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In our earlier work, we present a novel formal method for the semiautomatic verification of specifications and for describing web
service composition components by using abstract concepts. After verification, the instantiations of components were selected
to satisfy the complex service performance constraints. However, selecting an optimal instantiation, which comprises different
candidate services for each generic service, from a large number of instantiations is difficult. Therefore, we present a new
evolutionary approach on the basis of the discrete group search service (D-GSS) model. With regard to obtaining the optimal
multiconstraint instantiation of the complex component, the D-GSS model has competitive performance compared with other
service selection models in terms of accuracy, efficiency, and ability to solve high-dimensional service composition component
problems. We propose the cost function and the discrete group search optimizer (D-GSO) algorithm and study the convergence of
the D-GSS model through verification and test cases.

1. Introduction

Wehave proposed a novel approach for the verification of ser-
vice composition with contracts [1]. The approach properties
of the generic specification [2] in Tecton [3] are verified by
the Violet [4] system. After verification, a global optimum
is selected from a number of instantiations of web service
composition components with multiple QoS constraints.
Compared with other algorithms that evaluate all feasible
composition instantiations (e.g., integer programming [5]),
evolutionary algorithms (EAs) (e.g., genetic algorithm [6]),
which are nature-inspired optimization algorithms, are sim-
ple and flexible. Given their characteristics, EAs have been
used to solve the service selection problem. We proposed a
novel optimization model named discrete group search ser-
vice (D-GSS) thatmainly employs the group search optimizer
(GSO) algorithm [7]. The D-GSS model has competitive
performance compared with other EAs in terms of accuracy,
convergence speed, and ability to solve high-dimensional
multimodal problems. On the basis that GSO can solve
continuous optimization problems and that service selection
can solve discrete instantiations, we present an evolutionary
algorithm called discrete group search optimizer (D-GSO) to

select the best instantiation that has the lowest cost evaluated
by the cost function. The cost function consists of the utility
function and the weight for every QoS attribute. We also
verify and simulate results to analyze the convergence of the
D-GSS model.

The rest of the paper is organized as follows. Section 2
describes the D-GSS model. Section 3 presents a detailed
introduction of the cost function, and Section 4 discusses
the D-GSO algorithm and applies the algorithm for the
problem on searching for the global optimum from discrete
instantiations. Section 5 introduces the convergence anal-
ysis of the D-GSS model. Finally, Section 6 concludes the
paper.

2. Distribute Group Search Optimizer

In this paper, we present a novel algorithm named D-GSS
toward the atomic service selection of composing complex
services with multiple QoS constraints.The population of the
D-GSO algorithm is called a group searching for unknown
optima in the services composition problem and each indi-
vidual in the population is called a member.
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In the 𝑛-dimensional search space 𝐼 about composition
component, every dimension represents a class of generic
service denoted as 𝐼

𝑖
. The 𝑖th member 𝑋

𝑖
in the space 𝐼 is

denoted as follows:
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where 𝑥𝑗
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𝑗
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In D-GSO based on GSO [7] inspired by animal behavior
and animal searching behavior, a group consists of three types
of members: only one producer is assumed to have the lowest
cost at each searching bout, and the remaining members are
assumed to be scroungers and dispersed members. At each
iteration, a group member representing the most promising
instantiation and conferring the lowest fitness value is chosen
as the producer. It then stops and scans the environment to
seek optimal instantiation.The scanning field is characterized
by maximum pursuit angle 𝜃max and maximum pursuit
distance 𝑙max. The apex is the position of the producer. All
scroungers will join the resource found by the producer
according to area copying strategy. The rest of the group
members will be dispersed from their current positions for
randomly distributed better instantiations. To handle the
bounded search space, the following strategy is employed:
when a member is outside the search space, the member
will return into the search space by setting the variables that
violated the bounds into their previous values.

The details of D-GSO (see Figure 1) are introduced as
follows.

(i) Suppose that 𝑛 classes of generic services exist in the
𝑛-dimensional composition component; each class
has 𝑁

𝑖
(1 ≤ 𝑖 ≤ 𝑛) candidate services in a special

sequence.
(ii) Define the concrete cost function of the specific

composition component.The cost function is defined
by the QoS attributes of the component services
as well as their integration relationships, such as
sequential, parallel, conditional, or loop. Generate

initial members from all instantiations and evaluate
the members according to the cost function.

