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The main control goal in batch process is to get a high yield of products. In this paper, to maximize the yield of 1,3-propanediol
(1,3-PD) in bioconversion of glycerol to 1,3-PD, we consider an optimal control problem involving a nonlinear time-delay system.
The control variables in this problem include the initial concentrations of biomass and glycerol and the terminal time of the batch
process. By a time-scaling transformation, we transcribe the optimal control problem into a new one with fixed terminal time,
which yields a new nonlinear system with variable time-delay. The gradients of the cost and constraint functionals with respect to
the control variables are derived using the costate method. Then, a gradient-based optimization method is developed to solve the
optimal control problem. Numerical results show that the yield of 1,3-PD at the terminal time is increased considerably compared
with the experimental data.

1. Introduction

Batch processing represents the natural way to scale-up
processes from the laboratory to the production environment
[1]. During the batch operation, no substrate is added to
the initial charge and no product is removed until the end
of the process [2]. Optimal control of batch processes has
received attention recently because it is a choice for reducing
production costs, improving product quality, and meeting
safety requirements [3–5].

1,3-Propanediol (1,3-PD) is one of the important products
used in the chemical industry. Using glycerol for producing
1,3-PD is effective from both the economical and ecological
point of view. The operations of glycerol bioconversion to
1,3-PD consist of batch, continuous, and fed-batch cultures.
Compared with continuous and fed-batch cultures, glycerol
fermentation in batch process can obtain the highest produc-
tion concentration andmolar yield 1,3-PD to glycerol [6]. For
this process, many studies have been carried out including
the quantitative description of the cell growth kinetics [7, 8],
enzyme-catalytic kinetics [9], the parameter identification
problem [10–13], and the pathway optimization problem [14].
In particular, considering the existence of time-delays in

the fermentation process [15, 16], a nonlinear time-delay
system was recently proposed in [13]. Numerical simulations
showed that the nonlinear time-delay system can describe
the batch process better than previous mathematical models.
However, in batch process of glycerol bioconversion to 1,3-
PD, the aim is to obtain as much 1,3-PD as possible at the
terminal time. Mathematically, this is an optimal control
problem. Although the achieved results are interesting, such
optimal control problem is ignored in the above researches.

In this paper, taking the initial concentrations of biomass
and glycerol and the terminal time of the fermentation
process as control variables and the yield of 1,3-PD as the
performance index, we propose an optimal control model
involving nonlinear time-delay system in [13] and subject
to continuous state constraints. In fact, this problem is a
free time delayed optimal control problem. By the way, there
has been a mounting interest in optimal control of time-
delay systems. A maximum principle for optimal control
problemwith a constant delay was provided in [17]. It should,
however, be noted that many time-delay systems including
the nonlinear time-delay system in this paper are highly
nonlinear.Therefore, it is often impossible to obtain analytical
solutions of the delayed optimal control problem and one has
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to resort to numerical solution methods. As a result, some
successful algorithms, such as iterative dynamic program-
ming method [18], control parameterization method [19],
andmeasure theoretical approach [20], have been developed.
However, terminal time in above optimal control problems is
fixed. The presence of free terminal time makes the delayed
optimal control problem much more complicated. Thus, to
solve the optimal control problem in this work, these existing
computational methods cannot be used directly and new
computational techniques should be explored.

In this paper, by a time-scaling transformation, we
equivalently transcribe the free time delayed optimal control
problem into one with fixed terminal time. It is significant
to mention that this transformation yields a more complex
dynamic system in which the time-delays are variable. By the
costate method, we derived the gradients of the cost func-
tional and constraints with respect to the control variables.
Then, a gradient-based optimization technique is developed.
Finally, numerical results show that the yield of 1,3-PD at the
terminal time is increased considerably compared with the
experiment data.

