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Study of the genetics of the malignant hyperthermia syndrome began in families in which 
both malignant hyperthermia (MH) episodes had been experienced and individuals had 
strongly positive contracture tests diagnostic of susceptibility to MH. Linkage studies 
associated this MH phenotype to the ryanodine receptor gene (RYR1) at chromosome 
19q13.1 in many families. Although the MH phenotype is not always linked to 
chromosome 19, the RYR1 has remained the focus of experimentation. Other candidate 
genes exist, but few MH-susceptible families have variants of these genes. Hundreds of 
MH-susceptible people have variants of RYR1. 
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BACKGROUND 

Malignant hyperthermia (MH) is a pharmacogenetic syndrome. MH was first recognized during general 
anesthesia with potent inhalation agents because increasing metabolism of skeletal muscle became life 
threatening. It is known that elevated intracellular calcium in skeletal muscle is the cause of increased 
metabolism in the MH syndrome. Calcium transport from the sarcoplasmic reticulum of muscle through 
the ryanodine receptor into the sarcoplasm occurs during the excitation and contraction of muscle. 
Therefore the ryanodine receptor gene (RYR1) is a likely candidate gene for MH. Since the beginning of 
research into the pathophysiology of this syndrome, the pig has been a useful model. MH episodes can be 
produced in pigs. The bioassay of muscle developed to identify MH-susceptible individuals, the caffeine 
halothane contracture tests (CHCT), is highly reproducible in pigs. In five breeds of pig, the Arg615Cys 
variant in the ryanodine receptor type one protein (RYR1) is linked to MH susceptibility. Therefore, 
linkage between MH susceptibility in humans and the RYR1 was examined and established in many 
families[1,2]. The RYR1 at 19q13.1 became locus MHS1. 

RYANODINE RECEPTOR TYPE ONE 

MH Diagnostic Centers in Europe (see www.emhg.org) have accumulated significant experience with 
screening of RYR1 in MH-susceptible (MHS) families. This led to clinical diagnostic testing of MH 
susceptibility based on RYR1 mutations. For example, in a family known to have MHS in which a MH-
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causative RYR1 mutation has been identified, it is recommended that first-degree relatives undergo 
genetic testing for that mutation prior to muscle contracture testing[3]. This strategy leads to identification 
of the familial mutation in ~50% of family members, as expected for an autosomal dominant 
condition[4]. Increasing numbers of people from known MHS families have the diagnosis of MHS 
confirmed in this manner and thus avoid muscle contracture testing. When muscle contracture testing is 
impossible, such as in newborns[5], MH status can be evaluated with this blood-based test. However, if 
the familial variant is not found, it is still possible that the individual is MHS. The genetic variants that 
are associated with MH have not been completely described. Two MH-causative mutations have been 
observed in rare individuals[6]. In 2006, only a negative contracture test can confirm the diagnosis of “not 
MH susceptible”. As more patients with MHS diagnosed by muscle contracture testing undergo genetic 
study, the negative predictive value of genetic testing should increase. The addresses of centers where the 
specialized muscle contracture test, the CHCT, can be performed in North America are listed at 
www.mhaus.org. The European Centers, which perform IVCT (IVCT is the muscle contracture test 
performed by the European MH Group with the definition that MHS is present when a contracture of >0.2 
g is present at or below a concentration of 2 mM caffeine and at or below 2% halothane), are listed at 
www.emhg.org. This form of the muscle bioassay is also performed in New Zealand. 

The size of the RYR1, 106 exons[7], which encodes the homotetrameric ryanodine receptor channel 
(RYR1), led early investigators to focus on the mutation hot spots rather than the entire gene in their 
search for MH-causative mutations. Many MH-causative mutations were found in hot spot one, the N-
terminus (MH1), and in hot spot two (MH2). MH1 includes exons 2 through 17. MH2, the central hot 
spot, includes exons 39 through 46. MH3, the C-terminus third hot spot, includes exons 90 through 106. 
Often studies of RYR1 genetics in different populations examined a limited number of different exons in 
these hot spots. For example, in Leipzig, Germany, RYR1 exons 2, 6, 9, 11, 12, 14, 15, 17, 39, 40, 45, 46, 
and 102 were examined by direct sequencing in 56 MHS people[8]. This was the first study in which 
mutations in RYR1 were found in ~70% of the individuals examined. In 124 North American MHS 
patients, exons 44, 95, 100, and 101 were examined in addition to those studied in Leipzig, but exons 14 
and 15 were not examined. A total of 14 RYR1 variants were found in 23% of these people in North 
America[9]. Other studies found mutation frequencies in between these numbers. For example, 40% of 48 
MHS Swiss had one of the 23 RYR1 mutations acknowledged by the European Malignant Hyperthermia 
Group (EMHG) as causative for this syndrome[10]. In 500 unrelated European MHS people, one of 15 
MH-causative RYR1 mutations was found in ~30%[11]. These studies may underestimate the frequency 
of RYR1 variants in MHS people because only part of RYR1 was examined. 

