
Research Article
QoS-Based Web Service Discovery in Mobile Ad Hoc Networks
Using Swarm Strategies

Filomena de Santis and Delfina Malandrino

Department of Computer Science, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy

Correspondence should be addressed to Delfina Malandrino; delmal@dia.unisa.it

Received 29 May 2014; Accepted 12 October 2014; Published 10 November 2014

Academic Editor: Rui Zhang

Copyright © 2014 F. de Santis and D. Malandrino. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Mobile ad hoc networks are noncentralised, multihop, wireless networks that lack a common infrastructure and hence require
self-organisation. Their infrastructureless and dynamic nature entails the implementation of a new set of networking technologies
in order to provide efficient end-to-end communication according to the principles of the standard TCP/IP suite. Routing, IP
address autoconfiguration andWeb service discovery are among the most challenging tasks in the ad hoc network domain. Swarm
intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviours of insects, such
as ants and bees. Self-organization, decentralization, adaptivity, robustness, and scalability make swarm intelligence a successful
design paradigm for the above-mentioned problems. In this paper we propose BeeAdHocServiceDiscovery, a new service discovery
algorithm based on the bee metaphor, which also takes into account quality metrics estimates. The protocol has been specifically
designed to work inmobile ad hoc network scenarios operating with Beeadhoc, a well-known routing algorithm inspired by nature.
We present both the protocol strategy and the formal evaluation of the discovery overhead and route optimality metrics showing
that BeeAdHocServiceDiscovery guarantees valuable performances even in large scale ad hoc wireless networks. Eventually, future
research suggestions are sketched.

1. Introduction

A mobile ad hoc network (MANET) is a set of mobile nodes
that communicate over radio and operate without the benefit
of any infrastructure; nodes continuously enter and leave
the network according to their mobility needs. The limited
transmission range of wireless interfaces makes the source-
destination communication multihop. Nodes accomplish the
functionality of hosts, as well as that of routers forwarding
packets for other nodes. MANETs are very flexible and suit-
able for several situations and applications since they allow
establishing temporary connections without preinstalled
resources. Remarkable uses of mobile ad hoc networks are in
calamity and military scenario; with the increasing diffusion
of radio technologies, many multimedia applications also
take advantages from running over them. MANETs suffer
from a variety of questions: the routing and the IP (internet
protocol) address autoconfiguration problems are among the
most challenging ones. Many different approaches dealing

with them do exist, even though there are no algorithms that
fit in all cases [1, 2]. Moreover, the number and variety of
services provided byMANETs are constantly increasing with
the expansion of their applications; thus, services offered by
single nodes are accordingly spreading as well as the need
of sharing useful facilities among nodes. To get benefit from
such a practice a device must be able to locate the service
provider in the network and to invoke the service itself. Since
different nodes providing different services may enter and
leave the network at any time, many research efforts aim
at improving MANETs usability by means of an efficient
and timely service management and discovery, that is, to
say, by means of a suitable service discovery protocol (SDP)
[3]. In this paper, we present BeeAdHocServiceDiscovery, a
novel swarm intelligence SDP based on BeeAdHoc, a well-
known routing algorithm for MANET derived from the bee
colony optimization metaheuristic [4–7]. Swarm intelligence
(SI) is a well-known distributed paradigm for the solution of
hard problems taking insight from biological scenario such

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2014, Article ID 450194, 13 pages
http://dx.doi.org/10.1155/2014/450194

2 Journal of Computer Networks and Communications

Source

Destination

Figure 1: Mobile ad hoc network with routing via bee colonies.

as colonies of ants, bees and termites, schools of fish, and
flocks of birds. The most interesting property of SI is the
involvement of multiple individuals that interact with each
other and the environment, exhibit a collective intelligent
behavior, and are able to solve complex problems. Many
applications, mainly in the contexts of computer networks,
distributed computing and robotics exploit algorithmdesigns
using SI. The basic idea behind this paradigm is that many
tasks can be more efficiently completed by using multiple
simple autonomous agents instead of a single sophisticated
one. Regardless of the improvement in performance, such
systems are usually much more adaptive, scalable, and robust
than those based on a single, highly capable, agent. An artifi-
cial swarm can be generally defined as a decentralized group
of autonomous agents having limited capabilities. Due to the
adaptive and dynamic nature of MANETs, the swarm intelli-
gence approach is considered a successful design paradigm
to solve the routing, the IP address autoconfiguration and
the service discovery problems [4, 8, 9]. The remainder of
this paper is organized as follows. Section 2 reviews the
basics of the bee colony optimization metaheuristic and
routing and autoconfiguration algorithms derived from it.
Section 3 introduces the fundamentals of service discovery
as well as a short review of the literature about it. Section 4
describes the new proposed algorithm and its computational
complexity. Eventually, Section 5 sketches conclusions and
ideas for future works.

