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The present study intends to propose identification methodologies for multistorey shear buildings using the powerful technique of
Artificial Neural Network (ANN) models which can handle fuzzified data. Identification with crisp data is known, and also neural
network method has already been used by various researchers for this case. Here, the input and output data may be in fuzzified
form.This is because in general we may not get the corresponding input and output values exactly (in crisp form), but we have only
the uncertain information of the data.This uncertain data is assumed in terms of fuzzy number, and the corresponding problem of
system identification is investigated.

1. Introduction

System identificationmethods in structural dynamics, in gen-
eral, solve inverse vibration problems to identify properties
of a structure from measured data. The rapid progress in the
field of computer science and computational mathematics
during recent decades has led to an increasing use of process
computers and models to analyze, supervise, and control
technical processes.The use of computers and efficient math-
ematical tools allows identification of the process dynamics
by evaluating the input and output signals of the system.
The result of such a process identification is usually a
mathematical model by which the dynamic behaviour can
be estimated or predicted. The system identification problem
has been nicely explained in a recent paper [1]. The same
statements from [1] are reproduced below for the benefit of
the readers.

The study of structures dynamic behaviour may be cate-
gorized into two distinct activities: analytical and/or numer-
ical modelling (e.g., finite element models) and vibration
tests (e.g., experimental modal models). Due to different
limitations and assumptions, each approach has its advan-
tages and shortcomings.Therefore, in order to determine the
dynamic properties of the structure, reconciliation processes

including model correlation and/or model updating should
be performed. Model updating can be defined as the adjust-
ment of an existing analytical/numerical model in the light
of measured vibration test. After adjustment, the updated
model is expected to represent the dynamic behaviour of the
structure more accurately as proposed by Friswell et al. [2].
With the recent advances in computing technology for data
acquisition, signal processing, and analysis, the parameters
of structural models may be updated from the measured
responses under excitation of the structure. This procedure
is achieved using system identification techniques as an
inverse problem. The inverse problem may be defined as
determination of the internal structure of a physical system
from the system’s measured behaviour, or estimation of an
unknown input that gives rise to a measured output signal
according to Tanaka and Bui [3].

Comprehensive literature surveys have been provided on
the subject of model updating of the structural systems by
Alvin et al. [4], and Time series methods for fault detection
and identification in vibrating structures were presented by
Fassois and Sakellariou [5]. Shear buildings are among the
most widely studied structural systems. Previous works on
model updating of shear buildings relymostly onusingmodal
parameter identification and physical or structural parameter
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Figure 1: Multistorey shear structure with 𝑛-levels having fuzzy
structural parameters.
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Figure 2: Layered feed-forward fuzzy neural network.

identification to drive the corresponding update procedures.
As regards the publications, Marsi et al. [6] gave various
methodologies for different types of problems in system
identification. Various techniques for improving structural
dynamic models were reviewed in a review paper by Ibanez
[7], and studies made by Datta et al. [8] related to system
identification of buildings done until that date were also
surveyed. Some of the related publicationsmay bementioned
as those of Loh and Tou [9] and Yuan et al. [10].

It is known that, the systems which may be modeled
as linear, the identification problem often turns in to a
non-linear optimization problem.This requires an intelligent
iterative scheme to have the required solution. There exists
various online and offline methods, namely, the Gauss-
Newton, Kalman filtering and probabilistic methods such
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Figure 5: Comparison between the desired and the ANN values
of 𝐾̃ for a single-storey shear.

as maximum likelihood estimation, and so forth. However,
the identification problem for a large number of parameters,
following two basic difficulties are faced often:

(i) objective function surface may havemultiple maxima
and minima, and the convergence to the correct
parameters is possible only if the initial guess is
considered as close to the parameters to be identified;
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Figure 6: (a) Comparison between the desired and the ANN values of ̃𝑘
1
for a double-storey shear structure. (b) Comparison between the

desired and the ANN values of ̃𝑘
2
for a double-storey shear structure.
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Figure 7: (a) Comparison between the desired and the ANN values of ̃𝑘
1
for a double-storey shear structure. (b) Comparison between the

desired and the ANN values of ̃𝑘
2
for a double-storey shear structure.

(ii) inverse problem in general gives nonunique parame-
ter estimates.

To overcome these difficulties, researchers have developed
various identification methodologies for the said problem
by using powerful technique of Artificial Neural Network
(ANN). Chen [11] presented a neural network based method
for determining the modal parameters of structures from
field measurement. Using the observed dynamic responses,
he trained the neural network based on back-propagation
technique. He then directly identified the modal parameters
of the structure using the weight matrices of the neural
network. In particular, Huang et al. [12] presented a novel
procedure for identifying the dynamic characteristics of a
building using a back-propagation neural network technique.
Another novel neural network based approach has been
presented by Kao and Hung [13] for detecting structural
damage. A decentralized stiffness identification method with
neural networks for a multidegree of freedom structure
has been developed by Wu et al. [14]. Localized damage
detection and parametric identification method with direct
use of earthquake responses for large-scale infrastructures
has also been proposed by Xu et al. [15]. A neural network

based strategy by Xu et al. [16] was developed for direct
identification of structural parameters from the time domain
dynamic responses of an object structure without anyeigen
value analysis.