Particular mutations in RYR1 are more common in people from different geographic areas.(see Table 
1). In Leipzig, the mutation in exon 17 of RYR1, which produces a substitution of cysteine for arginine in 
the RYR1 protein, referred to as Arg614Cys, was the most frequently observed mutation, followed by 
Thr2206Met in exon 39 and Arg2454His in exon 46. Together these three mutations were found in 45% 
of the 56 MHS people studied[8]. In Switzerland, 18% of 62 MHS families had one of three RYR1 
mutations, Arg614Cys, Val2168Met in exon 39, or Gly2434Arg in exon 45[4]. In England, Gly2434Arg 
and Val2168Met are common RYR1 mutations[12]. In France, other parts of Germany, and Italy, 
Arg614Cys was also frequent. Gly341Arg in exon 11 was common in Belgium, France, and the 
U.K.[11,13]. The most frequent RYR1 mutation in the U.K., Gly2434Arg, was present, but not the most 
common, in other European countries[11] (see Table 1). In Europe, just over half of the RYR1 mutations 
were found in MH1[13]. However, in 50 Italian subjects, RYR1 mutations were more frequent in MH2 
than in MH1[14]. In the North American study, 70% of the mutations were in MH2. The most frequent 
mutation in the North American population, Gly2434Arg, was found in only 5% of 124 subjects. 
Arg2454His and Arg614Cys were the next most common RYR1 variants in North America[9]. These 
were not the most common RYR1 mutations in a group of Japanese MHS people[15]. Therefore, clinical 
tests of MHS based on the genetics of RYR1 may elect to examine exons in a sequential fashion based on 
the frequency of mutations in that population. This will result in a diagnosis of MHS with less expense, 
but such a strategy can never by itself be adequate to support optimal understanding of the genetics of the 
MH syndrome. 
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TABLE 1 
Geographic Variability in Common RYR1 Variants* 

 Gly341Arg Arg614Cys Val2168Met Thr2206Met Gly2434Arg 

Leipzig, Germany 5 31 3 23 5 
Switzerland 0 13 69 0 19 
Leeds, U.K. 14 5 0 0 62 
France 9 10 4 7 4 
U.S. 2 8 2 6 18 
Japan 3 0 0 0 0 

* The RYR1 mutations listed as column headings have been noted in these percentages of 
unrelated MHS subjects with pathologic variants in the RYR1 in the countries noted in the 
left column. The most frequent RYR1 mutation is often different from one country to 
another in Europe. The bold numbers are significantly greater than the others in each 
column with the exception of the first column. Gly341Arg has been found more often in the 
U.K. than in the U.S., but there is no significant difference in the incidence of this MH 
mutation between the other countries noted here. 

When the entire coding sequence of RYR1 was examined in known MHS subjects, variants were 
found in 70% in North America[16] and Japan[15]. In 50 Italian MHS individuals, the RYR1 mutation 
detection rate was 86%[14]. Sequence variants that may be causative of MH have been observed outside 
the hot spots. Many such variants have been observed in only one MHS family. More RYR1 variants are 
reported every year, but variation from normal does not necessarily imply causation of the disease MH. 
The majority of RYR1 variants associated with MH are missense. The pathogenecity of these must be 
carefully evaluated. Strict criteria for proof of causation are available at www.emhg.org as is the list of 
currently accepted MH-causative mutations. In 2006 there were 28 RYR1 mutations in this list. This list 
could be much longer in the future.  