2. Nonlinear Time-Delay Systems

In batch process, a proper quantity of biomass and glycerol is
added to the reactor only once and stirred uniformly under
given conditions. Then, 1,3-PD is removed at the end of the
process. Based on thework [13], the following nonlinear time-
delay system can be used to describe the batch process:

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ)) , 𝑡 ∈ (0, 𝑇] ,

𝑥 (0) = 𝜁,

𝑥 (𝑡) = 𝜙 (𝑡, 𝜁) , 𝑡 ≤ 0,

(1)

where 𝑥(𝑡) := (𝑥

1
(𝑡), 𝑥

2
(𝑡), 𝑥

3
(𝑡), 𝑥

4
(𝑡), 𝑥

5
(𝑡))

⊤
∈ 𝑅

5 is
the state vector whose components are, respectively, the
concentrations of biomass, glycerol, 1,3-PD, acetate, and
ethanol in the reactor at time 𝑡; ℎ is a delay argument; 𝑇 > 0

is the terminal time; 𝜁 := (𝜁

1
, 𝜁

2
, 𝜁

3
, 𝜁

4
, 𝜁

5
)

⊤ is the initial state;
𝜙 : 𝑅×𝑅

5
→ 𝑅

5 is a given initial function; and the dynamics
of the batch process is given by

𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ)) := (

𝜇𝑥

1
(𝑡 − ℎ)

−𝑞

2
𝑥

1
(𝑡 − ℎ)

𝑞

3
𝑥

1
(𝑡 − ℎ)

𝑞

4
𝑥

1
(𝑡 − ℎ)

𝑞

5
𝑥

1
(𝑡 − ℎ)

) . (2)

In (2), the specific growth rate of cells 𝜇, the specific
consumption rate of substrate 𝑞

2
, and the specific formation

rates of products 𝑞
ℓ
, ℓ = 3, 4, 5, can be expressed as

𝜇 =

𝜇

𝑚
𝑥

2
(𝑡)

𝑘

1
+ 𝑥

2
(𝑡)

5

∏

ℓ=2

(1 −

𝑥

ℓ
(𝑡)

𝑥

∗

ℓ

) ,

𝑞

ℓ
= 𝑚

ℓ
+ 𝜇𝑌

ℓ
, ℓ = 2, 3, . . . , 5,

(3)

where 𝜇
𝑚
, 𝑘
1
, 𝑚
ℓ
, and 𝑌

ℓ
are kinetic parameters and 𝑥

∗
and

𝑥

∗ are the critical concentrations for cells growth.

The terminal time in system (1) is a control variable.
Define

T := {𝛾 ∈ 𝑅 : 𝑇min ≤ 𝛾 ≤ 𝑇max} , (4)

where 𝑇min and 𝑇max are the lower and upper bounds for the
terminal time, respectively. Any𝑇 ∈ T is called an admissible
terminal time. Moreover, since no product comes into being
at the initial point, 𝜁

ℓ
= 0, ℓ = 3, 4, 5. Hence, let 𝑢 = (𝜁

1
, 𝜁

2
)

⊤

and define

U := {𝜐 ∈ 𝑅

2
: 𝑎

𝑖
≤ 𝜐

𝑖
≤ 𝑏

𝑖
} , (5)

where 𝑎
𝑖
and 𝑏

𝑖
are real numbers such that 𝑎

𝑖
< 𝑏

𝑖
. Any 𝑢 ∈ U

is called an admissible initial vector of biomass and glycerol.
For the nonlinear time-delay system (1), there exists a

unique continuous solution 𝑥(⋅ | 𝑢) corresponding to each
𝑢 ∈ U on [0,∞) [21]. Furthermore, there exist critical con-
centrations of biomass, glycerol, and products, outside which
cells cease to grow. Hence, it is biologically meaningful to
restrict the concentrations of biomass, glycerol, and products
within a set𝑊 defined as

𝑥 (𝑡 | 𝑢) ∈ 𝑊 :=

5

∏

ℓ=1

[𝑥

∗ℓ
, 𝑥

∗

ℓ
] , 𝑡 ∈ [0, 𝑇] . (6)

3. Optimal Control Problems

In the batch process, it is desired that the yield of 1,3-PD
should be maximized at the end of the process. This is
achieved by manipulating some control variables 𝑢 and 𝑇.
Thus, the optimal control problem in batch process can be
formulated as

(OCP) min 𝐽 (𝑢, 𝑇) = −

𝑥

3
(𝑇 | 𝑢)

𝑇

s.t. 𝑥 (𝑡 | 𝑢) ∈ 𝑊, 𝑡 ∈ [0, 𝑇] ,

(𝑢, 𝑇) ∈ U ×T.