(iii) Choose a member with the lowest cost as producer.
The producer produces on the basis of the discrete
GSO algorithm.

(iv) Randomly select 80% of the remaining members to
perform scrounging.

(v) The remaining members will be dispersed from their
current instantiations to perform ranging.

(vi) Evaluate all members according to the cost function.
If no optimal instantiation with multiple QoS con-
straints is found, reallocate the role of every member
on the value of the cost.

3. Cost Function

A “generic service” is a collection of atomic web services
with a common functionality, but different nonfunctional
properties (e.g., time and quality). Each atomic service may
provide a series of QoS parameters, such as service time,
cost, reliability, and availability. Users can set the number
of QoS values to be considered and can set the weights
of the QoS values according to their requirements. In our
study, each user has 𝑘 QoS attribute constraints in their QoS
requirements: 𝑄

𝑐
= [𝑄

1
, . . . , 𝑄

𝑘
]. We focus on the QoS

service selection problem, in which multiple QoS constraints
must be satisfied. We present the cost function to help in the
selection of the best services.The following steps are involved
in the creation of the cost function.

(i) Each QoS attribute must be quantitative. Service
functionalities can be evaluated by several QoS prop-
erties. Some QoS attributes, for example, security and
reliability, are difficult to measure quantitatively. For
these criteria, we employ the linguistic expression set
𝐿1 = {VP,MP,P,M,G,MG,VG}, where VP is very
poor, MP is medium poor, P is poor, M is medium,
G is good, MG is medium good, and VG is very
good. When calculating the cost function, set 𝐿1 is
transformed into the corresponding quantitative set
𝑃1 = {0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1}.

(ii) Global QoS attributes (𝑞
𝑐
= [𝑞
1
, . . . , 𝑞

𝑘
]) are needed

to describe the performance of an instantiation of
service composition component. Every global QoS
attribute is aggregated by the QoS attributes of all
atomic services considering the integration relation-
ships of the globalQoS attribute. Each service has four
main basic structures: (1) the sequential structure,
which represents 𝑛 services that are invoked one by
one; (2) the loop structure, which represents one
service that is repeated 𝑝 times; (3) the conditional
structure, which represents only one branch that
is selected to be invoked from 𝑛 branches; (4) the
parallel structure, which represents 𝑛 branches that
are invoked simultaneously. The complete structure
of the service composition component consists of
the above four basis structures. Every global QoS
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Figure 1: Flowchart of the D-GSS model.

Table 1: Aggregated methods for global QoS attributes.
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attribute has its own aggregated method. We sort
the QoS aggregated methods into three types: (1)
the summation method (e.g., cost), in which the fees
must be accumulated by the user to pay for invoking
the services; (2) the continuedmultiplication method
(e.g., availability), in which global availability can be
computed as the product of the ratios of all atomic
service availability; (3) the average method (e.g.,
reputation), in which global reputation is the average
value of the related service reputation. We present all
particulars (see Table 1) of these three methods with
sequential, parallel, conditional, or loop structures. In
Table 1, 𝑐𝑖 is a 0-1 variable. If condition 𝑐𝑖 is satisfied,
then we define 𝑐𝑖 = 1; otherwise, 𝑐𝑖 = 0.

(iii) After the values of [𝑞1, . . . , 𝑞𝑘] and [𝑄
1
, . . . , 𝑄

𝑘
] are

evaluated, we present a utility function to describe the

relationship between 𝑞𝑖 and𝑄𝑖. Two types of QoS cri-
teria are available, that is, cost and benefit. In the cost
criterion, variables (e.g., response time) with higher
values have lower qualities. In the benefit criterion,
variables (e.g., availability) with higher values have
higher qualities. The utility function synthesizes the
cost and benefit criteria.

Definition 1 (utility function). Suppose that a global QoS
attribute 𝑞

𝑖
(1 ≤ 𝑖 ≤ 𝑘) and its constraint 𝑄𝑖 of an

instantiation 𝑆𝑗 exist, the utility function is defined as follows:

𝑈(𝑞
𝑗

𝑖
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𝑖
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2 −

𝑞
𝑗

𝑖
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𝑖

, if 𝑞𝑗
𝑖
is the benefit criterion.