2. The Swarm Paradigm

2.1. BeeAdHoc Routing Algorithm. Bee colonies (Apis mel-
lifera) and the majority of ant colonies (Argentine ant and
Linepithema humile) show similar structural characteristics,
such as the presence of a population of minimalist social
individuals and must face analogous problems for what
is concerned with distributed foraging, nest building, and
maintenance. A honeybee colony consists ofmorphologically
uniform individuals with different temporary specializations.
The benefit of such an organization is an increased flexibility
to adapt to the changing environments.Thousands of worker
bees perform all the maintenance and management jobs in
the hive. There are two types of worker bees, namely, scouts
and foragers. The scouts start from the hive in search of a
food source randomly keeping on this exploration process

until they are tired. When they return to the hive, they
convey to the foragers information about the odor of the
food, its direction, and the distance with respect to the
hive by performing dances. A round dance indicates that
the food source is nearby whereas a waggle dance indicate
that the food source is far away. Waggling is a form of
dance made in eight-shaped circular direction and has two
components: the first component is a straight run and its
direction conveys information about the direction of the
food; the second component is the speed at which the dance
is repeated and indicates how far away the food is. Bees repeat
the waggle dance repeatedly giving information about the
food source quality. The better the quality of food is, the
greater the number of foragers recruited for harvesting is.
The bee colony optimization (BCO) metaheuristic has been
derived from this behavior and satisfactorily tested on many
combinatorial problems [10]. BeeAdHoc is a reactive source
routing algorithm based on the use of four different bee-
inspired types of agents: packers, scouts, foragers, and bee
swarms [5]. Packers mimic the task of a food-storekeeper
bee, reside inside a network node, and receive and store
data packets from the upper transport layer. Their main task
is to find a forager for the data packet at hand. Once the
forager is found and the packet is handed over, the packer will
be killed. Scouts discover new routes from their launching
node to their destination node (see Figure 1). A scout is
broadcasted to all neighbors in range using an expanding
time to live (TTL). At the start of the route search, a scout
is generated; if after a certain amount of time the scout
is not back with a route, a new scout is generated with a
higher TTL in order to incrementally enlarge the search
radius and increase the probability of reaching the searched
destination. When a scout reaches the destination, it starts
a backward journey on the same route that it has followed
whilemoving forward toward the destination. Once the scout
is back to its source node, it recruits foragers for its route
by dancing. A dance is abstracted into the number of clones
that could be made of the same scout. Foragers are bound
to the beehive of a node. They receive data packets from
packers and deliver them to their destination in a source-
routedmodality. To attract data packets foragers use the same
metaphor of a waggle dance as scouts do. Foragers are of two
types: delay and lifetime. From the nodes they visit, delay
foragers gather end-to-end delay information, while lifetime
foragers gather information about the remaining battery
power. Delay foragers try to route packets along a minimum
delay path, while lifetime foragers try to route packets in
such a way that the lifetime of the network is maximized.
A forager is transmitted from node to node using a unicast,
point-to-point modality. Once a forager reaches the searched
destination and delivers the data packets, it waits there until
it can be piggybacked on a packet directed to its original
source node. In particular, since TCP (transport control pro-
tocol) acknowledges received packets, BeeAdHoc piggybacks
the returning foragers in the TCP acknowledgments. This
reduces the overhead generated by control packets, saving
energy at the same time. Bee swarms are the agents that are
used to transport foragers back to their source node when the
applications are using an unreliable transport protocol like

Journal of Computer Networks and Communications 3

#Dance Lifetime

#Dance Lifetime

Local hive

⟨Destination⟩

⟨Destination, service frame, quality metrics⟩

Dance floor entry
of BeeAdHoc

Dance floor entry
of SBSD

Application layers (TCP, UDP, etc.)