(7)

Note that (OCP) is of nonstandard type because the
terminal time and the initial values of biomass and glycerol
are variables to be determined. Thus, the (OCP) is actually
a free time optimal control problem. It is difficult to solve
the (OCP) using existing numerical techniques [18–20]. The
main difficulty is the implicit dependence of the system
state on the terminal time. We now employ a time-scaling
transformation from [0, 𝑇] to [0, 1] as follows:

𝑡 = 𝑡 (𝑠) = 𝑇𝑠, (8)

where 𝑠 ∈ [0, 1] is a new time variable. Clearly, 𝑠 = 0

corresponds to 𝑡 = 0, and 𝑠 = 1 corresponds to 𝑡 = 𝑇. Let
𝑥(𝑠) = 𝑥(𝑡(𝑠)). Then

̇

𝑥̃ (𝑠) =

𝑑

𝑑𝑠

{𝑥 (𝑡 (𝑠))}

=

𝑑𝑥 (𝑡 (𝑠))

𝑑𝑡

𝑑𝑡 (𝑠)

𝑑𝑠

= 𝑇𝑓 (𝑥 (𝑇𝑠) , 𝑥 (𝑇𝑠 − ℎ))

= 𝑇𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) .

(9)
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The initial conditions become
𝑥 (0) = 𝜁,

𝑥 (𝑠) = 𝜙 (𝑇𝑠, 𝜁) , 𝑠 ≤ 0.

(10)

Thus, system (1) is transformed into the following form:
̇

𝑥̃ (𝑠) = 𝑇𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) , 𝑠 ∈ [0, 1] ,

𝑥 (0) = 𝜁,

𝑥 (𝑠) = 𝜙 (𝑇𝑠, 𝜁) , 𝑠 ≤ 0.

(11)

Let 𝑥(⋅ | 𝑢, 𝑇) denote the solution of system (11) correspond-
ing to each (𝑢, 𝑇) ∈ U × T on [0, 1]. Then, (OCP) can be
transcribed into the following equivalently optimal control
problem with fixed terminal time:

(EOCP) min 𝐽 (𝑢, 𝑇) = −

𝑥

3
(1 | 𝑢, 𝑇)

𝑇

(12)

s.t. 𝑥 (𝑠 | 𝑢, 𝑇) ∈ 𝑊, 𝑠 ∈ [0, 1] ,

(𝑢, 𝑇) ∈ U ×T.

(13)

Note that the time-delay in system (11) depends on the
control variable𝑇.Thus, when applied to time-delay systems,
the time-scaling transformation (8) yields a more complex
dynamic system in which the time-delay is variable.

4. Computational Approaches

(EOCP) is in essence an optimization problem with contin-
uous state inequality constraint (13), which has an infinite
number of constraints and can be viewed as a semi-infinite
programming problem. An efficient algorithm transforming
this type of problems to standardmathematical programming
problems was discussed in [22]. We will now briefly discuss
the application of this algorithm to (EOCP).

Let
𝑔

ℓ
(𝑥 (𝑠 | 𝑢, 𝑇)) := 𝑥

∗

ℓ
− 𝑥

ℓ
(𝑠 | 𝑢, 𝑇) ,

𝑔

5+ℓ
(𝑥 (𝑠 | 𝑢, 𝑇)) := 𝑥

ℓ
(𝑠 | 𝑢, 𝑇) − 𝑥

∗ℓ
, ℓ = 1, 2, . . . , 5.

(14)

The continuous state constraint (13) becomes

𝐺 (𝑢, 𝑇) = 0, (15)

where 𝐺(𝑢, 𝑇) := ∑

10

𝑙=1
∫

1

0
min{0, 𝑔

𝑙
(𝑥(𝑠 | 𝑢, 𝑇))}𝑑𝑠. However,

the equality constraint (15) is nondifferentiable at the points
when 𝑔

𝑙
= 0. We replace (15) with the following inequality

constraint:

̃

𝐺

𝜖,𝜏
(𝑢, 𝑇) := 𝜏 +

10

∑

𝑙=1

∫

1

0

𝜋

𝜖
(𝑔

𝑙
(𝑥 (𝑠 | 𝑢, 𝑇))) 𝑑𝑠 ≥ 0, (16)

where 𝜖 > 0, 𝜏 > 0, and

𝜋

𝜖
(𝜂) =

{

{

{

{

{

{

{

{

{

𝜂, if 𝜂 < −𝜖,

−

(𝜂 − 𝜖)

2

4𝜖

, if − 𝜖 ≤ 𝜂 ≤ 𝜖,

0, if 𝜂 > 𝜖.