(3)
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If the global QoS attribute 𝑞𝑖 satisfies the requirement
of the QoS constraint 𝑄𝑖, then 𝑈(𝑞

𝑗

𝑖
, 𝑄
𝑗

𝑖
) ≤ 1; otherwise

𝑈(𝑞
𝑗

𝑖
, 𝑄
𝑗

𝑖
) > 1.

(iv) The cost function is based on the values of the utility
function and the weights the user defined. The better
the instantiation is, the lower the quality of the cost
function result becomes.

Definition 2 (cost function). Suppose that an instantiation 𝑆𝑗

exists in the QoS attributes 𝑞
𝑐
= [𝑞
𝑗

1
, . . . , 𝑞

𝑗

𝑘
], QoS constraints

𝑄
𝑐
= [𝑄
𝑗

1
, . . . , 𝑄

𝑗

𝑘
], and the weights for each QoS attribute;

then the cost function is defined as follows:

𝐹 (𝑋
𝑗
, 𝑞
𝑐
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𝑐
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where ∑𝑘
𝑖=1
𝑤
𝑗

𝑖
= 1 and 𝑈(𝑞𝑗

𝑖
, 𝑄
𝑗

𝑖
) ≤ 1 (1 ≤ 𝑖 ≤ 𝑘).

The objective of this paper is to employ D-GSO to get the
optimal solution of the following model:

min (𝐹 (𝑋
𝑗
)) =

𝑘

∑

𝑖=1

𝑤
𝑗

𝑖
𝑈(𝑞
𝑗

𝑖
, 𝑄
𝑗

𝑖
) , (5)

where𝑋
𝑗
∈ 𝑅
𝑛.

4. D-GSO Algorithm

The GSO algorithm [7] designs optimum searching strate-
gies to solve continuous optimization problems. However,
service selection is a discrete problem. Therefore, we present
an evolutionary algorithm named D-GSO that can handle
composition components with discrete atomic services. The
steps of the D-GSO algorithm are described in Algorithm 1.
In the D-GSO algorithm, round(𝑥) represents a round func-
tion for half adjust result. Suppose that sub𝑋ℎ

𝑖
. represents

[1
ℎ

𝑖
, 2
ℎ

𝑖
, . . . , 𝑛

ℎ

𝑖
], which are the subscripts of atomic services

composing an instantiation 𝑋
ℎ

𝑖
about the 𝑖th member 𝑋

𝑖

at the ℎth iteration. At the (ℎ + 1) iteration, the trans-
formation of the subscripts by the following formulas is
[1
ℎ+1

𝑖
, 2
ℎ+1

𝑖
, . . . , 𝑛

ℎ+1

𝑖
] relating to a new instantiation (see

Algorithm 1).

5. Convergence Analysis of the D-GSS Model

5.1. Convergence Verification. In this section, we verified the
convergence of the D-GSS model. After 𝑛 iterations, the best
instantiation with the lowest cost can be determined with
the cooperation of the producer and some scroungers and
rangers.

Lemma3. If𝑋 represents the space of all instantiations𝑋𝑘
𝑖
and

𝑃 represents the space of the producer, then 𝑋 = 𝑃.

Proof. (1) 𝑙max denotes the maximum distance between two
points in space 𝑋. By using (3) to (6), we can equate space 𝑃

to a sphere that has center𝑋𝑝
ℎ
possessing sub(𝑋𝑝

ℎ
) and radius

𝑙max. Thus,𝑋 ⊂ 𝑃.
(2) The following strategy is employed by using the D-

GSS model: when a member in space 𝑃 is outside space 𝑋,
the member will return into space 𝑋 by setting the variables
that violated the bounds to their previous values. Therefore,
𝑃 ⊂ 𝑋.

(3)Thus, we conclude that𝑋 = 𝑃.

Theorem 4. The costs of instantiations in the group will
converge to the global optimum that corresponds to the best
instantiation with the lowest cost.

