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Back propagation (BP) neural network is used to approximate the dynamic character of nonlinear discrete-time system.Considering
the unmodeling dynamics of the system, the weights of neural network are updated by using a dead-zone algorithm and a robust
adaptive controller based on the BP neural network is proposed. For the situation that jumping change parameters exist, multiple
neural networks with multiple weights are built to cover the uncertainty of parameters, and multiple controllers based on these
models are set up. At every sample time, a performance index function based on the identification error will be used to choose
the optimal model and the corresponding controller. Different kinds of combinations of fixed model and adaptive model will be
used for robust multiple models adaptive control (MMAC). The proof of stability and convergence of MMAC are given, and the
significant efficacy of the proposed methods is tested by simulation.

1. Introduction

Due to the strong ability of approximation, neural network
has been widely used in the identification of nonlinear
system. It is also a very useful tool for prediction, pattern
recognition, and control [1].Thenetwork structure comprises
the interconnected group of nodes and the weight. There are
many kinds of neural networks such as back propagation
(BP), radial basis function (RBF), cerebellar model artic-
ulation controller (CMAC). As the most effective learning
algorithm for feedforward networks [2], BP neural network
has been the research focus for many years [3–6].

Adaptive control of nonlinear systems using neural net-
work has been an active research area for over two decades
[7–9].The controller will be set up by adjusting the weights of
the neural network [10, 11]. But adaptive control using neural
network still has the same shortcomings as conventional
adaptive control; it is extensively studied in time-invariant
system with unknown parameters or time-variant system
with slow drifting parameters [12, 13]. While the system has
abrupt changes in parameters, the algorithm cannot find the
exact identification model and will respond slowly to system
parameter variations. To solve this kind of problem, MMAC
has been a very useful tool in recent years.

Since MMAC was presented in 1970s, it has attracted
a lot of attention of experts [14–17]. MMAC is an effective
approach to solve problems such as time variations and
uncertainties. It has the ability to improve the transient
responses and the control performance. According to the
dynamic character of controlled plant, multiple models are
set up to cover the uncertainty of parameter. Much research
has been done on continuous-time and discrete-time linear
systems [18, 19]. For nonlinear system, only a few results
have been given. In recent years, the MMAC based on
neural network has been considered by some researchers
[20, 21]. But in these papers, the nonlinear system has been
modeled by the combination of linear model (the main
part) and neural network model (the unmodeled dynamics).
The multiple models are still multiple linear models with
different parameters, and neural network is used only to
compensate for the modeling error of linear model. In this
case, the nonlinear system should not be very complex, and
too big modeling error between the system and linear model
is forbidden. The parameter and structure uncertainty of a
relatively complex nonlinear system cannot be modeled by
this method. This kind of MMAC with neural network still
follows the main ideas of linear MMAC.
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In this paper, a kind of robust MMAC is proposed for
nonlinear system.Multiple BP neural networks with different
weights will be used to cover the uncertainty of the param-
eters of the system. A performance index function based
on the identification errors will be used to choose the best
model and the corresponding controller. Considering the
unmodeling error of neural network, a dead-zone recursive
algorithm will be used, and the proof of robust property and
stability of the MMAC are given. Different combinations of
adaptive models and fixed models will be used for MMAC,
and the effectiveness of the proposed method has been tested
in simulations.

2. Robust Adaptive Control Using
Neural Network

The single-input/single-output nonlinear discrete-time sys-
tem can be represented as follows:

𝑦 (𝑘 + 1) = 𝑓
0
(⋅) + 𝑔

0
(⋅) 𝑢 (𝑘 − 𝑑 + 1) , (1)

where 𝑓
0
and 𝑔

0
are infinitely differentiable functions of

𝑦 (𝑘 − 𝑛 + 1) , . . . , 𝑦 (𝑘) , 𝑢 (𝑘 − 𝑑 − 𝑚 + 1) , . . . , 𝑢 (𝑘 − 𝑑) ,

(2)

where 𝑦 is the output, 𝑢 is the input, 𝑚 ≤ 𝑛, 𝑑 is the relative
degree of the system, and 𝑔

0
is bounded away from zero. The

arguments of 𝑓
0
and 𝑔

0
are real variables.