(17)

Thus, (EOCP) is approximated by a sequence of standard
mathematical programming problems {(EOCP

𝜖,𝜏
)} defined

by replacing constraint (15) with (16). Moreover, each of
{(EOCP

𝜖,𝜏
)} can be solved by a gradient-based optimization

method (e.g., sequential quadratic programming (SQP) [23]).
However, this optimization method requires the gradients of
the cost functional and constraints. Now, we will derive these
required gradients using the so-called costate method, which
is a commonly used technique in the optimal control domain
[22, 24, 25].

Define

𝜓 (𝑠) :=

{

{

{

{

{

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑠

, 𝑠 ≤ 0,

𝑇𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) , 𝑠 ∈ [0, 1] ,

𝜒

𝐼
(𝑠) := {

1, 𝑠 ∈ 𝐼,

0, otherwise.

(18)

The gradients of the cost functional 𝐽(⋅, ⋅) defined in (12) with
respect to the control variables are given in the following
theorem.

Theorem 1. Let (𝑢, 𝑇) ∈ U ×T. Then
𝜕𝐽 (𝑢, 𝑇)

𝜕𝑢

= 𝜆

⊤
(0)

𝜕𝑥 (0)

𝜕𝑢

+ ∫

0

−ℎ𝑇
−1

𝑇𝜆

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑢

𝑑𝑠,

(19)

𝜕𝐽 (𝑢, 𝑇)

𝜕𝑇

= 𝑥

3
(1) 𝑇

−2
+ ∫

1

0

𝜆

⊤
(𝑠) 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) 𝑑𝑠

+ ∫

1

0

ℎ𝑇

−1
𝜆

⊤
(𝑠)

×

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜓 (𝑠 − ℎ𝑇

−1
) 𝑑𝑠

+ ∫

0

−ℎ𝑇
−1

𝑇𝜆

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑇

𝑑𝑠,

(20)
where 𝜆(⋅) is the solution of the following costate system:
̇

𝜆 (𝑠)

= −𝑇(

𝜕𝑓(𝑥(𝑠), 𝑥(𝑠 − ℎ𝑇

−1
))

𝜕𝑥(𝑠)

)

⊤

𝜆 (𝑠)

− 𝑇𝜒

[0,1−ℎ𝑇
−1

]
(𝑠) (

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

)

⊤

𝜆 (𝑠 + ℎ𝑇

−1
) ,

𝑠 ∈ [0, 1] ,

(21)
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with the initial conditions

𝜆 (1) = (0, 0, −𝑇

−1
, 0, 0)

⊤

,

𝜆 (𝑠) = (0, 0, 0, 0, 0)

⊤
, 𝑠 > 1.

(22)

Proof. The derivations of the gradients of the cost functional
𝐽(𝑢, 𝑇) with respect to 𝑢 and 𝑇 are similar. Thus, only the
derivation of the gradient of the cost functional 𝐽(𝑢, 𝑇) with
respect to 𝑢 is given below.

Let 𝑤 : [0,∞] → 𝑅

5 be an arbitrary function that is
continuous and differentiable almost everywhere. Then, we
may express the cost functional 𝐽 as follows:

𝐽 (𝑢, 𝑇)

= −𝑇

−1
𝑥

3
(1)

+ ∫

1

0

𝑤

⊤
(𝑠) (𝑇𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) −

̇

𝑥̃ (𝑠)) 𝑑𝑠

= −𝑇

−1
𝑥

3
(1) + ∫

1

0

𝑇𝑤

⊤
(𝑠) 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) 𝑑𝑠

− ∫

1

0

𝑤

⊤
(𝑠)

̇

𝑥̃ (𝑠) 𝑑𝑠.

(23)

Applying integration by parts to the last integral term gives

𝐽 (𝑢, 𝑇)

= −𝑇

−1
𝑥

3
(1)

+ ∫

1

0

(𝑇𝑤

⊤
(𝑠) 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) + 𝑤̇

⊤
(𝑠) 𝑥 (𝑠)) 𝑑𝑠

− 𝑤

⊤
(1) 𝑥 (1) + 𝑤

⊤
(0) 𝑥 (0) .