Proof. In the D-GSS model at the ℎth iteration,
(1) the producer 𝑆𝑝 behaves according to (ii)–(iv) in

Algorithm 1. By applying the D-GSO algorithm, we
can derive the following:

cost (𝑋𝑝
ℎ+1

)

= min (cost (𝑋𝑝
ℎ
) , cost (𝑋

𝑧
) , cost (𝑋

𝑟
) , cost (𝑋

𝑙
)) ,

(6)

(2) the scroungers 𝑋
𝑠

ℎ+1
will approach the producer

through (vii) in Algorithm 1,
(3) the rangers 𝑋𝑟

ℎ+1
will disperse from a group to per-

form random walks via (viii) and (ix) in Algorithm 1
to avoid entrapments in the local minima,

(4) finally, we calculate the costs of all instantiations in the
group and reallocate their roles. The cost of the new
producer is shown as follows:

cost (𝑋𝑝
ℎ+1

) = min (cost (𝑋𝑝
ℎ+1

) , cost (𝑋𝑠
ℎ+1

) , cost (𝑋𝑟
ℎ+1

)) .

(7)

We conclude that cost(𝑋𝑝
ℎ+1

) ≤ cost(𝑋𝑝
ℎ
) by using (6) and (7),

which means that the cost of the producer is monotonically
decreasing. A global optimum, which has the lowest cost in
all instantiations, exists. As stated in the proof of Lemma 3,
𝑋 = 𝑃. Therefore, the infimum of cost(𝑋𝑝) is cost (global
optimum); that is, after 𝑛 iterations, the instantiation 𝑋

𝑝

converges to the global optimum.

5.2. Simulation Convergence Results. The parameter setting
of the D-GSS model is summarized as follows. 𝑀 classes
of generic services are present in the complex composition
component, in which each class has 50 candidate services
that has 10 QoS attributes. The service requestor provides 10
QoS attribute constraints as well as the weights for each QoS
attribute. Overall, 51 initial instantiations𝑋𝑖 with𝑈(𝑞𝑖

𝑡
, 𝑄
𝑖

𝑡
) ≤

1 (1 ≤ 𝑡 ≤ 10) are selected at random in all instantiations.The
initial head angle𝜙0 of each individual is set to (𝜋/4, . . . , 𝜋/4).
The constant 𝑎 is given by round(√𝑛 + 1). The maximum
pursuit angle 𝜃max is 𝜋/𝑎

2. The maximum turning angle 𝛼max
is set to 𝜃max/2. Suppose 𝑛 = 10, 100; the relations between the
cost of the producer and the iteration times within 500 runs
are shown in Figure 2.The experimental results show that the
cost of the producer always converges to the optimum of the
low- or high-dimensional service composition component.
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Algorithm. D-GSO

Step 1.𝑁 classes of generic services are present in the composition component, where each class has𝑁
𝑖
(1 ≤ 𝑖 ≤ 𝑛)

candidate services. The maximum pursuit distance 𝑙max is calculated from the following equation:

𝑙max = √

𝑛

∑

𝑖=1

𝑁
2

𝑖
, (i)

Each candidate service has 𝑘 QoS attributes, which are rearranged into [𝑞1des, . . . , 𝑞
𝑘

des] according to the weights in
descending sequence. The candidate services of generic service 𝐼

𝑖
(1 ≤ 𝑖 ≤ 𝑛) are reordered into a set 𝐼order

𝑖
= [𝑥
0

𝑖
, . . . , 𝑥

𝑁𝑖

𝑖
]

with reference to 𝑞1des, . . . , 𝑞
𝑘

des in turn.

Step 2. Set ℎ := 0;
Randomly initialize 𝑟 instantiations𝑋

𝑖
[𝑥
1

𝑖
, 𝑥
2

𝑖
, . . . , 𝑥

𝑛

𝑖
] (1 ≤ 𝑖 ≤ 𝑟) with 𝑈(𝑞𝑖

𝑡
, 𝑄
𝑖

𝑡
) ≤ 1 (1 ≤ 𝑡 ≤ 𝑘) of services composition

component and head angle 𝜙
𝑖
of all initial instantiations;

Calculate the values of initial instantiations according to the cost function;
WHILE (the best instantiation is not found)

FOR (each instantiation𝑋𝑖 where 𝑈(𝑞𝑖
𝑡
, 𝑄
𝑖

𝑡
) ≤ 1 (1 ≤ 𝑡 ≤ 𝑘) in the group)

