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1. Introduction

Stage-structure is a natural phenomenon and represents, for example, the division of a
population into immature and mature individuals. As is common, the dynamics-eating
habits, susceptibility to predators, and so forth. are often quite different in these two
subpopulations. Hence, it is of ecological importance to investigate the effects of such a
subdivision on the interaction of species. In [1], Chen et al. introduced the following stage-
structured single-species population model:

Ṅi(t) = B(t) −Di(t) −W(t),

Ṅm(t) = αW(t) −Dm(t),
(1.1)

where Ni(t) and Nm(t) denote the immature and mature population densities at time t,
respectively; B(t) is the birth rate of the immature population at time t; Di(t) and Dm(t) are
the death rates of the immature and mature at time t; W(t) represents the transformation
rate of the immature into the mature; α is the probability of the successful transformation of
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the immature into the mature. If the birth rate of model (1.1) obeys the Malthus rule, that is,
B(t) = aNm, the death rates of the immature and mature populations are logistic, that is,

Di(t) = riNi(t) + biN2
i (t), Dm(t) = rmNm(t) + bmN2

m(t), (1.2)

and the transformation rate of the immature into mature is proportional to the immature
population, that is, W(t) = bNi(t), then model (1.1) becomes

Ṅi(t) = aNm − riNi(t) − biN2
i (t) − bNi(t),

Ṅm(t) = αbNi(t) − rmNm(t) − bmN2
m(t).

(1.3)

Based on the idea above, many authors studied different kinds of stage-structured models,
and a significant body of work has been carried out (see, for example, [2–8]).

In [3], Gao et al. considered the following predator-prey model with stage structure:

ẋ(t) = x(t)
(
r − a11x(t) − a12y1(t − τ1)

)
,

ẏ1(t) = y1(t)
[
−r1 + a21x(t − τ2) − a22y1(t)

]
+ θy2(t),

ẏ2(t) = αby1(t) − (θ + r2)y2(t),

(1.4)

where x(t) represents the density of the prey at time t; y1(t) and y2(t) represent the
densities of the mature and the immature predator at time t, respectively. The parameters
r, r1, r2, a11, a12, a21, a22, b, θ are positive constants in which r is the intrinsic growth
of the prey, r1 is the death rate of the mature predator population, r2 is the death rate
of the immature predator population, a11 is the intra-specific competition rate of the prey
population, a12 is the capturing rate of the predator population, a21/a12 is the conversion rate
of nutrients into the reproduction of the predator, a22 is the intra-specific competition rate
of the mature predator, b is the birth rate of the immature predator, θ is the transformation
rate from the immature predator individuals to mature predator individuals. The predation
decreases the average growth rate of prey linearly with a certain time delay τ1 ≥ 0, this
assumption corresponds to the fact that predators cannot hunt prey when the predators are
infant; predators have to mature for a duration of τ1 units of time before they are capable
of decreasing the average growth rate of the prey species; τ2 ≥ 0 is the time delay due to
gestation, the delay in time for prey biomass to increase predator number. In [3], Gao et al.
studied the global stability of the positive equilibrium and boundary equilibria of model (1.4)
by constructing Liapunov functionals and comparison argument, respectively.

We note that most of the predator-prey models with time delays studied in the
literature are all of the Kolmogorov-type. In [9], Wangersky and Cunningham proposed
delayed predator-prey models that are not of the Kolmogorov-type. They considered the
following delayed system:

ẋ(t) = x(t)
(
r − a11x(t) − a12y(t)

)
,

ẏ(t) = a21x(t − τ)y(t − τ) − r1y(t),
(1.5)

where the delay τ is a constant based on the assumption that the change rate of predators
depends on the number of both the prey and the predators present at some previous time.
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Motivated by the work of Gao et al. [3] and Wangersky and Cunningham [9], in the
present paper, we consider the following predator-prey model with stage structure and time
delay:

ẋ(t) = x(t)
(
r − a11x(t) − a12y1(t)

)
,

ẏ1(t) = a21x(t − τ)y1(t − τ) − r1y1(t) − a22y
2
1(t) + θy2(t),

ẏ2(t) = by1(t) − (θ + r2)y2(t).

(1.6)

The meanings of the positive parameters r, r1, r2, a11, a12, a21, a22, b, θ are the same as
those in system (1.4). The meaning of time delay τ ≥ 0 is the same as in system (1.5).

The initial conditions for system (1.6) take the form

x(θ) = φ(θ), y1(θ) = ψ1(θ), y2(θ) = ψ2(θ),

φ(θ) ≥ 0, ψ1(θ) ≥ 0, ψ2(θ) ≥ 0, θ ∈ [−τ, 0],
φ(0) > 0, ψ1(0) > 0, ψ2(0) > 0,

(1.7)

where (φ1(θ), ψ1(θ), ψ2(θ)) ∈ C([−τ, 0], R3
+0), the Banach space of continuous functions

mapping the interval [−τ, 0] into R3
+0, where R3

+0 = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.
This paper is organized as follows. In the next section, we introduce some notations

and state several lemmas which will be essential to our proofs. In Section 3, we discuss
the local stability of a positive equilibrium and boundary equilibria of system (1.6). The
existence of Hopf bifurcation is studied. In Section 4, by means of an iterative technique and
comparison argument, sufficient conditions are derived for the global stability of the positive
equilibrium and boundary equilibria of system (1.6). Some numerical examples are given to
illustrate the results above. A brief discussion is given in Section 6 to end this work.

2. Preliminaries

In this section, we introduce some notations and state several results which will be useful in
next section. Let R

n
+ be the cone of nonnegative vectors in R

n. If x, y ∈ R
n, we write x ≤ y (x <

y) if xi ≤ yi (xi < yi) for 1 ≤ i ≤ n. Let e1, e2, . . . , en denote the standard basis in R
n. Suppose

r ≥ 0 and let C = C([−r, 0],Rn) be the Banach space of continuous functions mapping the
interval [−r, 0] into R

n with supremum norm. If φ, ψ ∈ C, we write φ ≤ ψ (φ < ψ) when the
indicated inequality holds at each point of [−r, 0]. Let C+ = {φ ∈ C : φ ≥ 0} and let denote the
inclusion R

n → C([−r, 0],Rn) by x → x̂, x̂(θ) = x, θ ∈ [−r, 0]. Denote the space of functions
of bounded variation on [−r, 0] by BV[−r, 0]. If t0 ∈ R

n, A ≥ 0, and x ∈ C([−t0 − r, t0 +A],Rn),
then for any t ∈ [t0, t0 +A], we let xt ∈ C be defined by xt(θ) = x(t + θ), −r ≤ θ ≤ 0.