(24)

Differentiating (24) with respect to 𝑢 yields

𝜕𝐽 (𝑢, 𝑇)

𝜕𝑢

= −𝑇

−1 𝜕𝑥3
(1)

𝜕𝑢

− 𝑤

⊤
(1)

𝜕𝑥 (1)

𝜕𝑢

+ 𝑤

⊤
(0)

𝜕𝑥 (0)

𝜕𝑢

+ ∫

1

0

(𝑇𝑤

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠)

+ 𝑤̇

⊤
(𝑠))

𝜕𝑥 (𝑠)

𝜕𝑢

𝑑𝑠

+ ∫

1

0

𝑇𝑤

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜕𝑢

𝑑𝑠.

(25)

Performing a change of variable in the last term on the right-
hand side of (25) gives

∫

1

0

𝑇𝑤

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜕𝑢

𝑑𝑠

= ∫

1

0

𝑇𝜒

[0,1−ℎ𝑇
−1

]
(𝑠) 𝑤

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝑥 (𝑠)

𝜕𝑢

𝑑𝑠

+ ∫

0

−ℎ𝑇
−1

𝑇𝑤

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑢

𝑑𝑠.

(26)

Substituting (26) into (25) yields

𝜕𝐽 (𝑢, 𝑇)

𝜕𝑢

= −𝑇

−1 𝜕𝑥3
(1)

𝜕𝑢

− 𝑤

⊤
(1)

𝜕𝑥 (1)

𝜕𝑢

+ 𝑤

⊤
(0)

𝜕𝑥 (0)

𝜕𝑢

+ ∫

1

0

(𝑤̇

⊤
(𝑠) + 𝑇𝑤

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠)

+ 𝑇𝜒

[0,1−ℎ𝑇
−1

]
(𝑠) 𝑤

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

)

𝜕𝑥 (𝑠)

𝜕𝑢

𝑑𝑠

+ ∫

0

−ℎ𝑇
−1

𝑇𝑤

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑢

𝑑𝑠.

(27)

Choosing𝑤(⋅) = 𝜆(⋅) and substituting (21)-(22) into the above
equation, we obtain the conclusion (19).The gradient formula
(20) can be derived similarly. The proof is complete.

The gradients of the constraint ̃

𝐺

𝜖,𝜏
(⋅, ⋅) defined in (16)

with respect to the control variables are given in the next
theorem.

Theorem 2. Let (𝑢, 𝑇) ∈ U ×T. Then

𝜕

̃

𝐺

𝜖,𝜏
(𝑢, 𝑇)

𝜕𝑢

=

̃

𝜆

⊤
(0)

𝜕𝑥 (0)

𝜕𝑢

+ ∫

0

−ℎ𝑇
−1

𝑇

̃

𝜆

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑢

𝑑𝑠,

(28)
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𝜕

̃

𝐺

𝜖,𝜏
(𝑢, 𝑇)

𝜕𝑇

= ∫

1

0

̃

𝜆

⊤
(𝑠) 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) 𝑑𝑠

+ ∫

1

0

ℎ𝑇

−1
̃

𝜆

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

× 𝜓 (𝑠 − ℎ𝑇

−1
) 𝑑𝑠

+ ∫

0

−ℎ𝑇
−1

𝑇

̃

𝜆

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑇

𝑑𝑠,

(29)

where ̃𝜆(⋅) is the solution of the following costate system:

̇

̃

𝜆 (𝑠) = −

10

∑

𝑙=1

𝜕𝜋

𝜖
(𝑔

𝑙
(𝑥 (𝑠)))

𝜕𝑥 (𝑠)

− 𝑇(

𝜕𝑓(𝑥(𝑠), 𝑥(𝑠 − ℎ𝑇

−1
))

𝜕𝑥(𝑠)

)

⊤

̃

𝜆 (𝑠)

− 𝑇𝜒

[0,1−ℎ𝑇
−1

]
(𝑠) (

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

)

⊤

×

̃

𝜆 (𝑠 + ℎ𝑇

−1
) ,

𝑠 ∈ [0, 1] ,

(30)

with the initial condition

̃

𝜆 (𝑠) = (0, 0, 0, 0, 0)

⊤
, 𝑠 ≥ 1.