Packing floor

Dance floor

Entrance

BeeHive

802.11)Network layers (MAC, i.e. IEEE

Figure 2: The network layer architecture of BeeAdHoc.

UDP (user datagram protocol). The algorithm reacts to link
failures by using special hello packets and informing other
nodes through route error messages (REM). In BeeAdHoc,
each MANET node contains at the network layer a software
module called hive. It consists of three parts: the packing
floor, the entrance floor, and the dance floor (see Figure 2).
The entrance floor is an interface to the lower MAC layer;
the packing floor is an interface to the upper transport
layer; the dance floor contains the foragers and the routing
information. BeeAdHoc has been implemented and evaluated
both in simulation and in real networks. Results demonstrate
a very substantial improvement with respect to congestion
handling, for example, due to hello messages overhead and
flooding, and prove that the algorithm is far superior to com-
mon routing protocols, both single and multipath. Moreover,
for BeeAdHocmathematical tools have been utilized in order
to overcome shortcomings of simulation-based studies such
as their scenario specificity, scalability limitations, and time
consumption. In [11, 12] mathematical models of two key
performance metrics, routing overhead and route optimality
have been presented providing valuable insight about the
behaviour of the protocol.

2.2. BeeAdHocAutoConf Algorithm. BeeAdHocAutoConf is
an IP address allocation algorithmbased on the beemetaphor
[13]. When a node wishes to join a network, it randomly
picks up an address, starts setting up a local allocation table,
and broadcasts a scout to all neighbours in its range using
an expanding TTL. The TTL controls the number of times a
scout may be rebroadcasted. Each scout is uniquely identified
with a key based on its source node identifier (ID) and a
sequence number. The task of the scout is twofold: it checks
whether or not other nodes on its route are using the same
address of its source node and brings back useful information
whether it finds a duplicate address occurrence or not. The
source node broadcasts the scout after assigning a small TTL
to it and setting up a timer for itself. When the TTL expires,

the scout might increment it in order to enlarge the search
radius and increase the probability of reaching a node that
might use a duplicate address. A maximum TTL is also
established with respect to a reasonable size for an ad hoc
network. Scouts with exceeded TTL might be killed or not
depending on the informationwhich they have gathered until
then.This mechanism helps ensuring the address uniqueness
when the TTL expires and useful address information has
not been collected meaning that the source node is a network
initiator. Scouts already seen (i.e., a copy) are deleted in order
to limit the overhead.

3. MANET Service Discovery

3.1. Web Services and SOA. Web services is an evolv-
ing collection of standards, specifications, and implemen-
tation technologies in the areas of application integra-
tion and distributed computing. As defined by the W3C
(http://www.w3.org/TR/ws-arch/): “a web service is a soft-
ware system designed to support interoperable machine-
to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically
WSDL). Other systems interact with the web service in a
manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in
conjunction with other web-related standards.” Web services
do not necessarily need to exist on the World Wide Web
(i.e., they can be located in an intranet) while implementation
details about the distribution platform can be ignored by
the programs that invoke the service. A web service is
accessible through its APIs and specific invocation mech-
anisms (network protocol scheme, data encoding and so
on). The service-oriented computing offers a new model for
distributed application development, obtained through the
integration of different applications and offered as services.
A key element of this approach is SOA (service oriented
architecture); an architectural style that is flexible enough