Choose the producer:
Find the producer 𝑋𝑝 with the lowest cost in the group;

Perform producing:
(a) The producer will scan at zero degree and then scan laterally by randomly sampling three instantiations in the scanning

field: one instantiation at zero degree, one instantiation in the right-hand side of the hypercube, and one instantiation in the
left-hand side of the hypercube. 𝑟

1
∈ 𝑅
1 is a normally distributed random number with mean 0 and standard deviation 1,

where as 𝑟
2
∈ 𝑅
𝑛−1 is a uni-formly distributed random sequence in the range (0, 1);

sub (𝑋
𝑧
) = sub (𝑋𝑝

ℎ
) + round(𝑟

1
𝑙max𝐷

𝑝

ℎ
(𝜙
ℎ
)), (ii)

sub (𝑋
𝑟
) = sub (𝑋𝑝

ℎ
) + round(𝑟

1
𝑙max𝐷

𝑝

ℎ
(𝜙
ℎ
+ 𝑟
2

𝜃max
2

)), (iii)

sub (𝑋
𝑙
) = sub (𝑋𝑝

ℎ
) + round(𝑟

1
𝑙max𝐷

𝑝

ℎ
(𝜙
ℎ
− 𝑟
2

𝜃max
2

)), (iv)

(b) The producer will find the best instantiation 𝑋𝑖 where 𝑈(𝑞𝑖
𝑡
, 𝑄
𝑖

𝑡
) ≤ 1 (1 ≤ 𝑡 ≤ 𝑘) with the lowest cost.

If the best instantiation has a lower cost compared with the current instantiation, then the best instantiation
will be chosen; otherwise, the current instantiation will remain and turn its head to a new randomly generated angle.
𝛼max ∈ 𝑅

1 is the maximum turning angle;
𝜙
ℎ+1

= 𝜙
ℎ
+ 𝑟
2
𝛼max, (v)

(c) If the producer cannot find a better instantiation after 𝑎 iterations, then the producer will turn its head back to zero degree;
𝜙
ℎ+𝑎

= 𝜙
ℎ, (vi)

Perform scrounging:
Randomly select 80% members from the rest of the instantiations to perform scrounging.
The area copying behavior of the 𝑖th scrounger can be modeled as a random walk toward the producer.
In (vii), 𝑟

3
∈ 𝑅
𝑛 is a uniform random sequence in the range (0, 1);

sub (𝑋ℎ+1
𝑖
) = sub (𝑋ℎ

𝑖
) + round (𝑟

3

∘
(sub (𝑋ℎ

𝑝
) − sub (𝑋ℎ

𝑖
))), (vii)

Perform dispersion:
The rest of the instantiations will be dispersed to perform ranging: (1) generate a random head angle by using (v); (2) choose
a random distance 𝑙

𝑖
from the Gauss distribution by using (viii); transform into the new instantiation by using (ix);

𝑙
𝑖
= 𝑎 ⋅ 𝑟

1
𝑙max, (viii)

sub (𝑋ℎ+1
𝑖
) = sub (𝑋ℎ

𝑖
) + round (𝑙

𝑖
𝐷
ℎ

𝑖
(𝜙
ℎ+1
)). (ix)

Calculate fitness:
Calculate the values of the current instantiations according to the cost function;

END FOR
Set ℎ := ℎ + 1;

ENDWHILE

Algorithm 1: Procedure for the D-GSO algorithm.



6 The Scientific World Journal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500

C
os

t

Iteration times

n = 10

n = 100

D-GSS model

Figure 2: Convergence for 𝑛 = 10, 100.

The experiments were conducted on a PC with 2.50GHz
Intel Processor and 8.0GB RAM. All programs were written
and executed in Java. The operating system was Microsoft
Windows 7.

6. Conclusion

In this paper, we describe a new evolutionary approach for
multiconstraints service selection on the basis of the D-
GSS model. We propose the cost function and the D-GSO
algorithm for searching the global optimum from discrete
instantiations of the service composition component. The
convergence of the D-GSS model is verified via several
formal proofs and simulations. This model has an outstand-
ing advantage in terms of solving high-dimensional service
composition problems. In the future, we hope to search
for the global optimum under a dynamic heterogeneous
environment by using the D-GSS model.
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