Due to the existence of noncausal problem, normally state
transformation should be made first [11], and a causal system
as follows can be given:

𝑦 (𝑘 + 𝑑) = 𝑓
𝑑−1 [x (𝑘)] + 𝑔𝑑−1 [x (𝑘)] 𝑢 (𝑘) . (3)

Assumptions 1 and 2 in [11] about 𝑔
0
(x), . . . , 𝑔

𝑑−1
(x) and

minimum phase assumption should still be satisfied.
As Assumption 3 in [11], there exist the weights w, k of

neural network; the functions 𝑓
𝑑−1
[x(𝑘),w] and 𝑔

𝑑−1
[x(𝑘), k]

can approximate the functions 𝑓
𝑑−1

and 𝑔
𝑑−1

with any
accuracy 𝜖.

Plant (3) can be modeled by the neural network.
Consider

𝑦 (𝑘 + 𝑑) = 𝑓𝑑−1 [x (𝑘) ,w] + 𝑔𝑑−1 [x (𝑘) , k] 𝑢 (𝑘) . (4)

The functions 𝑓
𝑑−1
[⋅, ⋅] and 𝑔

𝑑−1
[⋅, ⋅] depend on the structure

of the neural network and the number of neurons. For
example, if 𝑓

𝑑−1
[⋅, ⋅] and 𝑔

𝑑−1
[⋅, ⋅] are three-layer neural

networks with 𝑝 and 𝑞 hidden neurons, respectively, then
they can be expressed as

𝑓
𝑑−1 [x (𝑘) ,w] =

𝑝

∑

𝑖=1

𝑤
𝑖
𝐻(

𝑚+𝑛+𝑑−1

∑

𝑗=1

𝑤
𝑖𝑗
𝑥
𝑗 (𝑘) + 𝑤𝑖) ,

𝑔
𝑑−1 [x (𝑘) , k] =

𝑞

∑

𝑖=1

V
𝑖
𝐻(

𝑚+𝑛+𝑑−1

∑

𝑗=1

V
𝑖𝑗
𝑥
𝑗 (𝑘) + V̂

𝑖
) ,

(5)

where𝐻 is a hyperbolic tangent function.

Let w(𝑘) and k(𝑘) denote the estimates of w and k at time
𝑘. Rewrite (3) and (4) as follows:

𝑦 (𝑘 + 1) = 𝑓𝑑−1 [x (𝑘 − 𝑑 + 1)]

+ 𝑔
𝑑−1 [x (𝑘 − 𝑑 + 1)] 𝑢 (𝑘 − 𝑑 + 1) ,

𝑦 (𝑘 + 1) = 𝑓
𝑑−1 [x (𝑘 − 𝑑 + 1) ,w]

+ 𝑔
𝑑−1 [x (𝑘 − 𝑑 + 1) , k] 𝑢 (𝑘 − 𝑑 + 1) .

(6)

We have the estimated plant output as:

𝑦
∗
(𝑘 + 1) = 𝑓

𝑑−1 [x (𝑘 − 𝑑 + 1) ,w (𝑘)]

+ 𝑔
𝑑−1 [x (𝑘 − 𝑑 + 1) , k (𝑘)] 𝑢 (𝑘 − 𝑑 + 1) .

(7)

Define 𝑒∗(𝑘 + 1) as

𝑒
∗
(𝑘 + 1) = 𝑦

∗
(𝑘 + 1) − 𝑦 (𝑘 + 1) . (8)

If the neural network could approximate the nonlinear
system with zero error; that is, 𝜖 = 0, the following weight
Θ = [

w
k ] updating rule can be used:

Θ (𝑘 + 1) = Θ (𝑘) −
1

𝑟 (𝑘)
𝑒
∗
(𝑘 + 1) J (𝑘 − 𝑑 + 1) , (9)

where

J (𝑘 − 𝑑 + 1)

= [
𝜕𝑦(𝑘 + 1)

∗

𝜕Θ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Θ(𝑘)
]

󸀠

=

[
[
[
[
[

[

(
𝜕𝑓
𝑑−1 [x(𝑘 − 𝑑 + 1),w]

𝜕w

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨w(𝑘)
)

󸀠

(
𝜕𝑔
𝑑−1 [x(𝑘 − 𝑑 + 1), k]

𝜕k

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k(𝑘)
)

󸀠

𝑢 (𝑘 − 𝑑 + 1)

]
]
]
]
]

]

(10)

and 𝑟(𝑘) is the reference command. One has

𝑟 (𝑘) = 1 + J󸀠 (𝑘 − 𝑑 + 1) J (𝑘 − 𝑑 + 1) . (11)

Due to the existence of unmodeling dynamics 𝜖 > 0, the
design of robust adaptive controller should be considered. A
dead-zone algorithm will be used instead of (9) for updating
the weights. Therefor,