4 Journal of Computer Networks and Communications

to allow the design of distributed applications from a set of
functional units (services) available on the net and accessible
through well-defined interfaces. The main goal of SOA is
to ensure interoperability between different applications in
order to build software systems based on loosely coupled
components, which are combined dynamically. Applications
are available on the network as services or integrated with
other services. Finally, web services are the most suitable
technology to implement SOA. A SOA architecture is based
on three fundamental elements: the “Service Requestor,” the
“Service Provider,” and the “Service Registry.” The Service
Provider provides a service via a standardmiddleware, makes
it available to others over a network and, finally, manages
its implementation. The Service Provider is responsible for
creating a description of the service and for publishing it in
one or more registries. It also receives all invocations for a
specific service, providing the corresponding responses. The
service description (a WSDL document) must contain all the
information needed to use the service (server IP address,
transport protocol, port number, and also interfaces of func-
tions to invoke). The service description must be provided
in a language neutral to the platform, to the programming
language, and to the way in which the service has been
implemented. The Service Requestor, or web service Client,
invokes the service to ask for a specific functionality. It must
firstly retrieve the description of the needed service and then
use it to implement the binding process.The search operation
in the registry is a name-based search: each service is uniquely
identified by a specific name. The Service Requestor is
responsible for the translation of the description of the service
into the data structures needed to carry out the binding. The
Service Registry is the component that advertises the service
descriptions published by the Service Providers and allows
Service Requestors to look for the requested functionality
among the published descriptions. Each of these three roles
can be played by any program or node in the network. In
some circumstances, a single program may play more than
one role, for example, a program could be both a Service
Provider, providing Web services to invoke, and a Service
Requestor that asks for a functionality offered by others
nodes in the network. According to the aforementioned
roles, SOA supports three types of operations: (1) publish
(service description and publication), (2) find (the Service
Requestor specifies the search criteria and the registry looks
for descriptions corresponding to these criteria), and (3) bind
(to connect a Service Requestor with a Service Provider).
The “Service Discovery” process establishes the relationship
between the Service Requestor and the Service Providers: it
defines, in fact, the mechanism for locating Service Providers
and retrieving the published service descriptions.

3.2. Universal Description Discovery and Integration. UDDI
(universal description, discovery, and integration) is anXML-
based centralized registry, independent from the platform,
which allows publishing and querying service descriptions.
The goal of UDDI is to facilitate the discovery of services
both in the process of designing a service, and dynamically,
at runtime. In the web services scenario, Service Providers

publish in the Service Registry the information about where
to retrieve the WSDL documents of the services. Service
Requestors query the Service Registry to find out where to
retrieve theWSDL documents, in order to invoke the services
providing the needed functionalities. Due to a variety of
reasons, service discovery in MANETs is a more challenging
task. First, it has to allow wireless resource-constrained
devices to discover services dynamically, while minimizing
the traffic and tolerating the irregular connectivity of the
network. Secondly, it has to provide service delivery to
any other heterogenous device, regardless of its hardware
and software platforms. Eventually, it has to enable service
requesters to differentiate service instances according to
provided nonfunctional properties, so that services match
against the application quality of service requirements. In the
sequel, we briefly review the literature main results.

3.3. Cross Layer Based Service Discovery. The service selec-
tion in MANETs requires the cross-layer integration of
service discovery and selectionwithMANET routingmecha-
nisms.The advantages of such a cross-layer approach over the
traditional application layer implementation that preserves
the modularity of the protocol stack are twofold. First,
clients learn about available services and routes to servers
offering them at the same time with obvious cost reduction
and accuracy increase of service selection. Secondly, the
existence of explicit routing information about path breaks or
updates allows clients to efficiently detect changes in network
topology and switch to nearby servers without additional
cost. In [14] it has been proved that the network performance
maximization requires that service selection decisions must
be continuously reassessed to offset the effects of topology
changes. It is also argued that, when multiple entries in the
service table match a client’s service description, a cross-
layer approach allows the client to make a choice based
on the lowest hop count and some service specific metrics
like load and CPU usage. In [15] a multipath cross-layer
service discovery (MCSD) for mobile ad hoc networks has
been proposed that takes advantage of the network-layer
topology information and the routing message exchange.
The algorithm focuses on double-path cross-layer service
discovery (DCSD), a special and most important case of
MCSD.The iDCSDheuristic is also presented: fromanumber
of candidate paths it finds the optimal routes from a client
to a server and from a client to two servers by minimizing
the hop count in the network layer. The MCSD protocol,
however, selects multipath by considering only the lowest
total hop count from a client to one or more servers without
taking into account QoS metrics like available bandwidth
and residual energy. The service update in multiple servers
becomes difficult too. In [9] SISDA (swarm intelligence
based service discovery architecture) has been developed, a
swarm intelligence based service discovery architecture for
MANETs. It is based on AntNet, an adaptive agent-based
routing algorithm that has outperformed the best-known
routing algorithms. It provides the service requestor (SR)
to specify the operating context. For a set of mobile hosts,
which are parts of the context defined; a cost effective routing

Journal of Computer Networks and Communications 5

tree is constructed and maintained dynamically. The service
discovery component (SDC) asks the service providers for the
most suitable entry, for example, the entry that matches the
QoS criterions specified in the client request.