We now consider

ẋ(t) = f(t, xt). (2.1)

We assume throughout this section that f : R×C → R
n is continuous; f(t, φ) is continuously

differentiable in φ; f(t + T, φ) = f(t, φ) for all (t, φ) ∈ R × C+, and some T > 0. Then by [10],
there exists a unique solution of (2.1) through (t0, φ) for t0 ∈ R, φ ∈ C+. This solution will be
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denoted by x(t, t0, φ) if we consider the solution in R
n, or by xt(t0, φ) if we work in the space

C. Again by [10], x(t, t0, φ)(xt(t0, φ)) is continuously differentiable in φ. In the following, the
notation xt0 = φ will be used as the condition of the initial data of (2.1), by which we mean
that we consider the solution x(t) of (2.1) which satisfies x(t0 + θ) = φ(θ), θ ∈ [−r, 0].

To proceed further, we need the following results from [11, 12]. Let r = (r1, r2, . . . , rn) ∈
R
n, |r| = maxi{ri}, and define

Cr =
n∏

i=1

C([−ri, 0],R). (2.2)

We write φ = (φ1, φ2, . . . , φn) for a generic point of Cr . Let C+
r = {φ ∈ Cr : φ ≥ 0}. Due to the

ecological applications, we choose C+
r as the state space of (2.1) in the following discussions.

Fix φ0 ∈ C+
r arbitrarily. Then we set L(t, ·) = Dφ0f(t, φ0), and Dφ0f(t, φ0) denotes the

Frechet derivation of f with respect to φ0. It is convenient to have the standard representation
of L = (L1, L2, . . . , Ln) as

Li
(
t, φ

)
=

n∑

j=1

∫0

−rj
φj(θ)dθηij(θ, t) (1 ≤ i ≤ n), (2.3)

in which ηij : R × R → R satisfies

ηij(θ, t) = ηij(0, t), θ ≤ −rj ,
ηij(θ, t) = 0, θ ≥ 0,

ηij(·, t) ∈ BV
[
−rj , 0

]
,

(2.4)

where ηij(·, t) is continuous from the left in (−rj , 0).
We make the following assumptions for (2.1).

(h0) If φ, ψ ∈ C+, φ ≤ ϕ, and φi(0) = ϕi(0) for some i, then fi(t, φ) ≤ fi(t, ψ).

(h1) For all φ ∈ C+
r with φi(0) = 0, Li(t, φ) ≥ 0 for t ∈ R.

(h2) The matrix A(t) defined by

A(t) = col(L(t, ê1), L(t, ê2), . . . , L(t, ên)) =
(
ηij(0, t)

)
, (2.5)

is irreducible for each t ∈ R.

(h3) For each j, for which rj > 0, there exist i such that for all t ∈ R and for positive
constant ε sufficiently small, ηij(−rj + ε, t) > 0.

(h4) If φ = 0, then x(t, t0, φ) ≡ 0 for all t ≥ t0.

The following result was established by Wang et al. [12].



Discrete Dynamics in Nature and Society 5

Lemma 2.1. Let (h1)–(h4) hold. Then the hypothesis (h0) is valid and the following.

(i) If φ and ψ are distinct elements of C+
r with φ ≤ ψ and [t0, t0 + σ) with n|r| < σ ≤ ∞ is the

intersection of the maximal intervals of existence of x(t, t0, φ) and x(t, t0, ψ), then

0 ≤ x
(
t, t0, φ

)
≤ x

(
t, t0, ψ

)
for t0 ≤ t < t0 + σ,

0 ≤ x
(
t, t0, φ

)
< x

(
t, t0, ψ

)
for t0 + n|r| ≤ t < t0 + σ.

(2.6)

(ii) If φ ∈ C+
r , φ /= 0, t0 ∈ R and x(t, t0, φ) is defined on [t0, t0 + σ) with σ > n|r|, then

0 < x
(
t, t0, φ

)
for t0 + n|r| ≤ t < t0 + σ. (2.7)

Lemma 2.1 shows that if (h1)–(h4) hold, then the positivity of solutions of (2.1)
follows.

The following definitions and results are useful in proving our lemma.

Definition 2.2. System (2.1) is cooperative if ∂fi/∂xj ≥ 0 whenever i /= j.

Definition 2.3. A square matrix A is said to be a reducible matrix if and only if for some
permutation matrix P the matrix PTAP is block upper triangular. If a square matrix is not
reducible, it is said to be an irreducible matrix. System (2.1) is called irreducible if the Jacobian
matrix ((∂fi/∂xj)) is irreducible.

Lemma 2.4 (Smith [11]). If (2.1) is cooperative and irreducible in D, where D is an open subset
of C, and the solution with positive initial data is bounded, then the trajectory of (2.1) tends to some
single equilibrium.

We now consider the following delay differential system:

ẏ1(t) = −ay1(t) + by1(t − τ) − cy2
1(t) + θy2(t),

ẏ2(t) = dy1(t) − (θ + e)y2(t),
(2.8)

with initial conditions

yi(s) = ψi(s) ≥ 0, s ∈ [−τ, 0), ψi ∈ C([−τ, 0),R+), ψi(0) > 0, (i = 1, 2). (2.9)

System (2.8) always has a trivial equilibrium E0(0, 0). If a(θ + e) < dθ + b(θ + e), then
system (2.8) has a unique positive equilibrium E+(y∗1, y

∗
2), where

y∗1 =
(−a + b)(θ + e) + θd

c(θ + e)
, y∗2 =

d(−a + b)(θ + e) + θd2

c(θ + e)2
. (2.10)

The characteristic equation of system (1.6) at the equilibrium E0 is of the form

λ2 + (a + e + θ)λ + a(θ + e) − dθ − (bλ + b(θ + e))e−λτ = 0. (2.11)
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Let

f1(λ) = λ2 + (a + e + θ)λ + a(θ + e) − dθ − (bλ + b(θ + e))e−λτ . (2.12)

If a(θ + e) < dθ + b(θ + e), then it is easy to see that, for λ real,

f1(0) = a(θ + e) − dθ − b(θ + e) < 0, lim
λ→+∞

f1(λ) = +∞. (2.13)

Hence, f1(λ) = 0 has a positive real root. Therefore, the equilibrium E0 is unstable. If a(θ+e) >
dθ + b(θ + e), when τ = 0, it is easy to see that the equilibrium E0 is stable. Therefore, if
a(θ + e) − dθ > b(θ + e), by Kuang and So [13, Lemma B], we see that the equilibrium E0 is
locally stable for all τ > 0.