𝐷 (𝑒) =

{{

{{

{

0, if |𝑒| ≤ 𝑑0,
e − 𝑑
0
, if 𝑒 > 𝑑

0
,

𝑒 + 𝑑
0
, if 𝑒 < −𝑑

0
,

(12)

where 𝑑
0
will be the function of 𝜖 which can be seen in proof

procedure of the Theorem 1.
The output of the dead-zone function is used in the

following updating rule:

Θ (𝑘 + 1) = Θ (𝑘) −
1

𝑟 (𝑘)
𝐷 (𝑒
∗
(𝑘 + 1)) J (𝑘 − 𝑑 + 1) . (13)
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Define the parameter error as

Θ̃ (𝑘) = Θ (𝑘) −Θ (14)

and give the control 𝑢(𝑘) as follows:

𝑢 (𝑘) =
−𝑓
𝑑−1 [x (𝑘) ,w (𝑘)] + 𝑟 (𝑘)
𝑔
𝑑−1 [x (𝑘) , k (𝑘)]

. (15)

We haveTheorem 1 for the feedback control system.

Theorem 1 (see [11]). Suppose |𝑟(𝑘)| ≤ 𝑑
1
for all 𝑘 ≥ 0. Given

any constant 𝜌 > 0 and any small constant 𝑑
0
> 0, there

exist positive constants 𝜌
1
= 𝜌
1
(𝜌, 𝑑
1
), 𝜌
2
= 𝜌
2
(𝜌, 𝑑
1
), 𝜖∗ =

𝜖
∗
(𝜌, 𝑑
0
, 𝑑
1
), and 𝛿∗ = 𝛿∗(𝜌, 𝑑

0
, 𝑑
1
) such that if Assumptions

1 and 3 are satisfied on 𝑆 ⊃ 𝐵
𝜌1
, with 𝜖 < 𝜖∗, Assumption 2 is

satisfied on 𝐵
𝜌2
, |x(0)| ≤ 𝜌, and |Θ̃(0)| ≤ 𝛿 < 𝛿∗, then

(1) the x(𝑘) and 𝑢(𝑘) are bounded for all 𝑘,
(2) |Θ̃(𝑘)| will be monotonically nonincreasing, andΘ(𝑘 +
1) −Θ(𝑘) will converge to zero,

(3) ∑∞
𝑘=1
([𝐷(𝑒
∗
(𝑘+1))]

2
/(1+J󸀠(𝑘−𝑑+1)J(𝑘−𝑑+1))) ≤ 0,

(4) the tracking error between the plant output and the
reference command will converge to a ball of radius 𝑑

0

centered at the origin.

3. Robust Multiple Model Adaptive Control

The conventional adaptive control systems are usually based
on a fixed or slowly adaptive model. It cannot react quickly to
abrupt changes and will result in large transient errors before
convergence. For this kind of problem, MMAC algorithm is
presented as a useful tool. The rationale for using MMAC is
to ensure that there is at least one model with parameters
sufficiently close to those of the unknown plant. By the
switching rule, the control strategy is to determine the best
model for the current environment at every instant and
activate the corresponding controller. The structure of the
multiple model adaptive control is shown in Figure 1.

3.1. Architecture of the Control System. Multiple adaptive
models can be regarded as an extension of conventional
indirect adaptive control.The objective is to make the control
error 𝑒𝑐 = 𝑟−𝑦 tend to zero, where 𝑟 is the desired output.The
control system contains𝑁 identification models, denoted by
𝐼
(𝑙), 𝑙 ∈ {1, 2, . . . , 𝑁} according to (7), operating in parallel.
Consider the following:

𝐼
(𝑙)
: 𝑦
∗(𝑙)
(𝑘 + 1) = 𝑓

(𝑙)

𝑑−1
[x (𝑘 − 𝑑 + 1) ,w(𝑙) (𝑘)]

+ 𝑔
(𝑙)

𝑑−1
[x (𝑘 − 𝑑 + 1) , k(𝑙) (𝑘)]

× 𝑢
(𝑙)
(𝑘 − 𝑑 + 1) ,

(16)

where

𝑓
(𝑙)

𝑑−1
[x (𝑘) ,w(𝑙) (𝑘)]

=

𝑝

∑

𝑖=1

𝑤
(𝑙)

𝑖
(𝑘)𝐻(

𝑚+𝑛+𝑑−1

∑

𝑗=1

𝑤
(𝑙)

𝑖𝑗
(𝑘) 𝑥
𝑗
− 𝑤
(𝑙)

𝑖
(𝑘)) ,

Model I(N)

Model I(2)

Model I(1)
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Figure 1: Structure of multiple model adaptive control.