3.4. Hierarchical Service Discovery. In [16] SGrid, a service
discovery protocol based on a hierarchical grid has been
presented. The network geographical area is divided into a
two-dimensional hierarchical grid. The information about
the available services is stored in directory nodes, one for
each cell, along a trajectory properly defined with the aim
of improving the efficiency of registration and discovery.
Service providers register their services along the trajectory;
requestors discover services along it and acquire the available
information. The sparse node network topology is also
avoided by means of a suitable process. In [17] the service
discovery area (SDA) is spontaneously set up and managed
by a service discovery area manager (SDAM) responsible for
centralized service repository and service request processing.
The protocol provides scalability to large MANET and can
work efficiently without manual monitoring and manage-
ment. Unfortunately, the SDAM and the centralized nature
of it produce a considerable amount of overhead.

3.5. Routing Layer Based Service Discovery. In [18] the con-
cept of service discovery provided with routing layer support
was first introduced. For a proactively routed MANET a
service reply extension added to topology updating messages
provides both service and route discovery. For a reactively
routed MANET the service discovery process follows the
traditional route discovery process by means of the route
request packets (RREQ) and the route reply packets (RREP).
It further extends the idea by carrying a service request or
reply in their respective areas by invoking the hybrid zone
routing protocol (ZRP).

4. BeeAdHocServiceDiscovery

BeeAdHocServiceDiscovery (BAHSD) is a novel service dis-
covery and selection algorithm based on honeybee foraging
behaviour. It uses a decentralized cross-layer approach start-
ing from the reactive routing algorithm BeeAdHoc.

BAHSD combines SOA architecture, namely, the Service
Discovery phase, with BeeAdHoc and BeeAdHocAutoConf.
Figure 3 illustrates such a mechanism. Each node has a hive
organized as in Figure 2 and ready to store the services to
offer (UDDI Service Registry). The hive architecture is the
base routing mechanisms that BAHSD uses in its cross-layer
approach each time a Service Requestor needs to look for
a service and to invoke it soon after. Scouts realize the find
operation when looking for food (source-destination path
search); foragers realize the bind operation when collecting
nectar (packet transmission); new foragers added to the
dance floor of the hive realize the publish operation (forager
recruited in order to specify the web service description).
Table 1 maps the key concepts of the IP address autoconfig-
uration problem into the main components of the service
discovery process for MANETs.

Service
provider

Service

Discover

Scouts

Publishaddforag
ers

requestor

Service
registry

Bind

Foragers

Local hive

Figure 3: Schematic representation of services and mapping scout-
forager into find-bind-publish operations.

Table 1: BeeAdHocServiceDiscovery main components mapping
from IP address autoconfiguration into service discovery.

IP Address autoconfiguration Service discovery
Allocation table Service registry UDDI
IP address Business service
Duplicate address search API inquiry UDDI specification
IP address assignment API publish UDDI specification
Node leaving the MANET API delete UDDI specification

More precisely, each MANET node accomplishes the
Service Registry functionality, when it is either Requestor
or Provider. The hive is a local Service Registry, namely, the
UDDI registry that publishs descriptions of services provided
by neighbour nodes in the form of businessService entities.
An extension of the dance floor definition inBeeAdHoc allows
implementing the local Service Registry. Each entry of the
dance floor is indeed a different forager for each different
pair (destination, businessService). Table 2, and specifically
the second row, shows the entry format in the dance floor for
BAHSD as compared with its correspondent in BeeAdHoc:
it contains a Routing Frame, a Service Frame and, finally,
Quality metrics information. Specifically, information about
CPU load, free memory percentage, bandwidth, number of
active network connections, number of wait connections, and
context information [19–21] represent some of the informa-
tion that can be gathered on the nodes and piggybacked in
the ACK segment towards the source node. In this way, the
source node takes the information from the received packet
as they are sent back to it, allowing scheduling decision based
on the most recent results. As a consequence, no overhead
is introduced in the network, in fact, load information is not
periodically exchanged.