If a(θ + e) < dθ + b(θ + e), the characteristic equation of the positive equilibrium E+

takes the form

λ2 +
(
a + e + θ + 2cy∗1

)
λ +

(
a + 2cy∗1

)
(θ + e) − dθ − (bλ + b(θ + e))e−λτ = 0. (2.14)

When τ = 0, it is easy to see that the equilibrium E+ is stable. Therefore, if a(θ + e) < dθ +
b(θ + e), by Kuang and So [13, Lemma B], we see that the equilibrium E+ is locally stable for
all τ > 0.

Lemma 2.5. For system (2.8), one has the following.

(i) If a(θ + e) < dθ + b(θ + e), then the positive equilibrium E+ of system (2.8) is globally
stable.

(ii) If a(θ + e) > dθ + b(θ + e), the equilibrium E0 of system (2.8) is globally stable.

Proof. We represent the right-hand side of (2.8) by f(t, xt) = (f1(t, xt), f2(t, xt)) and set L(t, ·) =
Dφf(t, φ). By direct calculation we have

L1(t, h) = −ah1(0) + bh1(−τ) − 2cφ1(0)h1(0) + θh2(0),

L2(t, h) = dh1(0) − (θ + e)h2(0).
(2.15)

We now claim that the hypotheses (h1)–(h4) hold for system (2.8). It is easily seen that (h1)
and (h4) hold for system (2.8). We need only to verify that (h2) and (h3) hold.

The matrix A(t) takes the form

(
−a + b − 2cφ1(0) θ

d −(θ + e)

)

. (2.16)

Clearly, the matrix A(t) is irreducible for each t ∈ R.



Discrete Dynamics in Nature and Society 7

From the definition of A(t) and ηij , it is readily seen that η12(θ, t) = η12(0, t) =
θ, η21(θ, t) = η21(0, t) = d, for θ ≥ 0; and ηij(θ, t) = 0, i /= j for θ ≤ −τ ; and ηij(·, t) ∈ BV[−τ, 0],
where ηij is a positive Borel measure on [−τ, 0]. Therefore, ηij(·, t) > 0. Thus, for each j, there
is i /= j such that ηij(−rj + ε, t) = ηij(−τ + ε, t) > 0 for all t ∈ R and ε > 0 sufficiently small,
i = 1, 2. Hence, (h3) holds.

Thus, the conditions of Lemma 2.1 are satisfied. Therefore, the positivity of solutions
to system (2.8) follows. It is easy to see that system (2.8) is cooperative. By Lemma 2.4 we
see that any solution starting from D = C+

τ converges to some single equilibrium. However,
system (2.8) has only two equilibria: E0 and E+. Note that if a(θ + e) < dθ + b(θ + e), the
equilibrium E+ is locally stable. Hence, any solution starting from D converges to E+. Using
a similar argument one can show the global stability of the equilibrium E0 when a(θ + e) >
dθ + b(θ + e). This completes the proof.

By a similar argument one can show that all solutions of system (1.6) with initial
conditions (1.7) are defined on [0,+∞) and remain positive for all t ≥ 0.

3. Local Stability

In this section, we discuss the local stability of each equilibria and the existence of Hopf
bifurcation of system (1.6).

It is easy to show that system (1.6) always has two equilibria E0(0, 0, 0) and
E1(r/a11, 0, 0). If the following holds:

(H1) θb > r1(θ + r2),

then system (1.6) has another boundary equilibrium E2(0, ỹ1, ỹ2), where

ỹ1 =
1
a22

(
θb

θ + r2
− r1

)
, ỹ2 =

b

a22(θ + r2)

(
θb

θ + r2
− r1

)
. (3.1)

Further, if the following holds:

(H2) r(θ + r2)(a12a21 + a11a22) > a12[θba11 + (a21r − a11r1)(θ + r2)] > 0,

then system (1.6) has a unique positive equilibrium E∗ = (x∗, y∗1, y
∗
2), where

x∗ =
r

a11
− a12[θba11 + (θ + r2)(a21r − a11r1)]

(θ + r2)a11(a12a21 + a11a22)
,

y∗1 =
θba11 + (θ + r2)(a21r − a11r1)

(θ + r2)(a12a21 + a11a22)
,

y∗2 =
b[θba11 + (θ + r2)(a21r − a11r1)]

(θ + r2)
2(a12a21 + a11a22)

.

(3.2)
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We now study the local stability of each of the nonnegative equilibrium of system (1.6).
Let Ê = (x̂, ŷ1, ŷ2) be any arbitrary equilibrium. Then the characteristic equation of

system (1.6) at the equilibrium Ê is given by

∣
∣
∣
∣
∣
∣
∣
∣

r − 2a11x̂ − a12ŷ1 − λ −a12x̂ 0

a21ŷ1e
−λτ −r1 − 2a22ŷ1 + a21x̂e

−λτ − λ θ

0 b −θ − r2 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (3.3)

The characteristic equation of system (1.6) at the equilibrium E0(0, 0, 0) reduces

(λ − r)[(r1 + λ)(θ + r2 + λ) − bθ] = 0. (3.4)

Clearly, λ = r is a positive real root. Hence, E0(0, 0, 0) is always unstable.
The characteristic equation of system (1.6) at the equilibrium E1(r/a11, 0, 0) reduces

(λ + r)
[
λ2 + (r1 + r2 + θ)λ + r1(θ + r2) − bθ −

a21r

a11
(λ + θ + r2)e−λτ

]
= 0. (3.5)

Clearly, λ = −r is a negative real root of (3.5). All other roots are give by the roots of equation

λ2 + (r1 + r2 + θ)λ + r1(θ + r2) − bθ −
a21r

a11
(λ + θ + r2)e−λτ = 0. (3.6)

Let

f(λ) = λ2 + (r1 + r2 + θ)λ + r1(θ + r2) − bθ −
a21r

a11
(λ + θ + r2)e−λτ . (3.7)

If (θ + r2)(r1 − a21r/a11) < bθ, then it is easy to see that for λ real,

f(0) = (θ + r2)
(
r1 − a21r

a11

)
− bθ < 0, lim

λ→+∞
f(λ) = +∞. (3.8)

Hence, f(λ) = 0 has a positive real root. Therefore, the equilibrium E1(r/a11, 0, 0) is unstable.
If (θ + r2)(r1 − a21r/a11) > bθ, when τ = 0, it is easy to see that the equilibrium E1(r/a11, 0, 0)
is stable. Therefore, if (θ + r2)(r1 − a21r/a11) > bθ, by Kuang and So [13, Lemma B], we see
that the equilibrium E1(r/a11, 0, 0) is locally stable for all τ > 0.