𝑔
(𝑙)

𝑑−1
[x (𝑘) , k(𝑙) (𝑘)]

=

𝑞

∑

𝑖=1

V(𝑙)
𝑖
(𝑘)𝐻(

𝑚+𝑛+𝑑−1

∑

𝑗=1

V(𝑙)
𝑖𝑗
(𝑘) 𝑥
𝑗
− V̂(𝑙)
𝑖
(𝑘)) .

(17)

The identification error between the output 𝑦∗(𝑙) of 𝐼(𝑙) and 𝑦
of the plant is denoted as 𝑒∗(𝑙) = 𝑦∗(𝑙) − 𝑦. Corresponding to
each 𝐼(𝑙) is a parameterized controller 𝐶(𝑙) which achieves the
control objective for 𝐼(𝑙). The output of 𝐶(𝑙) is denoted by 𝑢(𝑙).

One has

𝑢
(𝑙)
(𝑘) =

−𝑓
(𝑙)

𝑑−1
[x (𝑘) ,w(𝑙) (𝑘)] + 𝑟 (𝑘)

𝑔
(𝑙)

𝑑−1
[x (𝑘) , k(𝑙) (𝑘)]

, (18)

where 𝑙 ∈ {1, 2, . . . , 𝑁}, and 𝑟(𝑘) is the reference command.
At every instant, one of the models 𝐼(𝑙) is selected by a

switching rule, and the corresponding control input is used
to control the plant.

Given prior knowledge of the different possible environ-
ments, the control problem is to determine suitable rules
for switching and tuning these parameters to yield the best
performance for the given objective while assuring stability.

3.2. Choice of Multiple Models. The following three different
combinations have been considered [22].

3.2.1. 𝑁 Adaptive Models. 𝑁 adaptive models with different
initial parameter values can be viewed as an extension of
conventional indirect adaptive control. When the parameters
of the plant change abruptly, the change can be detected by
identification error. Then, the parameters of models are reset
to initial values, and the model with the smallest error is
selected. Hence, we can construct multiple adaptive models
with different initial parameters which adjust dynamically in
any instant. The method was considered in detail in [8, 19].
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3.2.2. 𝑁−1 Fixed Models and One Adaptive Model. The
previous method reveals that massive calculation may be
produced because each adaptive model needs to adjust
dynamically. Hence, if the models are fixed, the same strat-
egy can be used in stationary and time-varying environ-
ments. However, fixed models can represent exactly only
a finite number of environments. Thus, 𝑁 − 1 parallel
fixed model and one adaptive model are combined, and
the efficiency can be improved by the multiple fixed mod-
els and the accuracy can be increased by the adaptive
model.

3.2.3. 𝑁−2 Fixed Models, One Free Running Adaptive Model,
and One Reinitialized Adaptive Model. It is commonly
accepted that the convergence time of an adaptive model
will be large for large initial parametric errors. Hence, in
the configuration described above, a large number of fixed
models may be needed to keep the transient response under
control until the adaptive model has converged. If the fixed
model, which is the closest to the given plant, is assumed to
be known, faster convergence can be obtained by initiating a
new adaptivemodel from the location of the former.The same
objective can be achieved on-line by starting adaptation from
the location of each different fixed model that is successively
chosen by the switching scheme.

The reinitialized adaptive model 𝐼𝑟 included is intro-
duced, and its parameters are determined as follows: if a fixed
model 𝐼(𝑙), 𝑙 ∈ {1, 2, . . . , 𝑁 − 2}, is activated by the switching
rule at any instant 𝑘, then the parameters of 𝐼𝑟 are reinitialized
to the value of 𝐼(𝑙). Thereafter, this adaptive model will be left
to adapt until the next reinitialization.

3.3. Choice of the Switching Rule. A natural way to decide
when and to which controller one should switch is to
determine performance cost indexes for each controller 𝐶(𝑙),
𝑙 ∈ {1, 2, . . . , 𝑁}, and switch to the one with the minimum
index at every instant. However, since only one control input
can be used at any instant, the performance of any candidate
controller can be evaluated only after it has been used. On
the other hand, the performance of all the identification
models can be evaluated in parallel at every instant. Hence,
the indexes must be based on the performance of the models
rather than the controllers, that is, using identification errors
𝑒
(𝑙) rather than the control error 𝑒𝑐. From an adaptive control
point of view, this rationale extends the principle of certainty
equivalence from tuning to switching.