(31)

Proof. The derivations of the gradients of the constraint
̃

𝐺

𝜖,𝜏
(𝑢, 𝑇) with respect to 𝑢 and 𝑇 are similar. Thus, only the

derivation of the gradient of the constraint ̃

𝐺

𝜖,𝜏
(𝑢, 𝑇) with

respect to 𝑢 is given below.
Let 𝑤 : [0,∞] → 𝑅

5 be an arbitrary function that is
continuous and differentiable almost everywhere. Then, we
may express the constraint ̃𝐺

𝜖,𝜏
as follows:

̃

𝐺

𝜖,𝜏
(𝑢, 𝑇) = 𝜏 +

10

∑

𝑙=1

∫

1

0

𝜋

𝜖
(𝑔

𝑙
(𝑥 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝑇𝑤

⊤
(𝑠) 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
)) 𝑑𝑠

− ∫

1

0

𝑤

⊤
(𝑠)

̇

𝑥̃ (𝑠) 𝑑𝑠.

(32)

Applying integration by parts to the last integral term gives

̃

𝐺

𝜖,𝜏
(𝑢, 𝑇) = 𝜏 − 𝑤

⊤
(1) 𝑥 (1) + 𝑤

⊤
(0) 𝑥 (0)

+

10

∑

𝑙=1

∫

1

0

𝜋

𝜖
(𝑔

𝑙
(𝑥 (𝑠))) 𝑑𝑠

+ ∫

1

0

(𝑇𝑤

⊤
(𝑠) 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

+𝑤̇

⊤
(𝑠) 𝑥 (𝑠) ) 𝑑𝑠.

(33)

Differentiating (33) with respect to 𝑢 yields

𝜕

̃

𝐺

𝜖,𝜏
(𝑢, 𝑇)

𝜕𝑢

= −𝑤

⊤
(1)

𝜕𝑥 (1)

𝜕𝑢

+ 𝑤

⊤
(0)

𝜕𝑥 (0)

𝜕𝑢

+ ∫

1

0

(

10

∑

𝑙=1

𝜕𝜋

𝜖
(𝑔

𝑙
(𝑥 (𝑠)))

𝜕𝑥 (𝑠)

+ 𝑇𝑤

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠)

+𝑤̇

⊤
(𝑠) )

𝜕𝑥 (𝑠)

𝜕𝑢

𝑑𝑠

+ ∫

1

0

𝑇𝑤

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜕𝑢

𝑑𝑠.

(34)

Performing a change of variable in the last term on the right-
hand side of (34) gives

∫

1

0

𝑇𝑤

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜕𝑥 (𝑠 − ℎ𝑇

−1
)

𝜕𝑢

𝑑𝑠

= ∫

1

0

𝑇𝜒

[0,1−ℎ𝑇
−1

]
(𝑠) 𝑤

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝑥 (𝑠)

𝜕𝑢

𝑑𝑠

+ ∫

0

−ℎ𝑇
−1

𝑇𝑤

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑢

𝑑𝑠.

(35)
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Substituting (35) into (34) yields

𝜕

̃

𝐺

𝜖,𝜏
(𝑢, 𝑇)

𝜕𝑢

= −𝑤

⊤
(1)

𝜕𝑥 (1)

𝜕𝑢

+ 𝑤

⊤
(0)

𝜕𝑥 (0)

𝜕𝑢

+ ∫

1

0

(

10

∑

𝑙=1

𝜕𝜋

𝜖
(𝑔

𝑙
(𝑥 (𝑠)))

𝜕𝑥 (𝑠)

+ 𝑤̇

⊤
(𝑠) + 𝑇𝑤

⊤
(𝑠)

𝜕𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − ℎ𝑇

−1
))

𝜕𝑥 (𝑠)

+ 𝑇𝜒

[0,1−ℎ𝑇
−1

]
(𝑠) 𝑤

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

)

𝜕𝑥 (𝑠)

𝜕𝑢

𝑑𝑠

+ ∫

0

−ℎ𝑇
−1

𝑇𝑤

⊤
(𝑠 + ℎ𝑇

−1
)

×

𝜕𝑓 (𝑥 (𝑠 + ℎ𝑇

−1
) , 𝑥 (𝑠))

𝜕𝑥 (𝑠)

𝜕𝜙 (𝑇𝑠, 𝜁)

𝜕𝑢

𝑑𝑠.

(36)

Choosing 𝑤(⋅) =

̃

𝜆(⋅) and substituting (30) and (31) into the
above equation, we obtain the conclusion (28). The gradient
formula (29) can be derived similarly. Thus, the proof is
complete.

On the basis of Theorems 1 and 2, we can develop the
following algorithm to solve the (OCP).

Algorithm 1.