Two main components, as shown in Figure 4, constitute
the architecture of BAHSD: the service description publication
(SDP) and the BeeSwarmServiceDiscovery (BSSD). In the
SDP component, each hive configures its local UDDI, by

6 Journal of Computer Networks and Communications

Service description
publication

BeeSwarm service
discovery

SBSD
WSDL

UDDI
service
registry

API publish

SDP

BSSD

CVcv

Destination,
service, quality

Destination,
service, quality

Destinatio
service, qual

Source

Destination

Destination,
service, quality

Figure 4: Main components of the SBSD Protocol: the SDP for service publication and the BSSD for service discovery.

Table 2: BAHSD and BeeAdHoc entries in the dance floor.

Algorithm Routing information
BeeAdHoc Destination # dance lifetime

BAHSD Destination, service frame,
and quality metrics # dance lifetime

publishing theWeb Service descriptions that can be invoked.
This operation is performed by using the “save service”
method provided by the API Publish UDDI specification.
BSSD exploits the BeeAdHoc routing operations to gather
descriptions and locations about the requested service.

4.1. The Algorithm. The algorithm description will be done
by means of the three logical blocks that correspond to the
operations in theDance Floor,Packing Floor, and theEntrance
Floor, respectively. For each of them new functions have been
implemented with respect to those of BeeAdHoc in order to
support the service discovery mechanisms.The following list
provides an explanation of the symbols used in the code:

𝑠: Packet source node,
𝑑: Packet destination node,
𝑖: Current node,
𝑗: Any MANET node,
𝑆
𝑠𝑑
: Scout bee sent from 𝑠 to 𝑑,

𝐹
𝑠𝑑
: Forager bee sent from 𝑠 to 𝑑,

𝐷
𝑠𝑑
: Data packet sent from 𝑠 to 𝑑,

𝑃
𝑠𝑑
: Any packet received at 𝑖with source 𝑠 and dest. 𝑑,

ℎnext: Next hop address,

SF: Service Frame, find service/businessService
datatype,
𝐿SF: Forager list for a given SF.

Dance Floor. It implements the addForager and getForager
functions. The first of them is equivalent to a save service
operation into the local UDDI Registry; the second of them
is equivalent to a find service operation into the local UDDI
Registry.

The addForager function, in the Algorithm 1, computes
the number of packers waiting for 𝐹

𝑠𝑑
and the values of the

path quality metrics (lines 4-5); it also checks whether a list
𝐿SF of foragers already exists for the SF corresponding to 𝐹

𝑠𝑑

in order to possibly create it and update the dance number
(lines 6–9). The getForager function makes a lookup into the
Dance Floor with the aim to search for at least one forager
matching the SF input service description; it might return a
random chosen forager or a null value.

Packing Floor. It implements, as shown in the Algorithm 2,
the service requests entailed from the upper layer and takes
care of packets attained from theEntrance Floorwith different
operations whether the incoming packet is either a forager or
a scout. For each received SF from the upper layer, the local
registry UDDI might already have the requested information
(getForager returns 𝐹

𝑠𝑑
) or might not have it (getForager

returns a null value) requiring a new scout creation (lines 1–
15).

For each received packet 𝑃
𝑠𝑑

from the Entrance Floor
(lines 18–39), either a forager is added into the Dance Floor
(addForager) or a different forager 𝐹

𝑠𝑗
is created for each

Service Frame that the scout collected on the path 𝑠-𝑗.
However, in both cases, for each forager 𝐹

𝑠𝑗
added into

Journal of Computer Networks and Communications 7

(1) /∗ add a forager on the dance floor ∗/
(2) void addForager(𝐹

𝑠𝑑
)

(3) {

(4) var waitingPackers = getPackerInQueueForThisForager(𝐹
𝑠𝑑
);

(5) var qualityMetric = getParameterCollectFromForager(𝐹
𝑠𝑑
);

(6) if (𝐿SF not exist for 𝐹
𝑠𝑑

⋅ SF)
(7) create 𝐿

𝑆𝐹
;