System identification on the other hand tries to identify
structural matrices of mass, damping and stiffness directly.
Among various methodologies in this regard Chakraverty
[17], Perry et al. [18],Wang [19], Yoshitomi andTakewaki [20],
and Lu and Tu [21] developed different techniques to handle
the system identification problems. Yuan et al. [10] developed
a methodology that identifies the mass and stiffness matrices
of a shear building from the first two orders of structural
mode measurement. Koh et al. [22] proposed several Ga-
based substructural identification methods, which work by
solving parts of the structure at a time to improve the
convergence of mass and stiffness estimates particularly for
large systems. Chakraverty [17] proposed procedures to refine
the methods of Yuan et al. [10] to identify the structural
mass and stiffness matrices of shear buildings from the
modal test data. The refinement was obtained using Holzer
criteria. Tang et al. [23] utilized a differential evolution (DE)
strategy for parameter estimation of the structural systems
with limited output data, noise polluted signals, and no prior
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knowledge of mass, damping, or stiffness matrices. Recent
works on model updating of multistory shear buildings for
simultaneous identification of mass, stiffness, and damping
matrices using two different soft-computing methods have
been developed by Khanmirza et al. [1]. It may be seen
from above that Artificial Neural Networks (ANNs) provide
a fundamentally different approach to system identification.
They have been successfully applied for identification and
control of dynamics systems in various fields of engineering
because of excellent learning capacity and high tolerance to
partially inaccurate data.

It is revealed from the above literature review that vari-
ous authors developed different identificationmethodologies
using ANN. They supposed that the data obtained are in
exact or crisp form. But in actual practice the experimental
data obtained from equipments are with errors that may be
due to human or equipment error, thereby giving uncertain
form of the data. Although one may also use probabilistic
methods to handle such problems. Then, the probabilistic
method requires huge quantity of data which may not be
easy or feasible. Thus in this paper, a minimum number
of data are taken in fuzzified form to have the essence of
the uncertainty. Accordingly, in this paper, identification
methodologies for multistorey shear buildings have been
proposed using the powerful technique of Artificial Neural
Network (ANN) models which can handle fuzzified data.
It is already mentioned that identification with crisp data
is known and also neural network method has already
been used by various researchers for this case. Here, the
input and output data may be in fuzzified form. This is
because in general we may not get the corresponding input
and output values exactly (in crisp form), but we have
only the uncertain information of the data. This uncertain
data has been assumed to be in terms of fuzzy num-
bers.

In this paper, the initial design parameters, namely,
stiffness and mass and so the frequency of the said problem
is known. But after a large span of time, the structure may
be subjected to various manmade and natural calamities.
Then, the engineers want to know the present health of the
structure by system identificationmethods. It is assumed that
only the stiffness is changed and the mass remains the same.
As such equipments are available to get the present values
of the frequencies and using these one may get the present
parameter values by ANN. But while doing the experiment,
one may not get the exact values of the parameters. But we
may get those values as uncertain, namely, in fuzzy form. So
if sensors are placed to capture the frequency of the floors
in fuzzy (uncertain) form, then those may be fed into the
proposed newANNmodel to get the present stiffness param-
eters in fuzzified form. In order to train the new ANNmodel,
set of data are generated numerically beforehand. As such,
converged ANN model gives the present stiffness parameter
values in interval form for each floor. Thus, one may predict
the health of the uncertain structure. Corresponding example
problems have been solved, and related results are reported to
show the reliability and powerfulness of the model.

2. Analysis and Modelling

System identification refers to the branch of numeri-
cal analysis which uses the experimental input and out-
put data to develop mathematical models of systems
which finally identify the parameters. The floor masses
for this methodology are assumed to be [𝑚
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1
𝑐, 𝑚
1
],

[𝑚
2
, 𝑚
2
𝑐, 𝑚
2
], . . . , [𝑚

𝑛
, 𝑚
𝑛
𝑐, 𝑚
𝑛
], and the stiffness [𝑘

1
, 𝑘
1
𝑐,

𝑘
1
], [𝑘
2
, 𝑘
2
𝑐, 𝑘
2
],. . . , [𝑘

𝑛
, 𝑘
𝑛
𝑐, 𝑘
𝑛
] are the structural parame-

ters which are to be identified. It may be seen that all themass
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and stiffness parameters are taken in fuzzy form. As such here
for eachmass𝑚

𝑖
, we have𝑚

𝑖
as the left value,𝑚

𝑖
𝑐 as the centre

value, and 𝑚
𝑖
as the right value. Similarly for the stiffness

parameter for each mass 𝑘
𝑖
, we have 𝑘

𝑖
as the left value, 𝑘

𝑖
𝑐

as the centre value, and 𝑘
𝑖
as the right value. The n-storey

shear structure is shown in Figure 1. Corresponding dynamic
equation of motion for n-storey (supposed as n degrees of

freedom) shear structure without damping may be written as

{𝑀̃} {
̈
𝑋̃} + {𝐾̃} {𝑋̃} = {0̃} , (1)

where { ̈𝑥̃} = {𝑥̈, 𝑥̈𝑐, 𝑥̈}, {𝑥̃} = [𝑥, 𝑥𝑐, 𝑥].
{𝑀̃} = [𝑀,𝑀𝑐,𝑀] is 𝑛 × 𝑛 mass matrix of the structure

and is given by

{𝑀̃} =

[

[

[

[

[

[
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1
, 𝑚
1
𝑐, 𝑚
1
] 0 . . . . . . 0
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] 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . 0 [𝑚
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]

0 . . . . . . 0 0
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]

]

]

. (2)

{𝐾̃} = [𝐾,𝐾𝑐, 𝐾] is 𝑛 × 𝑛 stiffness matrix of the structure
and may be written as

{𝐾̃} =

[

[
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, (3)

and {𝑋̃} = {𝑥̃
1
, 𝑥̃
2
, . . . , 𝑥̃

𝑛
}
𝑇 are the vectors of displacement.