The characteristic equation of system (1.6) at the equilibria E2(0, ỹ1, ỹ2) reduces to

(
λ − r + a12ỹ1

)[
λ2 +

(
r1 + 2a22ỹ1 + θ + r2

)
λ +

(
r1 + 2a22ỹ1

)
(θ + r2) − bθ

]
= 0. (3.9)
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Clearly, if r > a12ỹ1, λ = r − a12ỹ1 is a positive real root. Hence, if r > a12ỹ1, then E2(0, ỹ1, ỹ2)
is unstable. Noting that

(
r1 + 2a22ỹ1

)
(θ + r2) − bθ = bθ − r1(θ + r2) > 0, (3.10)

if r < a12ỹ1, then (3.9) only has negative real root, and E2(0, ỹ1, ỹ2) is stable.
The characteristic equation of system (1.6) at the positive equilibria E∗(x∗, y∗1, y

∗
2) is

λ3 + p2λ
2 + p1λ + p0 +

(
q2λ

2 + q1λ + q0

)
e−λτ = 0, (3.11)

where

p0 = a11x
∗(θ + r2)

(
a21x

∗ + a22y
∗
1

)
,

p1 = a11x
∗(r1 + 2a22y

∗
1

)
+ (θ + r2)

(
a21x

∗ + a22y
∗
1 + a11x

∗),

p2 = a11x
∗ + 2a22y

∗
1 + r1 + r2 + θ,

q0 = a21(θ + r2)x∗
(
a12y

∗
1 − a11x

∗),

q1 = a21x
∗(a12y

∗
1 − a11x

∗ − θ − r2
)
,

q2 = −a21x
∗.

(3.12)

It is easy to show that

p0 + q0 = (a11a22 + a21a12)(θ + r2)x∗y∗1 > 0,

p1 + q1 = (a11a22 + a12a21)x∗y∗1 + (θ + r2)
(
a22y

∗
1 + a11x

∗) +
bθa11x

∗

(θ + r2)
> 0,

p2 + q2 = a11x
∗ + a22y

∗
1 + r2 + θ +

bθ

(θ + r2)
> 0.

(3.13)

It is easy to see that (p2 + q2)(p1 + q1) > p0 + q0. Hence, by the Routh-Hurwitz theorem, when
τ = 0, the positive equilibrium E∗ of system (1.6) is locally asymptotically stable.

If iω (ω > 0) is a root of (3.11), separating the real and imaginary parts, we obtain

p0 − p2ω
2 = q2ω

2 cosωτ − q1ω sinωτ − q0 cosωτ,

−ω3 + p1ω = −q2ω
2 sinωτ − q1ω cosωτ + q0 sinωτ.

(3.14)

Squaring and adding the two equations of (3.14), it follows that

ω6 +Q1ω
4 +Q2ω

2 +Q3 = 0, (3.15)

where

Q1 = p2
2 − 2p1 − q2

2, Q2 = p2
1 + 2q2q0 − 2p2p0 − q2

1, Q3 = p2
0 − q

2
0. (3.16)
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It is easy to show that

Q1 = p2
2 − q

2
2 − 2p1

= a2
11(x

∗)2 + (r2 + θ)
2 +

(
r1 + 2a22y

∗
1 + a21x

∗)
(
a22y

∗
1 +

bθ

θ + r2

)
+ 2bθ > 0,

Q2 = p2
1 + 2q2q0 − 2p2p0 − q2

1

=
[
(a11a22+a21a12)x∗y∗1 +

a11bθx
∗

(r2 + θ)

][
2a11a21(x∗)

2−(a12a21−a11a22)x∗y∗1+
a11bθx

∗

(r2 + θ)

]

+(θ + r2)
2
[
a2

22
(
y∗1

)2+a2
11(x

∗)2
]
+ 2a21a22(θ + r2)

2x∗ + 2bθa2
11(x

∗)2.

(3.17)

Noting that if p0 > q0, 2a11a21x
∗ > (a12a21 − a11a22)y∗1, hence Q2 > 0, Q3 > 0. The

positive equilibrium E∗ of system (1.6) is locally asymptotically stable for all τ > 0. If p0 < q0,
we know that Q3 < 0, (3.15) has a unique positive root ω0. Define

τj =
1
ω0

arccos

(
q1 − q2p2

)
ω4

0 +
(
p0q2 + p2q0 − p1q1

)
ω2

0 − q0p0

q2
2ω

4
0 +

(
q2

1 − 2q0q2
)
ω2

0 + q
2
0

+
2jπ
ω0

, j = 0, 1, . . . . (3.18)

Then (τj , ω0) solves (3.11). This means that when τ = τj , (3.11) has a pair of purely imaginary
roots ±iω0. Noting that the positive equilibrium E∗ is locally stable for τ = 0, by the general
theory on characteristic equations of delay differential equations from [14, Theorem 4.1], E∗

remains stable for τ < τ0.
Let p0 < q0 and τ0 be defined in (3.18). Denoting

λ(τ) = α(τ) + iω(τ), (3.19)

the root of (3.11) is such that

α(τ0) = 0, ω(τ0) = ω0. (3.20)

In the following we claim that

d(Reλ)
dτ

∣∣∣∣
τ=τ0

> 0. (3.21)

This will signify that there exists at least one eigenvalue with positive real part for τ > τ0.
Moreover, the conditions for the existence of a Hopf bifurcation [10] are then satisfied
yielding a periodic solution. To this end, differentiating equation (3.11) with respect τ , we
obtain that

(
dλ(τ)

dτ

)−1

= −
3λ2 + 2p2λ + p1

λ
(
λ3 + p2λ2 + p1λ + p0

) +
2q2λ + q1

λ
(
q2λ2 + q1λ + q0

) − τ
λ
, (3.22)
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which leads to

sign

{

Re
(
dλ

dτ

)∣
∣
∣
∣
τ=τj

}

= sign

{

Re
(
dλ

dτ

)∣
∣
∣
∣

−1

τ=τj

}

= sign
{

3ω4
0 +

(
2p2

2 − 4p1 − 2q2
2

)
ω2

0 + p
2
1 + 2q2q0 − 2p2p0 − q2

1

}

= sign
{

3ω4
0 + 2Q1ω

2
0 +Q2

}
.

(3.23)

If Q2 > 0, 3ω4
0 + 2Q1ω

2
0 +Q2 > 0. Therefore, system (1.6) undergoes a Hopf bifurcation.

We therefore obtain the following results.

Theorem 3.1. For system (1.6), let τ0 be defined as in (3.18), one has the following.

(i) The positive equilibrium E0 of system (1.6) is always unstable.