(8) add 𝐹
𝑠𝑑
to 𝐿SF;

(9) updateDanceNumber (𝐹
𝑠𝑑
, waitingPackers, qualityMetric);

(10) }
(11)
(12)
(13) /∗ lookup a specific forager on dance floor ∗/
(14) matchingForager getForager(SF)
(15) {
(16) var tmp = NULL;
(17) if (𝐹

𝑠𝑑
exists in 𝐿SF) {

(18) while (tmp == NULL && 𝐹
𝑠𝑑

exists in 𝐿SF) {
(19) choose according to quality metrics or randomly
(20) a 𝐹

𝑠𝑑
among multiple foragers in 𝐿SF;

(21) if (𝐹
𝑠𝑑

⋅ lifetime > currentTime)
(22) if (𝐹

𝑠𝑑
⋅ danceNumber > 0) {

(23) tmp = copy(𝐹
𝑠𝑑
);

(24) decrease danceNumber;
(25) }

(26) else {

(27) tmp = 𝐹
𝑠𝑑
;

(28) delete 𝐹
𝑠𝑑
from dance floor;

(29) }

(30) else
(31) kill 𝐹

𝑠𝑑
;

(32) }

(33) }

(34) return tmp;
(35) }

Algorithm 1: Services provided by the Dance Floor.

the Dance Floor, the presence of data packet 𝐷
𝑠𝑗
in the send

buffer waiting for it will be verified.

Entrance Floor. It manages, as shown in the Algorithm 3, the
foragers and the scouts coming from the MAC layer (lines
1-9). A forager might be sent to the Packing Floor or to the
next hop (after having measured quality metrics), whether
it has reached its destination or not. A scout might flying
towards its source node 𝑠 or the destination 𝑑 (lines 10–
49). If is flying to the source 𝑠 (Service Requestor) in each
intermediate nodewill be forwarded to the next hop bymeans
of the function sendPacketToNextHop, whereas in 𝑠 will be
forwarded to the Packing Floor. If the scout is flying towards
the destination 𝑑 (Service Provider), in each intermediate
node 𝑖, will invoke the function getForager from the Dance
Floor; if the function returns a forager 𝐹

𝑠𝑑
the search ends

successfully (i.e., the UDDI registry of the node 𝑖 knows the
path toward the desired Service Provider 𝑑). At this point
the scout will become a backward scout, coming back to
the source by bringing the following information: (1) the
description of the requested service; (2) the description of

the other services gathered during the path; (3) the complete
route toward the Service Provider 𝑑, built by concatenating
the path until 𝑖 with the route from 𝑖 to 𝑑. Conversely, if
the getForager returns a null value, it means that there are
no foragers for the required service. Now, if the TTL is not
expired and the scout is not present in the list of the scouts
seen by the node 𝑖, it will be retransmitted in broadcast to
all nodes neighbours of 𝑖. Finally, if (1) the TTL is expired,
(2) the scout is not available in the list of scouts seen by the
node 𝑖, and (3) the list of SF gathered along the path is not
empty, then the scout will not be discarded but returned to
the source in order to update the Local UDDI registry with
all SF descriptions collected along the taken path.

Figure 6 is a concise representation of the BeeAdHocSer-
viceDiscovery working principles.

Network merging does not affect the protocol operation.
On the contrary, when two or more networks merge, it may
happen that a service is offered by two different service
providers allowing straightforward load balancing, energy
saving, and reduced band consumption. However, network
partition may create difficulties. In this case, a node invoking

8 Journal of Computer Networks and Communications

(1) /∗ service requests received from higher layers ∗/
(2) for each (SF received from higher layers) {
(3) var 𝐹

𝑠𝑑
= danceFloor ⋅ getForager(SF);

(4) if (𝐹
𝑠𝑑
!= NULL) {

(5) encapsulate 𝐷
𝑠𝑑
into the payload of 𝐹

𝑠𝑑
;

(6) send 𝐹
𝑠𝑑
to entranceFloor;

(7) }

(8) else {

(9) insert 𝐷
𝑠𝑑
into the packet queue;

(10) create a new scout 𝑆
𝑠𝑑
with ID, initial TTL;