We will first solve the above free vibration equation for
vibration characteristics, namely, for frequency and mode
shapes of the said structural system in order to get the stiffness
parameters in fuzzified form. Accordingly putting {𝑋̃} =

{
̃
𝜙}𝑒
𝑖(𝜔̃)𝑡 in free vibration equation (1), we get

({𝐾̃} − {𝑀̃} [𝜔̃]
2
) {
̃
𝜙} = {0̃} , (4)

where {𝜔̃}2 = [𝜔, 𝜔𝑐, 𝜔]
2
= [𝜆, 𝜆𝑐, 𝜆] are eigenvalues or the

natural frequency and {̃𝜙} are mode shapes of the structure,
respectively.

3. Basic Concept of Fuzzy Set Theory

Definition 1. Let 𝑋 be a universal set. Then, the fuzzy subset
𝐴 of𝑋 is defined by its membership function

𝜇
𝐴
: 𝑋 󳨀→ [0, 1] , (5)

which assigns a real number 𝜇
𝐴
(𝑥) in the interval [0, 1], to

each element 𝑥 ∈ 𝑋, where the value of 𝜇
𝐴
(𝑥) at 𝑥 shows the

grade of membership of 𝑥 in 𝐴.

Definition 2. Given a fuzzy set 𝐴 in 𝑋 and any real number
𝛼 ∈ [0, 1], then, the 𝛼-cut or 𝛼-level or cut worthy set of 𝐴,
denoted by 𝐴

𝛼
, is the crisp set

𝐴
𝛼
= {𝑥 ∈ 𝑋 | 𝜇

𝐴
(𝑥) ≥ 𝛼} . (6)

The strong 𝛼-cut, denoted by 𝐴
𝛼+
, is the crisp set

𝐴
𝛼+
= {𝑥 ∈ 𝑋 | 𝜇

𝐴
(𝑥) ≥ 𝛼} . (7)

Definition 3. A fuzzy number is a convex normalized fuzzy
set of the real line𝑅whosemembership function is piecewise
continuous.

Definition 4. A triangular fuzzy number 𝐴 can be defined as
a triplet [𝑎

1
, 𝑎
2
, 𝑎
3
]. Its membership function is defined as

𝜇
𝐴
(𝑥) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

0, 𝑥 < 𝑎
1

𝑥 − 𝑎
1

𝑎
2
− 𝑎
1

, 𝑎
1
≤ 𝑥 ≤ 𝑎

2

𝑎
3
− 𝑥

𝑎
3
− 𝑎
2

, 𝑎
2
≤ 𝑥 ≤ 𝑎

3

0, 𝑥 > 𝑎
3
.

(8)

Above TFN may be transformed to an interval form 𝐴
𝛼
by

𝛼-cut as

𝐴
𝛼
= [𝑎
(𝛼)

1
, 𝑎
(𝛼)

3
] = [(𝑎

2
− 𝑎
1
) 𝛼 + 𝑎

1
, − (𝑎
3
− 𝑎
2
) 𝛼 + 𝑎

3
] .

(9)

4. Operation of Fuzzy Number

In this section, we consider arithmetic operation on fuzzy
numbers and the result is expressed in membership function:

∀𝑥, 𝑦, 𝑧 ∈ 𝑅. (10)

(1) Addition: 𝐴(+)𝐵

𝜇
𝐴(+)𝐵

(𝑧) = ⋁

𝑧=𝑥+𝑦

(𝜇
𝐴
(𝑥) ∧ 𝜇

𝐵
(𝑦)) . (11)

(2) Subtraction: 𝐴(−)𝐵

𝜇
𝐴(−)𝐵

(𝑧) = ⋁

𝑧=𝑥−𝑦

(𝜇
𝐴
(𝑥) ∧ 𝜇

𝐵
(𝑦)) . (12)

(3) Multiplication: 𝐴(⋅)𝐵

𝜇
𝐴(⋅)𝐵

(𝑧) = ⋁

𝑧=𝑥⋅𝑦

(𝜇
𝐴
(𝑥) ∧ 𝜇

𝐵
(𝑦)) . (13)
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Table 1: Comparison between the desired and the ANN values of 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
, and 𝑘

5
for a five-storey shear structure.