(ii) If (θ + r2)(r1 − a21r/a11) > bθ, the equilibrium E1(r/a11, 0, 0) of system (1.6) is locally
stable for all τ > 0; and if (θ + r2)(r1 − a21r/a11) < bθ, E1 is unstable for all τ .

(iii) Let (H1) hold. If r > a12ỹ1, the equilibrium E2(0, ỹ1, ỹ2) of system (1.6) is unstable; if
r < a12ỹ1, E2 is stable for all τ ≥ 0.

(iv) Let (H2) hold. If p0 > q0, then the positive equilibrium E∗(x∗, y∗1, y
∗
2) of system (1.6) is

locally asymptotically stable for all τ > 0. If p0 < q0, then E∗ is locally stable for τ < τ0;
and E∗ is unstable for τ > τ0; if Q2 > 0 system (1.6) undergoes a Hopf Bifurcation at the
positive equilibrium E∗ when τ = τ0.

4. Global Stability

In this section, we are concerned with the global stability of the equilibria E1, E2, E
∗

of system (1.6). The strategy of proofs is to use an iteration technique and comparison
arguments, respectively.

Theorem 4.1. Let (H2) hold. Then the positive equilibrium E∗ of system (1.6) is globally
asymptotically stable provided that

(H3) a11a22 > a12a21.

Proof. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.6) with initial conditions
(1.7). Let

U = lim sup
t→+∞

x(t), V = lim inf
t→+∞

x(t),

Ui = lim sup
t→+∞

yi(t), Vi = lim inf
t→+∞

yi(t) (i = 1, 2).
(4.1)

We now claim that U = V = x∗, U1 = V1 = y∗1, U2 = V2 = y∗2. The strategy of the proof is to
use an iteration technique.

We derive from the first equation of system (1.6) that

ẋ(t) ≤ x(t)(r − a11x(t)). (4.2)
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A standard comparison argument shows that

U = lim sup
t→+∞

x(t) ≤ r

a11
:=Mx

1 . (4.3)

Hence, for ε > 0 sufficiently small there exists a T1 > 0 such that if t > T1, x(t) ≤Mx
1 + ε.

We derive from the second and the third equations of system (1.6) that for t > T1 + τ ,

ẏ1(t) ≤ −r1y1(t) + a21
(
Mx

1 + ε
)
y1(t − τ) − a22y

2
1(t) + θy2(t),

ẏ2(t) = by1(t) − (θ + r2)y2(t).
(4.4)

Consider the following auxiliary equations:

u̇1(t) = −r1u1(t) + a21
(
Mx

1 + ε
)
u1(t − τ) − a22u

2
1(t) + θu2(t),

u̇2(t) = bu1(t) − (θ + r2)u2(t).
(4.5)

Since (H2) holds, by Lemma 2.5 it follows from (4.5) that

lim
t→+∞

u1(t) =

(
−r1 + a21

(
Mx

1 + ε
))
(θ + r2) + bθ

a22(θ + r2)
,

lim
t→+∞

u2(t) =
b
(
−r1 + a21

(
Mx

1 + ε
))
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.6)

By comparison, we obtain that

U1 = lim sup
t→+∞

y1(t) ≤
(
−r1 + a21

(
Mx

1 + ε
))
(θ + r2) + bθ

a22(θ + r2)
,

U2 = lim sup
t→+∞

y2(t) ≤
b
(
−r1 + a21

(
Mx

1 + ε
))
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.7)

Since these inequalities are true for arbitrary ε > 0 sufficiently small, it follows that U1 ≤
M

y1

1 , U2 ≤M
y2

1 , where

M
y1

1 =

(
−r1 + a21M

x
1

)
(θ + r2) + bθ

a22(θ + r2)
,

M
y2

1 =
b
(
−r1 + a21M

x
1

)
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.8)

Hence, for ε > 0 sufficiently small, there is a T2 ≥ T1 + τ such that if t > T2, y1(t) ≤ M
y1

1 + ε,
y2(t) ≤M

y2

1 + ε.
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For ε > 0 sufficiently small, we derive from the first equation of system (1.6) that, for
t > T2,

ẋ(t) ≥ x(t)
(
r − a11x(t) − a12

(
M

y1

1 + ε
))
. (4.9)

By comparison it follows that

V = lim inf
t→+∞

x(t) ≥
r − a12

(
M

y1

1 + ε
)

a11
. (4.10)

Since this is true for arbitrary ε > 0 sufficiently small, we conclude that V ≥Nx
1 , where

Nx
1 =

r − a12M
y1

1

a11
. (4.11)

Therefore, for ε > 0 sufficiently small, there is a T3 ≥ T2 such that if t > T3, x(t) ≥Nx
1 − ε.

For ε > 0 sufficiently small, we derive from the second and the third equations of
system (1.6) that, for t > T3 + τ ,

ẏ1(t) ≥ −r1y1(t) + a21
(
Nx

1 − ε
)
y1(t − τ) − a22y

2
1(t) + θy2(t),

ẏ2(t) = by1(t) − (θ + r2)y2(t).
(4.12)

Consider the following auxiliary equations:

u̇1(t) = −r1u1(t) + a21
(
Nx

1 − ε
)
u1(t − τ) − a22u

2
1(t) + θu2(t),

u̇2(t) = bu1(t) − (θ + r2)u2(t).
(4.13)

Since (H2) and (H3) hold, by Lemma 2.5 it follows from (4.13) that

lim
t→+∞

u1(t) =

(
−r1 + a21

(
Nx

1 − ε
))
(θ + r2) + bθ

a22(θ + r2)
,

lim
t→+∞

u2(t) =
b
(
−r1 + a21

(
Nx

1 − ε
))
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.14)
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By comparison, we obtain that

V1 = lim inf
t→+∞

y1(t) ≥
(
−r1 + a21

(
Nx

1 − ε
))
(θ + r2) + bθ

a22(θ + r2)
,

V2 = lim inf
t→+∞

y2(t) ≥
b
(
−r1 + a21

(
Nx

1 − ε
))
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.15)

Since these two inequalities hold for arbitrary ε > 0 sufficiently small, we conclude that V1 ≥
N

y1

1 , V2 ≥N
y2

1 , where

N
y1

1 =

(
−r1 + a21N

x
1

)
(θ + r2) + bθ

a22(θ + r2)
,

N
y2

1 =
b
(
−r1 + a21N

x
1

)
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.16)

Therefore, for ε > 0 sufficiently small, there exists a T4 ≥ T3 + τ such that if t > T4, y1(t) ≥
N

y1

1 − ε, y2(t) ≥N
y2

1 − ε.
For ε > 0 sufficiently small, it follows from the first equation of system (1.6) that, for

t > T4,

ẋ(t) ≤ x(t)
(
r − a11x(t) − a12

(
N

y1

1 − ε
))
. (4.17)

A comparison argument yields

U = lim sup
t→+∞

x(t) ≤
r − a12

(
N

y1

1 − ε
)

a11
. (4.18)

Since this is true for arbitrary ε > 0, we conclude that U ≤Mx
2 , where

Mx
2 =

r − a12N
y1

1

a11
. (4.19)

Hence, for ε > 0 sufficiently small, there exists a T5 ≥ T4 such that if t > T5, x(t) ≤Mx
2 + ε.