If genetic testing of RYR1 is applied to individuals when there has been no muscle contracture test 
diagnostic of MH performed in any relatives, the chance of documenting a MH-causative variant is much 
less. This is in part because 50% or more of patients who experience clinical events that appear to be 
consistent with MH[17] have muscle that responds normally on the contracture test. These people are not 
MHS. It is very difficult to diagnose MHS on the basis of clinical signs and nonspecific laboratory tests. 
When the same portions of RYR1 are examined, in families who had positive muscle contracture tests, 
60% of 129 had RYR1 variants, whereas in families who had NOT had contracture testing, only 20% of 
46 had RYR1 variants, a strongly significant difference[13]. In other populations[4], the yield of positive 
results, if genetic testing were the initial test in a family, would be even lower. Seven patients referred for 
RYR1 exam due to elevated creatine kinase in the absence of personal or family experience of an acute 
MH event or positive muscle contracture test did not have RYR1 mutations[14]. These results support the 
need to evaluate detailed personal and family history when referring a patient for genetic testing of MHS. 
This can be done by a MH Diagnostic Biopsy Center or the Genetic Counselor at the Center for Medical 
Genetics at the University of Pittsburgh Medical Center (D. Steele, #800-454-8155). Better understanding 
of the effects of RYR1 variants on daily function and physical performance during stress will be facilitated 
by accumulation of diagnostic reports with detailed histories in the North American MH Registry (see 
www.mhreg.org). 

DISCORDANCE 
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Discordance between MH phenotype, defined by the muscle contracture test, and accepted MH-causative 
RYR1 genotypes has been noted[11,13]. Of 363 individuals in 58 well-characterized MHS families, there 
was diagnostic disagreement, discordance, between muscle contracture result and genotype in 10 
subjects[13]. The RYR1 variants in these families were all functionally tested mutations that could cause 
clinical MH. In only one of these cases was a negative contracture test found in a patient with a causative 
MH mutation. This patient had experienced an MH crisis during isoflurane anesthesia. Therefore, this is 
an instance of a false-negative contracture test. A false-negative contracture test may occur when the 
muscle is not viable, when it is altered by concomitant medications, or if the concentration of agonists in 
the contracture test bath was suboptimal. The sensitivity of the contracture test, based on genetic findings 
in these 196 patients, was 99.5%[13]. This is similar to the sensitivity of the contracture test defined by 
clinical cases. On the other hand, in nine cases, a patient with MHS diagnosed by muscle contracture 
testing did not have the familial causative mutation. It is possible that contracture tests have false-positive 
results because the test is defined with a low threshold so that no individual who might develop MH is not 
recognized. It is also possible that a second MH-causative mutation that was not detected in other 
relatives was present in the discordant individual with muscle contracture test results diagnostic of MHS. 

In some cases, discordance has been resolved by redefining the cut-off values for the contracture test 
results[18,19]. This is a reasonable approach if the family is large enough to evaluate linkage with MHS 
because the definition of positive contracture threshold was based on a large population of subjects. This 
population-based definition is then applied to a diverse group of unrelated individuals to diagnose MHS 
after a suspicious clinical event. The threshold for a positive contracture test result was deliberately set at 
a low level so that the test would not fail to recognize any MHS individual. Therefore, specificity of 85% 
was accepted as appropriate for the CHCT and as many as 15% of positive CHCT results may be false 
positives[20]. The sensitivity and specificity of the IVCT are the subject of ongoing study[21,22]. The 
best statistical analysis for a large population may be inadequate for the analysis of every family[23]. For 
example, when the population-based definitions of positive IVCT were applied to a large Maori family in 
which 130 people had been diagnosed by IVCT and 5 had experienced MH episodes; 22 individuals were 
discordant. These 22 people had MHS diagnosis based on IVCT and they did not have the familial 
mutation. When more stringent definitions were required to produce an MHS diagnosis from IVCT 
results, fewer individuals were discordant. When MHS was diagnosed only at an IVCT threshold of 1.2 g 
contracture in the presence of 2.0 mM caffeine and 1.8 g tension in the presence of 2% halothane, there 
was no discordance between diagnosis by IVCT and by genotype in this family[19]. Unfortunately, most 
families do not include such a large number of well-studied individuals. Therefore, it is not usually 
possible to produce family-specific definitions of contracture test diagnostic limits. 

When the familial RYR1 mutation is not identified in an individual with positive contracture test 
results, the possibility must be considered that a different MH-causative mutation exists in that individual. 
Two MH-causative RYR1 mutations have been observed in individuals in several unrelated European 
families[6], in North America, and in Japan. A family with both an RYR1 MH-causative mutation and a 
mutation in the gene encoding another putative MH locus was described in France[6]. 