Data
number

𝑘
1
(Ann) 𝑘

1
(Des) 𝑘

2
(Ann) 𝑘

2
(Des) 𝑘

3
(Ann) 𝑘

3
(Des) 𝑘

4
(Ann) 𝑘

4
(Des) 𝑘

5
(Ann) 𝑘

5
(Des)

1 181277.7318 181472.3686 57722.68 57880.6541 53111.561 53114.814 44531.8138 44120.9218 24304.5301 24387.4436

2 195883.7223 190579.1937 98497.3362 98529.6391 40890.7789 40714.2336 30510.5884 30636.6569 24013.4116 23815.5846

3 110889.324 112698.6816 97540.2878 97858.3474 56939.1333 56982.5861 35467.0709 35538.4597 27905.0723 27655.1679

4 191334.6369 191337.5856 74367.0906 74268.7824 58151.3678 58679.865 30921.7444 30923.4278 27758.983 27951.999

5 162671.148 163235.9246 90080.9291 90014.0234 53507.0758 53574.7031 31851.263 31942.6356 21775.0509 21868.726

6 109757.8778 109754.0405 57034.3391 57094.3169 55073.904 55154.8026 46360.9403 46469.1566 24899.5619 24897.644

7 127671.411 127849.8219 71003.1282 71088.0641 54999.758 54862.6494 43688.9611 43896.5725 24554.2598 24455.862

8 154429.3614 154688.1519 98500.0073 95786.7763 48031.3148 47844.5404 36250.0047 36341.9896 27719.1389 26463.1301

9 196399.16 195750.6835 89751.9025 89610.3665 53100.0372 53109.5578 48498.0106 49004.441 27950.5364 27093.6483

10 193722.4668 196488.8535 98520.881 97974.6213 43228.929 43423.7338 30822.0268 30688.9216 26813.9637 27546.8668

(4) Division: 𝐴(/)𝐵

𝜇
𝐴(/)𝐵

(𝑧) = ⋁

𝑧=𝑥/𝑦

(𝜇
𝐴
(𝑥) ∧ 𝜇

𝐵
(𝑦)) . (14)

(5) Minimum: 𝐴(∧)𝐵

𝜇
𝐴(∧)𝐵

(𝑧) = ⋁

𝑧=𝑥∧𝑦

(𝜇
𝐴
(𝑥) ∧ 𝜇

𝐵
(𝑦)) . (15)

(6) Maximum: 𝐴(∨)𝐵

𝜇
𝐴(∨)𝐵

(𝑧) = ⋁

𝑧=𝑥∨𝑦

(𝜇
𝐴
(𝑥) ∧ 𝜇

𝐵
(𝑦)) . (16)

5. Artificial Neural Network (ANN) and
Error-Back Propagation Training Algorithm
(EBPTA) for Fuzzified Data

Traditional ANN and EBPTA are well known, but here for
the sake of completeness, those are developed for fuzzy case.
In ANN, the first layer is considered to be input layer and
the last layer is the output layer. Between the input and
output layers, there may be more than one hidden layer. Each
layer will contain number of neurons or nodes (processing
elements) depending upon the problem. These processing
elements operate in parallel and are arranged in patterns
similar to the patterns found in biological neural nets. The
processing elements are connected to each other by adjustable
weights.The input/output behavior of the network changes if
the weights are changed. So, the weights of the net may be
chosen in such a way so as to achieve a desired output. To
satisfy this goal, systematic ways of adjusting the weights have
to be developed to handle the fuzzified data which are known
as training or learning algorithm. Neural network basically
depends upon the type of processing elements or nodes, the
network topology, and the learning algorithm. Here, error
back-propagation training algorithm and feedforward recall
have been used but to handle the uncertain system. The
typical network is given in Figure 2.

In this Figure, 𝑍
𝑖
, 𝑃
𝑗
, and 𝑂

𝑚
are input, hidden, and

output layers, respectively. The weights between input and
hidden layers are denoted by V

𝑗𝑖
, and the weights between

hidden and output layers are denoted by 𝑊
𝑘𝑗
. Here, ̃𝑍

𝑖
=

[𝜆
𝑖
𝜆
𝑖
𝑐 𝜆
𝑖
] and 𝑂̃

𝑘
= [𝑘
𝑚
𝑘
𝑚
𝑐 𝑘
𝑚
].

Given 𝑅 training pairs {̃𝑍
1
,
̃
𝑑
1
;
̃
𝑍
2
,
̃
𝑑
2
; . . . ,

̃
𝑍
𝑅
,
̃
𝑑
𝑅
} where

̃
𝑍
𝑖
(𝐼 × 1) are input and ̃𝑑

𝑖
(𝑀 × 1) are desired values for the

given inputs, the error value is computed as

𝐸̃ =

1

2

(
̃
𝑑
𝑚
− 𝑂̃
𝑚
)

2

, 𝑚 = 1, 2, . . .𝑀, (17)

for the present neural network as shown in Figure 2.The error
signal terms of the output (̃𝛿

𝑂𝑚
) and hidden layers (̃𝛿

𝑝𝑗
) are

written, respectively, as

̃
𝛿
𝑂𝑚

= 0.5 ∗ (
̃
𝑑
𝑚
− 𝑂̃
𝑚
) (1 − 𝑂̃

𝑚

2

) , 𝑚 = 1, 2, . . .𝑀,

̃
𝛿
𝑃𝑗
= 0.5 ∗ (1 − 𝑃̃

2

𝑗
)

𝑀

∑

𝑚=1

̃
𝛿
𝑂𝑚
𝑊̃
𝑃𝑗
, 𝑗 = 1, 2, . . . 𝐽.