Again, we derive from the second and the third equations of system (1.6) that for
t > T5 + τ ,

ẏ1(t) ≤ −r1y1(t) + a21
(
Mx

2 + ε
)
y1(t − τ) − a22y

2
1(t) + θy2(t),

ẏ2(t) = by1(t) − (θ + r2)y2(t).
(4.20)
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Since (H2) and (H3) hold, by Lemma 2.5, a comparison argument shows that

U1 = lim sup
t→+∞

y1(t) ≤
(
−r1 + a21

(
Mx

2 + ε
))
(θ + r2) + bθ

a22(θ + r2)
,

U2 = lim sup
t→+∞

y2(t) ≤
b
(
−r1 + a21

(
Mx

2 + ε
))
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.21)

Since these inequalities are true for arbitrary ε > 0 sufficiently small, we conclude that U1 ≤
M

y1

2 , U2 ≤M
y2

2 , where

M
y1

2 =

(
−r1 + a21M

x
2

)
(θ + r2) + bθ

a22(θ + r2)
,

M
y2

2 =
b
(
−r1 + a21M

x
2

)
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.22)

Hence, for ε > 0 sufficiently small, there is a T6 ≥ T5 + τ such that if t > T6, y1(t) ≤ M
y1

2 + ε,
y2(t) ≤M

y2

2 + ε.
For ε > 0 sufficiently small, it follows from the first equation of system (1.6) that, for

t > T6,

ẋ(t) ≥ x(t)
(
r − a11x(t) − a12

(
M

y1

2 + ε
))
. (4.23)

By comparison we obtain that

V = lim inf
t→+∞

x(t) ≥
r − a12

(
M

y1

2 + ε
)

a11
. (4.24)

Since this is true for arbitrary ε > 0 sufficiently small, we conclude that V ≥Nx
2 , where

Nx
2 =

r − a12M
y1

2

a11
. (4.25)

Therefore, for ε > 0 sufficiently small, there is a T7 ≥ T6 such that if t > T7, x(t) ≥Nx
2 − ε.

For ε > 0 sufficiently small, we derive from the second and the third equations of
system (1.6) that for t > T7 + τ ,

ẏ1(t) ≥ −r1y1(t) + a21
(
Nx

2 − ε
)
y1(t − τ) − a22y

2
1(t) + θy2(t),

ẏ2(t) = by1(t) − (θ + r2)y2(t).
(4.26)



16 Discrete Dynamics in Nature and Society

Since (H2) and (H3) hold, by Lemma 2.5 and by comparison, it follows from (4.26) that

V1 = lim inf
t→+∞

y1(t) ≥
(
−r1 + a21

(
Nx

2 − ε
))
(θ + r2) + bθ

a22(θ + r2)
,

V2 = lim inf
t→+∞

y2(t) ≥
b
(
−r1 + a21

(
Nx

2 − ε
))
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.27)

Since these two inequalities hold for arbitrary ε > 0 sufficiently small, we conclude that V1 ≥
N

y1

2 , V2 ≥N
y2

2 , where

N
y1

2 =

(
−r1 + a21N

x
2

)
(θ + r2) + bθ

a22(θ + r2)
,

N
y2

2 =
b
(
−r1 + a21N

x
2

)
(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.28)

Continuing this process, we derive six sequences Mx
n, M

y1
n , M

y2
n , N

x
n , N

y1
n , N

y2
n (n =

1, 2, . . .) such that, for n ≥ 2,

Mx
n =

r − a12N
y1

n−1

a11
,

M
y1
n =

(−r1 + a21M
x
n)(θ + r2) + bθ

a22(θ + r2)
,

M
y2
n =

b(−r1 + a21M
x
n)(θ + r2) + b2θ

a22(θ + r2)
2

,

Nx
n =

r − a12M
y1
n

a11
,

N
y1
n =

(−r1 + a21N
x
n)(θ + r2) + bθ

a22(θ + r2)
,

N
y2
n =

b(−r1 + a21N
x
n)(θ + r2) + b2θ

a22(θ + r2)
2

.

(4.29)

It is readily seen that

Nx
n ≤ V ≤ U ≤Mx

n, N
yi
n ≤ Vi ≤ Ui ≤M

yi
n (i = 1, 2). (4.30)

We derive (4.29) that

M
y1

n+1 =
a11a22 − a12a21

a2
11a

2
22

(
a11bθ

θ + r2
+ a21r − a11r1

)
+
a2

12a
2
21

a2
11a

2
22

M
y1
n . (4.31)
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Noting that My1
n ≥ y∗1 and a11a22 > a12a21, it follows from (4.31) that

M
y1

n+1 −M
y1
n =

a11a22 − a12a21

a2
11a

2
22

(
a11bθ

θ + r2
+ a21r − a11r1

)
+

(
a2

12a
2
21

a2
11a

2
22

− 1

)

M
y1
n

≤ a11a22 − a12a21

a2
11a

2
22

(
a11bθ

θ + r2
+ a21r − a11r1

)
+

(
a2

12a
2
21

a2
11a

2
22

− 1

)

y∗1

= 0.

(4.32)

Thus, the sequence M
y1
n is nonincreasing. Hence, limn→+∞M

y1
n exists. Taking n → +∞, it

follows from (4.31) that

lim
n→+∞

M
y1
n =

(θba11/(θ + r2)) + a21r − a11r1

a12a21 + a11a22
= y∗1. (4.33)

We therefore obtain from (4.30) and (4.33) that

lim
n→+∞

M
y2
n = y∗2, lim

n→+∞
N

y1
n = y∗1, lim

n→+∞
N

y2
n = y∗2,

lim
n→+∞

Mx
n = x∗, lim

n→+∞
Nx

n = x∗.
(4.34)

It follows from (4.30), (4.33) and (4.34) that

U = V = x∗, U1 = V1 = y∗1, U2 = V2 = y∗2. (4.35)

We therefore have

lim
n→+∞

x(t) = x∗, lim
n→+∞

y1(t) = y∗1, lim
n→+∞

y2(t) = y∗2. (4.36)

Noting that if a11a22 > a12a21, then p0 − q0 > 2(θ + r2)a11a21(x∗)
2 > 0. By Theorem 3.1, the

positive equilibrium E∗ is locally stable. We therefore conclude that E∗ is globally stable. The
proof is complete.