Considering the unmodeling error of neural network
and robustness of the adaptive controller, the specific perfor-
mance index proposed has the form

𝐽
𝑚
(𝑘) =

∞

∑

𝑘=1

[𝐷 (𝑒
∗
(𝑘 + 1))]

2

1 + J󸀠 (𝑘 − 𝑑 + 1) J (𝑘 − 𝑑 + 1)
, (19)

where 𝑒∗(𝑘 + 1) = 𝑦∗(𝑘 + 1) − 𝑦(𝑘 + 1).
The switching scheme consists of monitoring the perfor-

mance indexes 𝐽
𝑚
(𝑘) at every instant. After every switching,

the controller corresponding to themodel with theminimum
index is chosen (switched) to control the plant.

Theorem 2. Suppose |𝑟(𝑘)| < 𝑑
1
for all 𝑘 ≥ 0. Given any

constant 𝜌 > 0, for all the model (adaptive model or fixed
model), if |𝑥(0)| ≤ 𝜌, |Θ̃(𝑙)(0)| ≤ 𝛿 < 𝛿

∗, 𝑙 = 1, 2, . . . , 𝑁,
and the conditions in Theorem 1 are satisfied, then when index
switching (19) is used,

(1) all the signals in the system are bounded,
(2) the tracking error between 𝑟(𝑘) and 𝑦(𝑘 + 𝑑)

lim
𝑘→∞

󵄨󵄨󵄨󵄨𝑟 (𝑘) − 𝑦 (𝑘 + 𝑑)
󵄨󵄨󵄨󵄨 < 𝑑0. (20)

3.4. Proof of the Multiple Models Stability

3.4.1. 𝑁 Adaptive Model. At time 𝑘, 𝑙th adaptive model will
be selected, 𝑙 ∈ {1, 2, . . . , 𝑁}.

The control input

𝑟 (𝑘) = 𝑓𝑑−1 [x (𝑘) ,w
(𝑙)
(𝑘)] + 𝑔𝑑−1 [x (𝑘) , k

(𝑙)
(𝑘)] 𝑢 (𝑘) .

(21)

FromTheorem 1, if |x(0)| ≤ 𝜌, |Θ̃(𝑙)(0)| < 𝛿 < 𝛿∗, with control
input (21), we can have that x(𝑘) and 𝑢(𝑘) are bounded, for all
𝑘, and

lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨
𝑒
∗(𝑙)
(𝑘)
󵄨󵄨󵄨󵄨󵄨
= lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨
𝑦
∗(𝑙)
(𝑘) − 𝑦 (𝑘)

󵄨󵄨󵄨󵄨󵄨
< 𝑑
0
,

lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨󵄨
Θ̃
(𝑙)

(𝑘)
󵄨󵄨󵄨󵄨󵄨󵄨
= lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨
Θ
(𝑙)
(𝑘 + 1) −Θ

(𝑙)
(𝑘)
󵄨󵄨󵄨󵄨󵄨
󳨀→ 0.

(22)

Then, the control error at time 𝑘 is given by

󵄨󵄨󵄨󵄨󵄨
𝑦
∗(𝑙)
(𝑘 + 𝑑) − 𝑟 (𝑘)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑑−1
[x (𝑘) ,w(𝑙) (𝑘 + 𝑑 − 1)]

− 𝑓
𝑑−1
[x (𝑘) ,w(𝑙) (𝑘)]󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
{𝑔
𝑑−1
[x (𝑘) , k(𝑙) (𝑘 + 𝑑 − 1)]

−𝑔
𝑑−1
[x (𝑘) , k(𝑙) (𝑘)]} 𝑢 (𝑘)󵄨󵄨󵄨󵄨󵄨

≤ 𝑘
󵄨󵄨󵄨󵄨󵄨
Θ
(𝑙)
(𝑘 − 𝑑 + 1) −Θ

(𝑙)
(𝑘)
󵄨󵄨󵄨󵄨󵄨

󳨀→ 0 as 𝑘 󳨀→ ∞,

(23)

󵄨󵄨󵄨󵄨𝑟 (𝑘) − 𝑦 (𝑘 + 𝑑)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝑟 (𝑘) − 𝑦

∗(𝑙)
(𝑘 + 𝑑)

+ 𝑦
∗(𝑙)
(𝑘 + 𝑑) − 𝑦 (𝑘 + 𝑑)

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑟 (𝑘) − 𝑦

∗(𝑙)
(𝑘 + 𝑑)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑦
∗(𝑙)
(𝑘 + 𝑑) − 𝑦 (𝑘 + 𝑑)

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑦
∗(𝑙)
(𝑘 + 𝑑) − 𝑦 (𝑘 + 𝑑)

󵄨󵄨󵄨󵄨󵄨

< 𝑑
0

as 𝑘 󳨀→ ∞.