(18)

Consequently, output layer weights (𝑊̃
𝑚𝑗
) and hidden

layer weights (Ṽ
𝑗𝑖
) are adjusted as

𝑊̃

(New)
𝑚𝑗

=𝑊̃

(Old)
𝑚𝑗

+𝜂
̃
𝛿
𝑂𝑚
𝑃
𝑗
, 𝑚=1, 2, . . .𝑀, 𝑗=1, 2, . . . 𝐽,

Ṽ
(New)
𝑗𝑖

= Ṽ
(Old)
𝑗𝑖

+𝜂
̃
𝛿
𝑃𝑗
𝑍
𝑖
, 𝑗 = 1, 2, ...𝐽, 𝑖 = 1, 2, ...𝐼,

(19)

where 𝜂 is the learning constant.

6. Results and Discussion

To investigate the present method here, examples of one-
and two-storey shear structures are considered. So, for
example, the floor masses for two-storey shear struc-
ture are [𝑚

1
, 𝑚
1
𝑐, 𝑚
1
], [𝑚
2
, 𝑚
2
𝑐, 𝑚
2
] and the stiffnesses

[𝑘
1
, 𝑘
1
𝑐, 𝑘
1
], [𝑘
2
, 𝑘
2
𝑐, 𝑘
2
] are the structural parameters. Here,
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Table 2: (a) Comparison between the desired and the ANN values of 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
, and 𝑘

5
for a ten-storey shear structure. (b) Comparison

between the desired and the ANN values of 𝑘
6
, 𝑘
7
, 𝑘
8
, 𝑘
9
, and 𝑘

10
for a ten-storey shear structure.

(a)

Data
number 𝑘

1
(Ann) 𝑘

1
(Des) 𝑘

2
(Ann) 𝑘

2
(Des) 𝑘

3
(Ann) 𝑘

3
(Des) 𝑘

4
(Ann) 𝑘

4
(Des) 𝑘

5
(Ann) 𝑘

5
(Des)

1 116900.6563 114999.7254 23626.293 23947.0748 25255.905 24299.2141 29078.6982 29493.0391 27766.1413 28842.8102
2 137413.4659 135922.821 22400.1311 21970.538 22076.7651 22160.1892 28671.6078 29898.7215 23928.6799 23185.2425
3 174166.5579 171165.6706 26751.8243 27587.6627 28439.4836 28089.9027 28056.19 27636.7332 28909.5075 29349.7909
4 185745.6345 187147.6518 28203.5977 29952.1598 23288.5994 23565.0893 25414.2964 25588.2055 24175.8385 24794.8455
5 131376.8088 132868.9612 22531.4396 21865.7144 20887.9013 20732.4343 22490.5032 21838.4294 21747.4496 22317.9161
6 174687.251 165011.8025 25813.5863 27811.4527 25015.1015 25909.9146 25615.7328 24979.4882 24612.1573 23962.9025
7 185115.3655 197483.6148 24841.291 21957.9798 27352.9705 29101.8783 25184.1779 25178.456 27414.6225 27050.7748
8 107439.5782 107596.7361 28408.1614 29923.5897 22079.0745 21937.6594 29361.5732 29942.4301 25283.6014 25585.5903
9 164872.2954 158701.9167 25498.9862 28022.6157 26269.1879 24323.6779 28505.5766 28548.5168 27421.7863 27566.307
10 134496.3197 136428.6869 23984.6699 23091.3643 26528.5422 27288.6387 20735.4877 20391.8449 26590.0291 26789.4101

(b)

Data
number 𝑘

6
(Ann) 𝑘

6
(Des) 𝑘

7
(Ann) 𝑘

7
(Des) 𝑘

8
(Ann) 𝑘

8
(Des) 𝑘

9
(Ann) 𝑘

9
(Des) 𝑘

10
(Ann) 𝑘

10
(Des)

1 21170.0974 20899.5068 25777.6655 25605.5953 28204.3487 29899.5021 27503.4171 25859.8704 27163.5463 25814.4649
2 22417.1364 20549.7415 27621.6492 28654.3859 27612.505 28451.7819 28303.9996 29823.0322 22093.3505 22094.0508
3 29672.9685 29638.7013 25998.8211 27124.1481 22438.2305 21982.2179 26315.5549 26153.251 27684.8546 29019.9081
4 19962.2582 19656.5635 21156.2588 20166.7471 22269.5196 21950.7153 23818.7821 23766.1108 27240.5745 27020.6645
5 20161.805 20514.4829 25387.6098 28009.2088 23922.4631 23268.3965 27519.8427 28771.8175 23219.6412 23774.551
6 22307.0935 23043.4895 21527.1166 21425.0932 27311.6444 28803.3786 27670.7454 27848.5243 27234.7985 27349.5593
7 27804.4452 25801.9183 24442.8169 24784.7447 25319.1653 24711.0187 25870.6554 24649.5428 27640.8021 29541.0279
8 25509.2344 25309.6445 22738.1369 22568.3535 23936.8813 24039.6937 28924.1116 28139.7693 25172.6749 25428.1311
9 28341.8519 29012.0809 25380.1928 23690.9169 23071.1828 21792.3148 28034.5751 28984.4414 26519.4395 25401.0583
10 27911.2912 29624.314 26475.8553 24319.8061 21306.3632 21696.0881 25327.5363 24074.5574 24485.2563 23343.2942

Table 3: Comparison between the desired and the ANN values of 𝐾̃ for a single-storey shear structure.