Theorem 4.2. If r1(θ + r2) > bθ + a21r/a11(θ + r2), the equilibrium E1 of system (1.6) is globally
asymptotically stable.

Proof. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.6) with initial conditions
(1.7). It follows from the first equation of system (1.6) that

ẋ(t) ≤ x(t)(r − a11x(t)). (4.37)

A standard comparison argument shows that

lim sup
t→+∞

x(t) ≤ r

a11
. (4.38)
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Choose ε > 0 sufficiently small such that

r1(θ + r2) > bθ + a21

(
r

a11
+ ε

)
(θ + r2). (4.39)

Hence, for ε > 0 sufficiently small satisfying (4.39), there is a T1 > 0 such that if t > T1, then
x(t) ≤ r/a11 + ε. We derive from the second and the third equations of system (1.6) that for
t > T1 + τ ,

ẏ1(t) ≤ −r1y1(t) + a21

(
r

a11
+ ε

)
y1(t − τ) − a22y

2
1(t) + θy2(t),

ẏ2(t) = by1(t) − (θ + r2)y2(t).
(4.40)

Consider the following auxiliary equations:

u̇1(t) = −r1u1(t) + a21

(
r

a11
+ ε

)
u1(t − τ) − a22u

2
1(t) + θu2(t),

u̇2(t) = bu1(t) − (θ + r2)u2(t).
(4.41)

Since (4.39) holds, by Lemma 2.5 it follows from (4.41) that

lim
t→+∞

u1(t) = 0, lim
t→+∞

u2(t) = 0. (4.42)

By comparison, we obtain that

lim
t→+∞

y1(t) = 0, lim
t→+∞

y2(t) = 0. (4.43)

Hence, for ε > 0 sufficiently small satisfying (4.39), there is a T2 > T1 such that if t > T2, y1(t) <
a11ε.

For ε > 0 sufficiently small satisfying (4.39) and a11ε < r, we derive from the first
equation of system (1.6) that for t > T2

ẋ(t) ≥ x(t)(r − a11x(t) − a11ε). (4.44)

By comparison, we obtain that

lim inf
t→+∞

x(t) ≥ r

a11
− ε, (4.45)

which, together with (4.38), yields

lim
t→+∞

x(t) =
r

a11
. (4.46)
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Figure 1: The temporal solution found by numerical integration of system (1.6) with r = 2, r1 = 2, r2 =
1, a11 = 4, a12 = 3, a21 = 2, a22 = 4, b = 1, θ = 2, τ = 1 and initial value is (0.6, 0.2, 0.2).

By Theorem 3.1, if r1(θ + r2) > bθ + a21r/a11(θ + r2), the boundary equilibrium E1 is
locally stable. We therefore conclude that E1 is globally stable in this case. This completes the
proof.

Theorem 4.3. Let (H1) hold. If (θ + r2)(a22r + a12r1) < a12θb, then the equilibrium E2 of system
(1.6) is globally asymptotically stable.

Proof. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.6) with initial conditions
(1.7). We derive from the second and the third equations of system (1.6) that, for t > T1 + τ ,

ẏ1(t) ≥ −r1y1(t) − a22y
2
1(t) + θy2(t),

ẏ2(t) = by1(t) − (θ + r2)y2(t).
(4.47)

Consider the following auxiliary equations:

u̇1(t) = −r1u1(t) − a22u
2
1(t) + θu2(t),

u̇2(t) = bu1(t) − (θ + r2)u2(t).
(4.48)

Since (H1) holds, by Lemma 2.5 it follows from (4.48) that

lim
t→+∞

u1(t) =
1
a22

(
θb

θ + r2
− r1

)
= ỹ1,

lim
t→+∞

u2(t) =
b

a22(θ + r2)

(
θb

θ + r2
− r1

)
= ỹ2.

(4.49)
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Figure 2: The temporal solution found by numerical integration of system (1.6) with r = 1, r1 = 1, r2 =
1, a11 = 4, a12 = 3, a21 = 2, a22 = 1, b = 4, θ = 1, τ = 1 and initial value is (0.6, 0.2, 0.2).

By comparison we derive that

lim
t→+∞

y1(t) ≥
1
a22

(
θb

θ + r2
− r1

)
= ỹ1,

lim
t→+∞

y2(t) ≥
b

a22(θ + r2)

(
θb

θ + r2
− r1

)
= ỹ2.

(4.50)

Hence, for ε > 0 sufficiently small, there is a T1 such that if t > T1, y1(t) ≥ ỹ1 − ε, y2(t) ≥ ỹ2 − ε.
For ε > 0 sufficiently small, it follows from the first equation of system (1.6) that for

t > T1,

ẋ(t) ≤ x(t)
(
r − a11x(t) − a12

(
ỹ1 − ε

))
. (4.51)

Since (θ + r2)(a22r + a12r1) < a12θb and ε > 0 is sufficiently small, by comparison we derive
that

lim sup
t→+∞

x(t) ≤ 0. (4.52)

We therefore have limt→+∞x(t) = 0. Hence, for ε > 0 sufficiently small, there is a T2 > T1 + τ
such that if t > T2, x(t) ≤ ε.
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Figure 3: The temporal solution found by numerical integration of system (1.6) with r = 4, r1 = 1, r2 =
1, a11 = 2, a12 = 1, a21 = 2, a22 = 1.5, b = 4, θ = 1, τ = 1 and initial value is (0.8, 1.5, 3.6).

For ε > 0 sufficiently small, it follows from the first equation of system (1.6) that for
t > T2 + τ

ẏ1(t) ≤ −r1y1(t) + a21εy1(t − τ) − a22y
2
1(t) + θy2(t),

ẏ2(t) = by1(t) − (θ + r2)y2(t).
(4.53)

Since (H1) holds, by Lemma 2.5, a comparison argument shows that

lim
t→+∞

y1(t) ≤
(−r1 + a21ε)(θ + r2) + bθ

a22(θ + r2)
,

lim
t→+∞

y2(t) ≤
b(−r1 + a21ε)(θ + r2) + b2θ

a22(θ + r2)
2

,

(4.54)

Together with (4.49), yields

lim
t→+∞

y1(t) =
1
a22

(
θb

θ + r2
− r1

)
= ỹ1,

lim
t→+∞

y2(t) =
b

a22(θ + r2)

(
θb

θ + r2
− r1

)
= ỹ2.