(24)

Let one of𝑁 controller be chosen at random, for any instant
of time 𝑘 and any model chosen; then (24) holds.
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So we have all the signals in the system bounded, and

(1) lim
𝑘→∞

|𝑒
∗(𝑙)
(𝑘)| < 𝑑

0
,

(2) lim
𝑘→∞

|𝑟(𝑘) − 𝑦(𝑘 + 𝑑)| < 𝑑
0
.

3.4.2. 𝑁−1 Fixed Model and One Adaptive Model. Consider
the following index function:

𝐽
(𝑙)

𝑚
(𝑘) =

∞

∑

𝑘=1

[𝐷
(𝑙)
(𝑒
∗
(𝑘 + 1))]

2

1 + (J(𝑙) (𝑘 − 𝑑 + 1))󸀠J(𝑙) (𝑘 − 𝑑 + 1)
. (25)

At every instant 𝑘, model 𝐼(𝑙),

𝑙 = arg min
1≤𝑙≤𝑁

𝐽
(𝑙)

𝑚
(𝑘) , (26)

will be selected.

Proof. FromTheorem 1, we have that, for adaptive model,

lim
𝑘→∞

𝐽
(𝑎)

𝑚
(𝑘)

= lim
𝑘→∞

∞

∑

𝑘=1

[𝐷
(𝑎)
(𝑒
∗
(𝑘 + 1))]

2

1 + (J(𝑎) (𝑘 − 𝑑 + 1))󸀠J(𝑎) (𝑘 − 𝑑 + 1)

< ∞.

(27)

For the fixed models 𝑙, lim
𝑘→∞

𝐽
(𝑙)

𝑚
(𝑘) is either bounded or

∞, if the performance index 𝐽(𝑙)
𝑚
(𝑘) tends to∞; there exist a

time 𝑡, 𝐽(𝑎)
𝑚
(𝑘) < 𝐽

(𝑙)

𝑚
(𝑘), 𝑘 ≥ 𝑡, which implies that the adaptive

model will be selected finally.
If lim
𝑘→∞

𝐽
(𝑙)

m (𝑘) is bounded, then

lim
𝑘→∞

∞

∑

𝑘=1

[𝐷
(𝑙)
(𝑒
∗
(𝑘 + 1))]

2

1 + (J(𝑙) (𝑘 − 𝑑 + 1))󸀠J(𝑙) (𝑘 − 𝑑 + 1)
< ∞, (28)

lim
𝑘→∞

[𝐷
(𝑙)
(𝑒
∗
(𝑘 + 1))]

2

1 + (J(𝑙) (𝑘 − 𝑑 + 1))󸀠J(𝑙) (𝑘 − 𝑑 + 1)
󳨀→ 0. (29)

If the fixed model is selected, the relationship of 𝜌, 𝜖, 𝛿 in
Theorem 1 is satisfied; the proof procedure will be similar
to that of multiple adaptive controller. We also have the
following:

(1) all the signals in the system are bounded,

(2) lim
𝑘→∞

|𝑒
∗(𝑙)
(𝑘)| < 𝑑

0
,

(3) lim
𝑘→∞

|𝑟(𝑘) − 𝑦(𝑘 + 𝑑)| < 𝑑
0
.

3.4.3. 𝑁−2 Fixed Model, One Free Running Adaptive Model,
and One Reinitialized Adaptive Model. The introduction of
the reinitialized adaptive model will not affect the stability of
the whole system, and the proof of the stability will be similar
to the case of𝑁 − 1 fixed model and one adaptive model.

4. Simulation
4.1. The Problem. PH neutralization is a very important
procedure in the chemical industry. Usually, we use the log-
arithmic behavior to present pH characteristic; the existing
nonlinearity always makes the identification and control of
pH neutralization more difficult. A strong acid flows into
a tank and is thoroughly mixed with a strong base whose
inward rate of flow is controlled in such a way to produce
a neutral outward flow from the tank. Because the acid and
the base are strong, they are completely dissociated, and also
the dissociation of the water can be disregarded [23]. The
equation describing this model is

𝑉
𝑑𝑦

𝑑𝑘
= 𝐹 (𝑘) (𝑎 − 𝑦 (𝑘)) − 𝑢 (𝑘) (𝑏 + 𝑦 (𝑘)) , (30)

where 𝑦(𝑘) = [H+] − [pH−] is the distance from neutrality,
𝑉 = volume of the tank,
𝐹(𝑘) = rate of flow of the acid,
𝑎 = concentration of the acid,
𝑢(𝑘) = rate of flow of the base,
𝑏 = concentration of the base.