Data number 𝐾 (Ann) 𝐾 (Des) 𝐾𝑐 (Ann) 𝐾𝑐 (Des) 𝐾 (Ann) 𝐾 (Des)
1 124932.9319 124189.1286 135932.8213 135095.2381 191905.7285 190281.611
2 135763.4956 140411.2146 152464.2896 151324.954 191726.9669 194488.719
3 110291.5736 109665.4525 141591.1084 140180.8034 148514.9196 149096.4092
4 107394.0584 107596.6692 115134.7117 113217.3293 149119.797 148935.2638
5 124430.5911 123991.6154 134455.7107 133781.941 192947.0787 194225.0591
6 112574.5401 112331.8935 188853.0283 190015.3846 194542.4439 195633.454
7 120988.7913 118390.7788 138166.8698 136934.6781 157619.3944 157540.8595
8 108960.7756 105997.9543 113526.3083 111130.2755 126504.2017 123995.2526
9 124700.9011 123497.9913 143556.5197 141726.7069 179985.5092 178035.2068
10 105227.009 104965.443 135988.057 135335.8571 140612.991 138983.8837

masses are assumed to be constant (as mentioned earlier).
So, we will identify the stiffness parameter in fuzzy form
using the fuzzy form of the frequency where frequency
may be obtained from some experiments. In the following
paragraphs, we have used the proposed method to identify
the stiffness parameter for one-, two-, five-, and ten-storey

frame structures. Here, we have considered the cases with
crisp data for five- and ten-storeys and then fuzzified data for
one- and two-storeys. The training data are also considered
with the influence of noise, namely, in terms of triangular
fuzzy number data. Accordingly we have considered the
following four cases:
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Table 4: Comparison between the desired and the ANN values of 𝐾̃ for a single-storey shear structure.

Data number 𝑘 (Ann) 𝑘 (Des) 𝑘𝑐 (Ann) 𝑘𝑐 (Des) 𝑘 (Ann) 𝑘 (Des)
1 62365.0341 62104.5643 67644.4378 67547.619 95458.8463 95145.8055
2 67613.8959 70215.6073 75826.931 75662.477 95893.1612 97249.3595
3 55005.0087 54842.7263 70556.3936 70090.4017 74368.7997 74553.2046
4 53128.7186 53798.3346 56947.542 56618.6646 74261.1768 74472.6319
5 62246.1626 61995.8077 66881.2194 66895.9705 96278.4523 97122.5295
6 55957.2602 56165.9467 94391.1219 95012.6923 97271.6645 97826.727
7 60056.7259 59195.3894 68223.7328 68472.3391 78385.7211 78780.4298
8 53587.3374 53008.9771 55747.5298 55570.1378 61968.3882 61997.6263
9 62126.6388 61758.9957 71196.546 70863.3535 89991.9346 89022.6034
10 52238.7913 52482.7215 67702.5259 67677.9286 69679.1387 69496.9418

Table 5: (a) Comparison between the desired and the ANN values of ̃𝑘
1
for a double-storey shear structure. (b) Comparison between the

desired and the ANN values of ̃𝑘
2
for a double-storey shear structure.

(a)

Data
number 𝑘

1
(Ann) 𝑘

1
(Des) 𝑘

1
𝑐 (Ann) 𝑘

1
𝑐 (Des) 𝑘

1
(Ann) 𝑘

1
(Des)

1 113258.5422 113317.1008 133858.2555 133969.3413 162741.2326 162807.3359
2 116526.66 117338.8613 128622.4646 129208.408 193447.2534 195183.0465
3 139119.0131 139093.7802 143501.0894 143175.117 191801.5675 192053.204
4 101316.7594 101558.7126 106512.8803 105287.6998 183040.5812 183137.9743
5 173554.7972 173805.8096 180269.037 180336.4392 198199.4731 198416.3724
6 105985.8857 106047.1179 117592.2043 116726.841 127688.8972 126931.9426
7 110472.1362 110631.6345 140132.9188 139925.7771 142461.6007 142303.5615
8 137120.3743 137250.974 152856.9037 152687.5831 155005.6994 154807.0901
9 119783.849 119821.8403 142480.6438 141679.9468 195824.6624 194293.6984
10 141708.5217 141794.4104 148654.6797 148978.7638 165370.4902 165685.9891

(b)

Data
number 𝑘

2
(Ann) 𝑘

2
(Des) 𝑘

2
𝑐 (Ann) 𝑘

2
𝑐 (Des) 𝑘

2
(Ann) 𝑘

2
(Des)

1 58488.0205 58566.0533 91472.5908 92796.1403 99954.016 99152.6233
2 51977.6459 51640.041 65679.199 65072.7474 85856.2114 82258.2268
3 69213.7504 68833.6105 77764.8854 78069.9896 85939.2478 85054.9378
4 60124.2902 59566.1848 83319.0924 83316.9426 93794.9834 94103.325
5 71317.3378 71432.6496 76748.5343 76956.3233 83930.3883 83468.7652
6 59384.591 59531.6634 73687.8221 74121.1031 85087.5853 84905.276
7 56031.7629 56050.5807 68215.603 68455.8273 83728.3652 83326.3957
8 58849.1438 58906.6227 72741.8224 73046.2969 79796.3231 79495.3742
9 57077.8681 56400.72 61035.9761 61329.384 95110.8992 99091.8975
10 57858.7023 57830.2476 69404.8867 69250.9562 99433.354 99954.0197

Case(i): Five-storey shear structure with crisp data,

Case(ii): Ten-storey shear structure with crisp data,

Case(iii): Single-storey shear structure with fuzzified
data,

Case(iv): Double-storey shear structure with fuzzified
data.