Step 1. Choose initial values of 𝑢, 𝑇, 𝜖, and 𝜏.

Step 2. Solve (EOCP
𝜖,𝜏
) using SQP [23] to give (𝑢∗

𝜖,𝜏
, 𝑇

∗

𝜖,𝜏
).

Step 3. Check feasibility of 𝑔
𝑙
(𝑥(𝑠 | 𝑢

∗

𝜖
, 𝑇

∗

𝜖
)) ≥ 0, for 𝑙 =

1, 2, . . . , 10.

Step 4. If (𝑢∗
𝜖,𝜏
, 𝑇

∗

𝜖,𝜏
) is feasible, then go to Step 5. Otherwise,

set 𝜏 := 𝛼𝜏, where 𝛼 is a given positive constant. If 𝜏 < 𝜏,
where 𝜏 is a prespecified positive constant, then go to Step 6.
Otherwise, go to Step 2.

Step 5. Set 𝜖 := 𝛽𝜖, where 𝛽 is a given positive constant. If
𝜖 > 𝜖, then go to Step 2. Otherwise, go to Step 6.

Step 6. Output (𝑢∗
𝜖,𝜏
, 𝑇

∗

𝜖,𝜏
) and stop.

At the conclusion of Steps 1–6, (𝑢∗
𝜖,𝜏
, 𝑇

∗

𝜖,𝜏
) is an approxi-

mate optimal solution of the (OCP).

5. Numerical Results

Algorithm 1 was applied to seek the optimal control variables
in (OCP) and all computations were implemented in Fortran

0 1 2 3 4 5 6 7 8

10

20

30

40

50

60

70

80

Time (h)

Yi
el

d 
of

1
,3

-P
D

 (m
m

ol
 h−

1
)

Figure 1: The yield change of 1,3-PD with respect to fermentation
time.

Table 1: The kinetic parameters and critical concentrations in the
system (1) [13].

𝜇

𝑚
𝑘

1
𝑚

2
𝑚

3
𝑚

4
𝑚

5
𝑌

2
𝑌

3
𝑌

4
𝑌

5

0.994 0.368 3.24 −3.679 −0.491 7.309 117.647 76 35.54 14.78
𝑥

∗1
𝑥

∗2
𝑥

∗3
𝑥

∗4
𝑥

∗5
𝑥

∗

1
𝑥

∗

2
𝑥

∗

3
𝑥

∗

4
𝑥

∗

5

0.01 0 0 0 0 6 2039 939.5 1026 360.9

6.5. We obtained that 𝑢∗ = (0.201867, 418.376)

⊤ and 𝑇

∗
=

7.2578 h. Here, nonlinear time-delay system (1) was solved
using the six-order Runge-Kutta method with Lagrange
interpolation [26]. The time-delay ℎ = 0.26 h, the initial
state 𝜁 = (0.102, 418.26087, 0, 0, 0)

⊤, the initial function
𝜙(𝑡) = 𝜁, the terminal time 𝑇 = 6.92 h, and the kinetic
parameters and critical concentrations are listed in Table 1. In
the optimization process, we assume that 𝑢

1
∈ [0.02, 0.202],

𝑢

2
∈ [400, 500], and𝑇 ∈ [5.0, 8.0]. In addition, the smoothing

and feasible parameters were initially selected as 𝜖 = 0.1 and
𝜏 = 0.01. The parameters 𝛼 and 𝛽 were chosen as 0.1 and 0.01
until the solution obtained was feasible for the (OCP). The
process terminated when 𝜖 = 1.0 × 10

−8 and 𝜏 = 1.0 × 10

−7.
Under the obtained optimal control strategy, we obtained

the optimal yield of 1,3-PD at the optimal terminal time is
78.1586mmol h−1, which is increased by 90.04% compared
with experiment data [13]. Furthermore, we plotted the opti-
mal yield change of 1,3-PD with respect to the fermentation
time in Figure 1. From Figure 1, we can see that the yield of
1,3-PD at the terminal time is actually increased.

6. Conclusion

In this paper, the optimal control problem in batch process
was investigated. We presented the optimal control problem
involving a nonlinear time-delay system and with free termi-
nal time. We then transcribe the free time optimal control
problem into a new one with fixed terminal time and variable
time-delay. We developed a computational method based
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on the gradients of the cost and constraint functionals with
respect to the control variables. Numerical results showed the
effectiveness of the developed computational method.
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