Note that pH value can be determined from the 𝑦(𝑘), pH(𝑘)
by the following nonlinear transformation:

pH (𝑘) = −log
10
(
𝑦(𝑘) + √(𝑦 (𝑘))

2
+ 4𝐾
𝑤

2
) , (31)

where𝐾
𝑤
= water equilibrium constant ≃ 1014.

We suppose that 𝑏 and 𝑎 are fixed and known, that 𝐹(𝑘)
can be measured online, and that 𝑢(𝑘) can be given assigned
values within certain limits.

An approximate discrete-time model can be developed,
incorporating measurement and input actuator errors, as
follows:

𝑦
𝑘+1
≃ 𝑦
𝑘
+
𝑇

𝑉
[𝐹 (𝑘) (𝑎 − 𝑦

𝑘
) − 𝑢
𝑘
(𝑏 + 𝑦

𝑘
)] . (32)

The following values were adopted for the various quantities
of interest:
0.1 ≤ 𝐹 (𝑘) ≤ 0.125 l/min, 0 ≤ 𝑢 (𝑘) ≤ 0.2 l/min,

𝑎 = 10
−3mol/l, 𝑉 = 2 l,

𝑏 = 10
−3mol/l, 𝑇 = 2min.

(33)

Then our goal is to control the plant as follows:

𝑦 (𝑘 + 1) = 𝑦 (𝑘) [1 − 0.5𝐹 (𝑘)] + 0.5 × 10
−3
𝐹 (𝑘)

− 0.5 [10
−3
+ 𝑦 (𝑘)] 𝑢 (𝑘) ,

(34)

where 𝐹(𝑥) is the variable parameter. And the single-input/
single-output nonlinear discrete-time system represented as
(1) can be modeled by

𝑦
∗
(𝑘 + 1) = 𝑓 [𝑦 (𝑘) ,w (𝑘)] + 𝑔 [𝑦 (𝑘) , k (𝑘)] 𝑢 (𝑘) , (35)

where 𝑓 and 𝑔 are the output of neural network.
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Figure 2: One adaptive mode with fixed parameter.

The neural networks𝑓 and 𝑔 are 3 layered with 4 neurons
in each hidden layer. Based on the error between the plant
output 𝑦(𝑘 + 1) and the model output 𝑦∗(𝑘 + 1), the network
parametersw(𝑘) and k(𝑘) are updated tow(𝑘+1) and k(𝑘+1)
using the standard back propagation algorithm.

4.2. Experiments
Adaptive Model Only. In the process of parameter identifica-
tion, let 𝐹(𝑘) = 0.1, 𝑑

0
= 0.001, 𝑦(1) = 0, 𝑦(2) = 0, the

reference command 𝑟(𝑘) = 0 (according to (31), pH(𝑘) = 7),
and 𝑘 = 1, 2, . . . , 300. The initial weights w and k are given
a random number in the range [−1, 1]. The identification
results are shown in Figure 2.

After 300 sample times, the weights will converge to the
following values:

w = [0.865, 0.799, −0.823, 1.478, 0.232, 0.484,

− 0.251, 0.794, 1.052, −0.742, 0.591, −0.019]
𝑇
,

k = [−0.483, −0.665, −0.288, −0.767, −0.519, −0.187,

0.506, −0.236, −0.268, 0.965, 1.201, 0.891]
𝑇
.

(36)

Now, we consider a worse case of the plant where abruptly
changing parameters appear:

𝐹 (𝑘) =

{{

{{

{

0.1, 1 ≤ 𝑘 < 100,

0.113, 100 ≤ 𝑘 < 200,

0.125, 200 ≤ 𝑘 < 300.

(37)

Given the initial weights as the convergent weights of w and
k in (36).

As the parameters change at 𝑘 = 100 and 𝑘 = 200, the
overshoot of the system is big and the settling time is long.The
nonlinear system cannot track the reference trajectory in time
(Figure 3). When MMAC is used, the following simulation
results can be obtained.