Computer programs have been written and tested for variety
of experiments for the above cases. For the first two cases,
namely, Case(i) and Case(ii), the inputs are taken as the crisp
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Table 6: (a) Comparison between the desired and the ANN values of ̃𝑘
1
for a double-storey shear structure. (b) Comparison between the

desired and the ANN values of ̃𝑘
2
for a double-storey shear structure.

(a)

Data
number 𝑘

1
(Ann) 𝑘

1
(Des) 𝑘

1
𝑐 (Ann) 𝑘

1
𝑐 (Des) 𝑘

1
(Ann) 𝑘

1
(Des)

1 62193.4503 62149.2679 65871.2249 66562.894 69219.2648 69672.8181
2 71578.6175 71235.4748 71816.4848 72130.1157 83311.5254 83571.557
3 63514.5116 63533.5212 84447.6191 84399.8043 86708.0123 87062.8972
4 59459.7849 59872.6899 67907.0231 67971.4105 75148.6421 76002.6234
5 67809.323 67385.6336 85655.9802 86827.0037 91460.6917 91106.0592
6 57879.7498 57499.8627 69206.8111 69745.3738 71387.5577 71516.0705
7 77679.4222 79304.6034 83870.4195 84180.7933 93380.175 94408.5477
8 63484.2106 63107.2659 69028.8134 69579.1498 85313.0398 85212.3715
9 52329.6174 52222.7046 72316.9085 72125.2707 88399.7894 88475.7194
10 50895.5951 50988.8812 69532.938 69859.5759 87547.575 87746.6634

(b)

Data
number 𝑘

2
(Ann) 𝑘

2
(Des) 𝑘

2
𝑐 (Ann) 𝑘

2
𝑐 (Des) 𝑘

2
(Ann) 𝑘

2
(Des)

1 27396.6322 27507.0572 27776.8241 27698.5425 28078.4211 28085.141
2 21439.7109 21682.5355 27548.5904 27550.771 29081.9724 28275.8382
3 23717.5546 23773.9554 27948.7301 27919.6303 28617.4807 28629.8048
4 22090.0439 22160.1892 23180.7111 23205.2425 28962.7934 29908.7215
5 25086.5697 25154.2346 25465.6455 25360.6413 27961.1253 27904.0722
6 20724.6386 20919.5068 28645.592 28852.8102 29353.9707 29493.0391
7 20706.4881 21137.0574 23381.0249 23275.6543 25716.8788 25890.2606
8 21056.3736 21382.9255 21574.7879 21557.5235 26851.9289 26712.6437
9 22075.9397 22008.6282 24479.3131 24386.4498 27062.0237 26806.523
10 24070.1411 24079.5484 25009.5776 24971.7702 28009.5803 28335.006

frequency values and the outputs are the stiffness parameters
which are also in crisp form. On the other hand, for Cases(iii)
and (iv), the inputs are taken as the fuzzified frequency
values and the outputs are the stiffness parameters again in
fuzzified form in the developed FuzzyNeuralNetwork (FNN)
algorithm.

For the first case, an example of a storey shear structure
is taken where the masses are 𝑚

1
= 𝑚
2
= 𝑚
3
= 𝑚
4
=

𝑚
5
= 36000 and the stiffness parameters are within the

range 𝑘
1

= [100000 200000], 𝑘
2

= [50000 100000],
𝑘
3
= [40000 60000], 𝑘

4
= [30000 50000], and 𝑘

5
=

[20000 30000]. A comparison between the desired andANN
values has been presented in Table 1. This table has been
plotted in Figure 3.

In Case(ii), an example for a ten-storey shear struc-
ture has been considered with constant masses similar to
Case(i) and the stiffness parameters are in the range 𝑘

1
=

[100000 200000], 𝑘
2
= 𝑘
3
= 𝑘
4
= 𝑘
5
= 𝑘
6
= 𝑘
7
= 𝑘
8
=

𝑘
9
= 𝑘
10
= [20000 30000]. The desired and ANN values for

𝑘
1
to 𝑘
5
and 𝑘

6
to 𝑘
10
are compared in Tables 2(a) and 2(b),

respectively.
For Case(iii), the first example is that of a single-storey

shear structure with masses 𝑀̃ = 36000 and the stiffness

parameters lie within the range𝐾 = [100000 200000], 𝐾𝑐 =
[100010 200010], and𝐾 = [100020 200020]. A comparison
between desired and the ANN values has been incorporated
in Table 3. This table has been plotted in Figure 4. In the
second example, a single-storey shear structure is considered
with masses 𝑀̃ = 36000 and the stiffness parameter
varying within the range 𝐾 = [50000 100000], 𝐾𝑐 =

[50010 100010], and 𝐾 = [50020 100020]. Comparison
between the desired and the ANN values is tabulated in
Table 4 and is plotted in Figure 5.