OTHER LOCI POSSIBLY ASSOCIATED WITH MH 

For many MHS families, linkage to MHS1 could not be demonstrated[24]. As discussed above, this may 
be due in part to the nature of the contracture test[23]. Linkage analysis in a few families demonstrated 
other loci, 17q21-24[25], 7q21-24[26], 3q13[27], 1q32[28], and 5p[29], associated with MHS. MHS2 
thorough MHS6, respectively, are the designations of these loci. Because MH is an abnormality of 
excitation-contraction coupling, the gene encoding the protein that forms the calcium-release channel of 
the muscle sarcoplasmic reticulum, RYR1, and the genes encoding subunits of the adjacent voltage-gated 
channel, the dihydropyridine receptor (DHPR), are logical candidates for linkage with MH. The DHPR is 
a heterotetramer encoded by four genes. The CACNA1S or CACNL1A3, encoding the α1-subunit of the 
DHPR, is at 1q32[28]. Polymorphisms and potential mutations have been identified in this gene[30]. In 
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one family, the Arg528His amino acid substitution in the α1-subunit of the DHPR encoded by CACNA1S 
produced a severe form of hypokalemic periodic paralysis. This mutation was present in the young man in 
that family who died from anesthetic complications resembling MH[31]. In a different large French 
family, a mutation in CACNA1S was linked to MHS[32], but hypokalemic periodic paralysis can also 
occur independently of MHS diagnosed by IVCT[33]. The CACNLB1 encoding the β-subunit and the 
CACNLG encoding the γ-subunit are both located in 17q11.2-q24[34,35] and the CACNLA2 encoding the 
α2/δ-subunit of the DHPR is in 7q11.23-q21.1. Thus, the genes encoding the subunits of the DHPR are 
candidate genes for MH loci 2, 3, and 5, but these genes have not been linked to MHS in families. No 
candidate genes have been determined for MH loci 4 and 6[36]. 

Interaction between several genes may influence the MH phenotype within one family[36]. Candidate 
loci were examined in 131 families from different areas in Europe in which MHS had been diagnosed by 
means of IVCT. RYR1 was associated with MHS as were loci on chromosomes 1, 5, and 7 in these 
families. When the 100 families in which there was a high probability of linkage between MHS and RYR1 
were considered separately, there was still an association between MHS and loci on chromosomes 5 and 
7. In the families for which there was no evidence of linkage between MHS and RYR1, there was an 
association of MHS with a locus on chromosome 7. 

Many mutations in genes encoding subunits of muscle voltage-gated ion channels have been 
described. Different clinical disorders may be related to variants in one gene and one clinical disorder can 
be associated with variants of several genes. For example, hyperkalemic periodic paralysis, potassium 
aggravated myotonia, paramyotonia congenita, and hypokalemic periodic paralysis type 2 are associated 
with mutations in the human skeletal muscle sodium channel. The gene encoding the adult muscle sodium 
channel (SCN4A) is located on chromosome 17q23.1-q25.3. SCN4A has been proposed as a MH locus in 
a few pedigrees in the western hemisphere[25,37,38,39]. In one of these pedigrees, reports of MH were 
based primarily on clinical events. Stiffness followed administration of succinylcholine in all three 
patients diagnosed as MHS. Acidosis, fever, and rhabdomyolysis were variable. The one CHCT 
performed was prior to standardization of this test. Weakness was a frequent complaint after general 
anesthesia[39]. Furthermore, no European families have been found to have SCN4A linked with 
MHS[40,41]. Although people with either hyperkalemic or hypokalemic periodic paralysis may 
experience significant anesthetic complications similar to those associated with mutations in RYR1, there 
are also important differences between diagnostic findings and potential treatments for people with 
disease related to SCN4A vs. RYR1. Furthermore, a rare disease such as hypokalemic periodic paralysis 
may be associated with mutations in CACNA1S (type one hypokalemic periodic paralysis), SCN4A (type 
two hypokalemic periodic paralysis), or KCNE3 on chromosome 11q13-q14 encoding MinK-related 
peptide 2, which is part of a skeletal muscle potassium channel[33]. 

It is not clear that dysfunction of the sodium and potassium channels will necessarily result in 
excessive calcium release through the RYR1 or some other abnormality of intracellular calcium in 
muscle. There is much evidence to support the claim that stiffness associated with MH and with 
myotonias are not the same disease[42], but it is to be expected that when myotonia is a clinical problem, 
excessive stiffness with subsequent increased metabolism and possible muscle injury will follow 
administration of succinylcholine, the only depolarizing neuromuscular blocker in clinical use. 