4.2.1. Three Adaptive Models. Three adaptive models 𝐼(𝑎1),
𝐼
(𝑎2), and 𝐼(𝑎3) are established. According to the three different
values of 𝐹(𝑘) obtained (𝑘 = 1, 100, 300), each group of
weights can be got using the samemethod as that in (36). One
has

w(𝑎1) = w, k(𝑎1) = w

w(𝑎2) = [−0.423, 0.482, −0.054, 1.023, 0.487, 0.248,

0.072, 0.825, 0.230, −0.214, −0.678, 0.032]
𝑇
,

k(𝑎2) = [−1.064, −0.103, 0.563, 0.578, −0.439, −0.487,

0.258, −0.557, −0.820, 0.385, 0.842, 0.831]
𝑇
,

w(𝑎3) = [−0.584, 0.341, 0.376, 0.733, 0.394, 0.476,

1.067, 1.089, −0.144, −0.577, 0.051, −0.058]
𝑇
,

k(𝑎3) = [0.811, 0.076, −0.532, 0.399, 0.412, −0.268,

0.897, −0.384, 0.933, −0.131, −0.313, −0.758]
𝑇
.

(38)

Themultiplemodels based on neural networks are chosen
as in (16). Figures 4(a) and 4(b) present the responses of
the plant. Switching sequence of controllers is shown in
Figure 4(c). Obviously, this method can track the reference
trajectory fast and improve the transient response. According
to the index function, the system can choose an approximate
model to identify the unknown plant. Once the parameters
change, the weights and the index functions of neural
networkmodels will be initialized and the system will choose
the optimal model again to conduct identification. In this
way, the overshoot of the system can be decreased and the
reference trajectory can be tracked fast at the same time.

4.2.2. Three Fixed Models and One Adaptive Model. In this
case, three fixed models 𝐼(𝑓1), 𝐼(𝑓2), and 𝐼(𝑓3) are used to
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Figure 3: One adaptive mode with variable parameter.
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Figure 5: Three fixed models and one adaptive model.

improve the transient response, and one adaptive model 𝐼(𝑎4)
is used to guarantee the stability. The initial weights of the
three fixed models are the same as those of the three adaptive
models, and the weights of one adaptive model 𝐼(𝑎4) are equal
to those of 𝐼(𝑓1).

In the process of parameter identification, this method
could improve the transient response comparedwith the con-
ventional adaptive control (Figures 5(a) and 5(b)). Switching
sequence of controllers is shown in Figure 5(c). Once the
parameter changes abruptly at 100 or 200, the controller will
switch to the nearest fixed model 𝐼(𝑓2), 𝐼(𝑓3) to reduce the
error. When the adaptive model gradually converges to the
true value, the system will switch to the adaptive model 𝐼(𝑎4).
Multiple fixed models play a transitional role in the process
of identification.This method can reducemassive calculation
compared with the case of three adaptive models, but it
produces a larger overshoot compared with Figures 4(a) and
4(b).

4.2.3. Three Fixed Models, One Free Running Adaptive Model,
and One Reinitialized Adaptive Model. In this case, we

establish three fixed models 𝐼(𝑓1), 𝐼(𝑓2), and 𝐼(𝑓3) with differ-
ent initial weights; 𝐼(𝑎4) is the free adaptive model and 𝐼(𝑟5)
is the reinitialized adaptive model. The reinitialized adaptive
model can achieve the initial weights by choosing a set of
fixed models based on the past performance of the plant. If
at any instant one of them is determined to be the best, the
reinitialized adaptive model can be adapted from this model.

From the simulation, we can see that this method
can improve the control quality dramatically (Figures 6(a)
and 4(b)). Switching sequence of controllers is shown in
Figure 6(c). Compared with the other algorithm proposed
before, this method show perfect performance in reducing
the overshoot and tracking the reference trajectory, and
computation time is reduced greatly.

5. Conclusion

In this paper, multiple models are used to establish robust
multiple models adaptive controller for a class of nonlinear
discrete-time systems by using neural networks. Three kinds
of combinations of adaptive model and fixed model are used
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Figure 6: Three fixed models, one free running adaptive model and one reinitialized adaptive model.

to make the multiple model set, and a switching law is
suitably defined to make the decision of the best model. The
principal contribution of this paper is the proof of stability
of robust MMAC by using neural networks. Multiple neural
network models with different weights represent different
dynamical characters of the plant when it operates in different
environments, which can be described by a mount of input
and output data. So the design of the model set can also be
regarded as a kind of data driven problem [24, 25]. How to
divide the region of data into suitable numbers of subregions
which can be represented by multiple neural network models
will decide the accuracy ofMMAC. Amoving or dynamically
optimal model set will be an important problem that needs to
be solved in the future.
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