In Case(iv), the first example of a double-storey shear
structure is considered where the masses are 𝑚̃

1
= 𝑚̃
2
=

36000 and the stiffness parameters varying within the
range 𝑘

1
= [100000 200000], 𝑘

1
𝑐 = [100010 200010],

𝑘
1
= [100020 200020] and 𝑘

2
= [20000 30000], 𝑘

2
𝑐 =

[20010 30010] , and 𝑘
2
= [20020 30020]. The desired and

ANN values have been compared in Tables 5(a) and 5(b).
This table has also been shown in Figures 6(a) and 6(b).
In the second example, a double-storey shear structure is
implemented with masses 𝑚̃

1
= 𝑚̃
2
= 36000 and the

stiffness parameters having the range 𝑘
1
= [50000 100000],

𝑘
1
𝑐 = [50010 100010], 𝑘

1
= [50020 100020] and
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Table 7: (a) Comparison between the desired and the ANN values of 𝑘
1
, 𝑘
1
and 𝑘

2
, 𝑘
2
for a double-storey shear structure for 𝛼 = 0.3. (b)

Comparison between the desired and the ANN values of 𝑘
1
, 𝑘
1
and 𝑘

2
, 𝑘
2
for a double-storey shear structure for 𝛼 = 0.5. (c) Comparison

between the desired and the ANN values of 𝑘
1
, 𝑘
1
and 𝑘

2
, 𝑘
2
for a double-storey shear structure for 𝛼 = 0.8.

(a)

Data
number 𝑘

1
(Ann) 𝑘

1
(Des) 𝑘

1
(Ann) 𝑘

1
(Des) 𝑘

2
(Ann) 𝑘

1
(Des) 𝑘

2
(Ann) 𝑘

2
(Des)

1 109470 109250 124660 123870 63676 63908 81668 81670
2 119370 119420 141760 141590 59687 59772 79075 78865
3 141840 141880 154360 154170 63017 63149 77680 77561
4 126590 126380 179820 178510 58265 57879 84888 87763
5 143790 143950 160360 160670 61323 61256 90425 90743

(b)

Data
number 𝑘

1
(Ann) 𝑘

1
(Des) 𝑘

1
(Ann) 𝑘

1
(Des) 𝑘

2
(Ann) 𝑘

1
(Des) 𝑘

2
(Ann) 𝑘

2
(Des)

1 111790 111390 122640 121830 66536 66826 79388 79513
2 125300 125280 141300 141110 62124 62253 75972 75891
3 144990 144970 153930 153750 65795 65976 76269 76271
4 131130 130750 169150 167990 59057 58865 78073 80211
5 145180 145390 157010 157330 63632 63541 84419 84602

(c)
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1
(Ann) 𝑘

1
(Des) 𝑘

1
(Ann) 𝑘

1
(Des) 𝑘

2
(Ann) 𝑘
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1 115270 114590 119610 118770 70827 71203 75968 76278
2 134200 134070 140600 140400 65779 65975 71318 71430
3 149710 149600 153290 153110 69963 70218 74153 74336
4 137940 137310 153150 152200 60244 60344 67851 68882
5 147270 147540 152000 152320 67096 66967 75411 75392
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Figure 9: (a) Comparison of 𝑘
1
and 𝑘

1
with respect to 𝛼. (b) Comparison of 𝑘

2
and 𝑘

2
with respect to 𝛼.

𝑘
2
= [20000 30000], 𝑘

2
𝑐 = [20010 30010], and 𝑘

2
=

[20020 30020]. Comparison between the desired and ANN
values are again incorporated in Tables 6(a) and 6(b). This
table is plotted in Figures 7(a) and 7(b).

The training data with the influence of noise for
two-storey shear structure in TFN form for five sets of data
have been presented here. Accordingly, Figures 8(a) and 8(b)
refer the fuzzy plot of frequency. Moreover, the Triangular
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Fuzzy Number (TFN) plots of identified stiffness are cited in
Figures 9(a) and 9(b). Also for different alpha values such as
𝛼 = 0.3, 𝛼 = 0.5, and 𝛼 = 0.8, the comparison between
the desired and ANN values with another five sets of data has
been given in Tables 7(a), and 7(b), and 7(c).

7. Conclusion

Here, the procedure is demonstrated to identify stiffness
parameters for multistorey shear structure using fuzzified
data in ANN.The present study considers example problems
of one-, two-, , and ten-storey shear structures. Identification
study for and ten-storey shear structures has been done with
crisp data. Then, fuzzified data has been considered for one-
and two-storey shear structures for the present identification
procedure. Initial design parameters, namely, stiffness and
mass and so the frequency of the said problem is known
in term of fuzzy numbers. The engineers want to know
the present health of the structure by system identification
methods. It is assumed that only the stiffness is changed
and the mass remains the same. The present values of the
frequencies may be obtained by available equipments, and
using these, one may get the present parameter values by
ANN. So, if sensors are placed to capture the frequency of
the floors in fuzzy (uncertain) form, then, those may be
fed into the proposed new ANN model to get the present
stiffness parameters. The methods of one- and two-storey
shear structureswith fuzzified datamay verywell be extended
for higher storey structures following the present procedure.
As regards the influence of noise, it may be seen that the
input and output data for two-storey shear structure are
actually in terms of Triangular Fuzzy Number (TFN) which
themselves dictate the noise in both monotonic increasing
and decreasing senses. In order to train the new ANNmodel,
set of data are generated numerically beforehand. As such,
converged ANN model gives the present stiffness parameter
values in fuzzified form for each floor. Thus, one may predict
the health of the structure. Corresponding example problems
(as mentioned) have been solved, and related results are
reported to show the reliability and powerfulness of the
model.
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