MYOPATHIES AND MH  

Central core disease (CCD) is an uncommon myopathy described in 1956 as the first congenital 
myopathy with structural changes in muscle fibers[43]. The diagnosis of CCD rests on histopathology. 
There is predominance of type one fibers containing centrally located areas lacking mitochondria and 
variable disintegration of the contractile apparatus in this core region[44]. CCD also has variable clinical 
manifestations. CCD has been associated with variants in the RYR1[45,46,47]. Some RYR1 mutations 
produce both MH and CCD. Myotubes expressing RYR1 channels associated with both MH and CCD 
exhibited voltage-gated calcium release at more negative potentials and had a higher incidence of 
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spontaneous calcium oscillations than did myotubes containing normal RYR1[46]. The same was true of 
some RYR1 variants associated with MH and not CCD. The RYR1s associated with both MH and CCD 
also had lower maximal voltage-gated calcium release and calcium oscillations occurred with longer 
duration or greater frequency than those associated only with MH[48]. These laboratory observations 
suggest that CCD associated with variants of RYR1 can be expected to be MHS, but the function of all 
RYR1 variants associated only with CCD, in the absence of documented MH, have not been examined, 
and the functional properties of RYR1 variants may be quite different[46]. There are some RYR1 
mutations associated with CCD that do not cause MH[49]. As more of the RYR1 is examined in patients 
with CCD, RYR1 variants are found in a larger percentage of patients[50].  

Usually CCD is autosomal dominant. In contrast, multiminicore disease (MmD) is an autosomal 
recessive congenital myopathy. In common with CCD, the cores in MmD lack mitochondria, but they 
differ in that they do not extend the length of the muscle fiber[44]. Mutations in selenoprotein N (SEPN1) 
have been the most frequent finding in MmD[51], but other cases of MmD have been found to have 
variants in the RYR1[52]. CCD may initially present as MmD. Nemaline rods have been found in some 
CCD patients[53], although nemaline rod myopathy has been described as a disease entity of the muscle 
cytoskeletion different from CCD. There are other examples of clinical overlap between these 
myopathies, associated with variants of RYR1[54,55]. 

The majority of classic MH cases are associated with variants of RYR1, but there are clinical 
situations in which other types of pathophysiology are associated with signs and symptoms resembling 
classic MH. Researchers focused on describing the genetics of the MH syndrome argue that only 
abnormalities of the excitation-contraction coupling mechanism in muscle can be considered to be MH. 
However, the clinician has to care for patients with diverse, often undiagnosed, muscle diseases. Which 
patients should be treated as if they are MHS? Some anesthesiologists may argue that all patients 
suspected of muscular disease should be treated as if they could develop MH, but it is not clear that 
avoidance of all inhalation anesthetics is always in the best interest of the patient with muscle disease who 
may NOT be MHS. It may be difficult to determine objectively if MHS is to be expected in a particular 
myopathy because few myopathic patients undergo CHCT and because of the clinical overlap between 
some of the rare myopathies. 

There are myopathic patients in whom MH-like reactions have occurred during anesthesia in which 
the primary abnormality is a defect in structural elements of the sarcolemma. For example, a child with 
merosin (laminin α-2) deficiency experienced increased heart rate, increased carbon dioxide production, 
and increased temperature during total intravenous anesthesia in the absence of MH-triggering agents. 
These signs of increased metabolism resolved after dantrolene was given[56]. Merosin is a structural 
element in the subsarcolemmal space. Dystrophin is another structural protein in the subsarcolemma. 
There are many cases of patients with Duchenne muscular dystrophy, due to absence of dystrophin, 
(DMD) who experienced anesthetic complications during or after exposure to potent inhalation 
agents[57]. Although these events were often described as MH episodes, they differ in some respects. 
Some patients with DMD have undergone muscle contracture testing with positive results. In contrast, 
negative CHCT results have been obtained in young boys with dystrophinopathy and in animal models of 
DMD[58]. Increased intracellular calcium is thought to be part of the pathogenesis of DMD, but why this 
occurs is not known[59]. There are no significant differences in the transverse tubular system or the 
voltage dependence of calcium release from the sarcoplasmic reticulum (SR) in DMD and normal muscle 
fibers, but the amount of calcium released from the SR in DMD is less than normal[60]. Calcium binding 
proteins in the SR of DMD muscle may be much less than normal[61]. There may be different sources of 
calcium influx in DMD muscle than in normal[62]. So although increased intracellular calcium may be a 
common feature in some muscular dystrophies and classic MH, the causes of this differ and the associated 
genetic loci differ.  
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