑛

𝑚
− V (𝑥

𝑚
, 𝑡
𝑛
)
 .

(37)
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Figure 1: The evolution of the numerical solution of |𝑢| with 𝜖 = 1.
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Figure 2: The evolution of the numerical solution of V with 𝜖 = 1.0.

The conserved quantities of the coupled Schrödinger-
KdV equation are calculated using trapezoidal rule. In all
calculations, we choose the initial condition

𝑢 (𝑥, 0) = −
6

5

√3𝛼
tanh 𝜉
cosh 𝜉

exp {𝑖𝛼 [−𝜖𝑥
3
]}

V = −
9

5
𝛼

1

cosh2𝜉
,

(38)

where 𝜉 = √(𝛼/10)𝑥; 𝛼 and 𝜖 are free positive parameters.
The following tests will be discussed

(i) Implicit Midpoint Rule with 𝜖 = 1. To compute the numer-
ical solution using the system obtained by using the implicit
midpoint rule (19), the following parameters are used:

𝑥
𝑙
= −50, 𝑥

𝑟
= 50,

ℎ = 0.1, 𝑘 = 0.1,

𝛼 = 0.45, 𝜖 = 1.0.

(39)

In Tables 1 and 2, we display the errors and the conserved
quantities. In Figures 1 and 2, we display the numerical solu-
tion of |𝑢| and V for 𝑡 = 0, 0.5, 1, . . . , 10. The maximum of |𝑢|
and V is constant and equal, respectively, to 0.4676, −0.8100
for 𝑡 = 0, 1, . . . , 10. It is very easy to see the accuracy and how
the conserved quantities are almost conserved.
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Figure 3: The evolution of the numerical solution of real part of 𝑢
and 𝜖 = 8.0.
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Figure 4: The evolution of the numerical solution of imaginary l
part of 𝑢 and 𝜖 = 8.0.

Table 1: Errors using implicit midpoint rule.

Time 𝐿
𝑢

∞
𝐿
V
∞

1 5.3165142𝐸 − 05 4.7715757𝐸 − 06

2 5.5607597𝐸 − 05 9.5039732𝐸 − 06

5 7.150639𝐸 − 05 2.1101674𝐸 − 05

8 9.4115007𝐸 − 05 2.9205086𝐸 − 05

Table 2: Conservative quantities.

Time 𝐼
1

𝐼
2

𝐼
3

0 2.749231 −7.636753 −1.151015

2 2.749229 −7.636751 −1.151014

5 2.749226 −7.636747 −1.151012

8 2.749223 −7.636743 −1.151010

(ii) ImplicitMidpoint Rule with 𝜖 = 8.We compute the numer-
ical solution using the implicit midpoint rule. We choose in
this case 𝜖 = 8, we display the numerical solution of |𝑢| and
V for 𝑡 = 0, 1, . . . 10. In Figures 3 and 4, we display the real
(𝑈𝑛
1
) and imaginary (𝑈𝑛

2
) parts of the numerical solution, the

samemaximum values obtained as the case of 𝜖 = 1.0.This is
compatible with the exact solution, andwe have noticed some
differences between our results in Figures 3 and 4 with the
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Figure 5:The evolution of the numerical solution of |𝑢|with 𝜖 = 8.0.
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Figure 6: The evolution of the numerical solution of V with 𝜖 = 8.0.

one in [2]. We think this occurrence is due to their selected
interval [−30, 30] where boundary values are not zero. In
Figures 5 and 6, we display the simulation of the numerical
solution of the modulus of 𝑢 and 𝑈𝑛

3,𝑚
, respectively.

(iii) Runge-Kutta Method of Fourth-Order. Now we will test
the method obtained by using the RK4. We choose the
following set of parameters:

𝑥
𝑙
= −50, 𝑥

𝑟
= 50,

ℎ = 0.1, 𝑘 = 0.0001,

𝛼 = 0.45, 𝜖 = 1.0.

(40)

The errors and conserved quantities are displayed in
Tables 3 and 4; we can easily see the high accuracy of the
proposed method and how the conserved quantities are
exactly conserved.

(iv) Comparison of Some Existing Methods. A comparative
study has been conducted with some existing methods and
the results are displayed in Table 5. From the numerical
results displayed for different methods, we can see the supe-
riority of our proposed method comparing to the previous
methods which are mentioned in [1, 2].

Table 3: Errors using Runge-Kutta method.

Time 𝐿
𝑢

∞
𝐿
V
∞

0.2 4.1779𝐸 − 05 6.5270𝐸 − 08

0.6 4.5066𝐸 − 05 5.1653𝐸 − 08

0.8 4.6236𝐸 − 05 4.9147𝐸 − 08

1.0 4.7321𝐸 − 05 5.6538𝐸 − 08

Table 4: Conservative quantities.

Time 𝐼
1

𝐼
2

𝐼
3

0 2.749231 −7.636753 −1.151015

2 2.749231 −7.636753 −1.151015

5 2.749231 −7.636753 −1.151015

8 2.749231 −7.636753 −1.151015

Table 5: The comparison of maximum errors using different
schemes at 𝑡 = 0.1 with 𝑘 = 0.0001.

Method 𝐿
𝑢

∞
(ℎ = 1) 𝐿

V
∞
(ℎ = 1)

Present (with midpoint rule) 1.69295𝐸 − 5 2.468298𝐸 − 05

Present (with RK4) 8.3382𝐸 − 06 4.2857𝐸 − 06

SSQBS FEM 8.831056𝐸 − 04 3.213056𝐸 − 04

SSCBS FEM 8.093879𝐸 − 04 2.723093𝐸 − 04

Semidiscrete FEM 8.881089𝐸 − 04 3.221997𝐸 − 04

Crank Nicolson 8.928318𝐸 − 04 5.431211𝐸 − 04

4. Conclusion

In this work, we derived highly accurate numerical schemes
for the SKdV equation, using finite element method (Petrov-
Galerkin) with product approximation technique, where we
have used the linear hat functions as trial function and
the cubic B-spline as test functions. The differential systems
obtained are solved by using implicit midpoint rule. Also we
have solved the first-order ordinary differential system using
the RK4, and in this case the numerical scheme is condition-
ally stable and of fourth-order in space and time directions.
We held a comparison with some existing methods, and we
found that our scheme produced highly accurate results and
conserved the conserved quantities almost exactly.
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