(4.55)

Noting that if (H1) holds and (θ+ r2)(a22r +a12r1) < a12θb, the equilibrium E2 of system (1.6)
is locally stable. We therefore conclude that E2 is globally stable. The proof is complete.
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Figure 4: When τ = 1 < τ0, the positive equilibrium E∗ is asymptotically stable. Here r = 4, r1 = 1, r2 =
1, a11 = 1, a12 = 2, a21 = 4, a22 = 2, b = 4, θ = 1 and initial value is (0.8, 1.5, 3.6).

5. Numerical Examples

In this section, we give some examples to illustrate the main results.

Example 5.1. In system (1.6), we let r = 2, r1 = 2, r2 = 1, a11 = 4, a12 = 3, a21 = 2, a22 =
4, b = 1, θ = 2, and τ = 1. It is easy to show that r1(θ + r2) − bθ − a21r(θ + r2)/a11 = 1 > 0.
By Theorem 4.2 we see that the equilibrium E1(0.5, 0, 0) of system (1.6) is globally stable.
Numerical simulation illustrates our result (see Figure 1).

Example 5.2. In system (1.6), we let r = 1, r1 = 1, r2 = 1, a11 = 4, a12 = 3, a21 = 2, a22 =
1, b = 4, θ = 1, and τ = 1. It is easy to show that bθ−r1(θ+r2) = 2 > 0, and r−a12ỹ1 = −2 <
0. By Theorem 4.3 we see that the equilibrium E2(0, 1, 2) of system (1.6) is globally stable, as
depicted in Figure 2.

Example 5.3. In system (1.6), we let r = 4, r1 = 1, r2 = 1, a11 = 2, a12 = 1, a21 = 2, a22 =
1.5, b = 4, θ = 1, and τ = 1. System (1.6) with above coefficients has a unique positive
equilibrium E∗(1.5, 2, 4). It is easy to show that a11a22 − a12a21 = 1 > 0. By Theorem 4.1 we
see that the positive equilibrium E∗(1.5, 2, 4) of system (1.6) is globally stable. Numerical
simulation illustrates our result (see Figure 3).

Example 5.4. In system (1.6), we let r = 4, r1 = 1, r2 = 1, a11 = 1, a12 = 2, a21 = 4, a22 =
2, b = 4, and θ = 1. System (1.6) with above coefficients has a unique positive equilibrium
E∗(0.6, 1.7, 3.4). By computing, we can get p0 − q0 = −6.48 < 0 and ω0 = 0.9326, τ0 = 1.664. By
Theorem 3.1 we see that the equilibrium E∗ is locally stable for τ < τ0; and E∗ is unstable for
τ > τ0. And system (1.6) undergoes a Hopf Bifurcation at the positive equilibrium E∗ when
τ = τ0. See Figures 4 and 5.
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Figure 5: When τ = 2 > τ0, the positive equilibrium E∗ is asymptotically stable. Here r = 4, r1 = 1, r2 =
1, a11 = 1, a12 = 2, a21 = 4, a22 = 2, b = 4, θ = 1 and the initial value is (0.8,1.5,3.6).

6. Discussion

In this paper, we considered a delayed predator-prey model with stage structure for the
predator. By using the iteration technique and comparison argument, respectively, sufficient
conditions were established for the global stability of the positive equilibrium and two
boundary equilibria of system (1.6). By Theorems 4.1, 4.2 and 4.3, we see that: (i) If (H2)
holds and a11a22 > a12a21, system (1.6) is permanent. (ii) If r1(θ + r2) > bθ + a21r/a11(θ + r2),
the prey species is persistent but the predator becomes extinct. (iii) If (H1) holds and
(θ + r2)(a22r + a12r1) < a12θb, the predator species is persistent but the prey species becomes
extinct.

Acknowledgments

The authors wish to thank the reviewers for their valuable comments and suggestions that
greatly improved the presentation of this work. This work was supported by the National
Natural Science Foundation of China (no. 10671209) and the Scientific Research Foundation
for the Returned Overseas Chinese Scholars, State Education Ministry.

References

[1] L. Chen, X. Song, and Z. Lu, Mathematical Models and Methods in Ecology, Sichuan Science and
Technology Press, Chendu, China, 2003.

[2] J. Cui, L. Chen, and W. Wang, “The effect of dispersal on population growth with stage-structure,”
Computers & Mathematics with Applications, vol. 39, no. 1-2, pp. 91–102, 2000.



24 Discrete Dynamics in Nature and Society

[3] S. Gao, L. Chen, and Z. Teng, “Hopf bifurcation and global stability for a delayed predator-prey
system with stage structure for predator,” Applied Mathematics and Computation, vol. 202, no. 2, pp.
721–729, 2008.

[4] Z.-R. He, “Global dynamics of nonlinear two-staged age-dependent populations,” International
Journal of Biomathematics, vol. 1, no. 4, pp. 449–461, 2008.

[5] Z.-H. Ma, Z.-Z. Li, S.-F. Wang, T. Li, and F.-P. Zhang, “Permanence of a predator-prey system with
stage structure and time delay,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 65–71,
2008.

[6] X. Song and H. Guo, “Global stability of a stage-structured predator-prey system,” International
Journal of Biomathematics, vol. 1, no. 3, pp. 313–326, 2008.

[7] R. Xu and Z. Ma, “The effect of stage-structure on the permanence of a predator-prey system with
time delay,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1164–1177, 2007.

[8] R. Xu and Z. Ma, “Stability and Hopf bifurcation in a predator-prey model with stage structure for
the predator,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1444–1460, 2008.

[9] P. J. Wangersky and W. J. Cunningham, “Time lag in prey-predator population models,” Ecology, vol.
38, pp. 136–139, 1957.

[10] J. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, Springer, New York,
NY, USA, 2nd edition, 1977.

[11] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative
System, vol. 41 of Mathematical Surveys and Monographs, American Mathematical Society, Providence,
RI, USA, 1995.

[12] W. Wang, P. Fergola, and C. Tenneriello, “Global attractivity of periodic solutions of population
models,” Journal of Mathematical Analysis and Applications, vol. 211, no. 2, pp. 498–511, 1997.

[13] Y. Kuang and J. W.-H. So, “Analysis of a delayed two-stage population model with space-limited
recruitment,” SIAM Journal on Applied Mathematics, vol. 55, no. 6, pp. 1675–1696, 1995.

[14] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics
in Science and Engineering, Academic Press, Boston, Mass, USA, 1993.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