(11) encapsulate SF into the header of 𝑆
𝑠𝑑
;

(12) set timer of 𝑆
𝑠𝑑
;

(13) send 𝑆
𝑠𝑑
to entranceFloor;

(14) }

(15) }
(16)
(17) /∗ packets coming from entrance floor ∗/
(18) for each (𝑃

𝑠𝑑
received from entrance) {

(19) if (𝑃
𝑠𝑑
is a forager) {

(20) danceFloor ⋅ addForager(𝑃
𝑠𝑑
);

(21) extract 𝐷
𝑠𝑑
from the payload of forager;

(22) deliver 𝐷
𝑠𝑑
to higher layers;

(23) }

(24) else if (𝑃
𝑠𝑑
is a scout) {

(25) for each (SF𝑗 gathered by 𝑃
𝑠𝑑
) {

(26) create a forager 𝐹
𝑠𝑗
foreach SF

𝑗
;

(27) danceFloor ⋅ addForager(𝐹
𝑠𝑗
);

(28) }

(29) kill 𝑃
𝑠𝑑
;

(30) }

(31) for each (𝐹
𝑠𝑗
add to dance floor) {

(32) var packers = getNumberPacketInQueueForForager(𝐹
𝑠𝑗
);

(33) while (packers > 0 && 𝐹
𝑠𝑗
⋅ danceNumber > 0) {

(34) encapsulate 𝐷
𝑠𝑗
into payload of 𝐹

𝑠𝑗
;

(35) send 𝐹
𝑠𝑗
to entrance;

(36) decrease packers;
(37) }

(38) }

(39) }

(40)
(41) /∗ check scout return ∗/
(42) if (timer expired and scout 𝑆

𝑠𝑑
not returned) {

(43) compute newTTL of 𝑆
𝑠𝑑
and assign it a newID;

(44) set timer of 𝑆
𝑠𝑑
;

(45) send it to entrance;
(46) }

Algorithm 2: Actions taken at the Packing Floor.

a web service offered by a provider, which is not anymore in
its partition, needs to restart the service discovery process
in order to locate an equivalent service among the ones
offered by the server providers belonging to its own partition.
Examples of network merging and network partition are
shown in Figure 5.

5. Formal Performance Evaluation

In [11] an evaluation framework to model traditional per-
formance metrics of MANET routing algorithms, such as

routing overhead and route optimality, is recommended in
order to bypass the drawbacks arising from the use of network
simulators. On one hand, indeed, Kurkowski et al. [22] have
shown thatmany simulations in the ad hoc network scenarios
lack repeatability, fairness, rigour, and statistical soundness.
On the other hand, scalability experiments become often
unworkable because of the time demand fast growth. There-
fore, it is preferred that simulation-based estimates for ad
hoc network protocols, would rather be carried out with the
use of a mathematical model evaluating their fundamental
performance parameters in order to guarantee fair and

Journal of Computer Networks and Communications 9

(1) /∗ forager received fromMAC layer ∗/
(2) for each (𝐹

𝑠𝑑
received fromMAC layer) {

(3) if (𝐹
𝑠𝑑
arrived at 𝑑)

(4) send 𝐹
𝑠𝑑
to packingFloor;

(5) else {

(6) collect optimization parameter from the node;
(7) //delay, lifetime, or energy consumption
(8) sendPacketToNextHop(𝐹

𝑠𝑑
);

(9) }

(10) }
(11)
(12) /∗ scout received fromMAC layer ∗/
(13) for each (𝑆

𝑠𝑑
received fromMAC layer) {

(14) if (𝑆
𝑠𝑑
is on return path toward 𝑠) {

(15) if (𝑆
𝑠𝑑
is at 𝑠)

(16) send 𝑆
𝑠𝑑
to packingFloor;

(17) else {

(18) sendPacketToNextHop(𝑆
𝑠𝑑
);

(19) }

(20) }

(21) else if (𝑆
𝑠𝑑
is on forward path toward 𝑑) {

(22) var 𝐹
𝑖𝑑
= danceFloor ⋅ getForager(𝑆

𝑠𝑑
⋅ SF);

(23) if (𝐹
𝑖𝑑
!= NULL) {

(24) insert in payload of 𝑆
𝑠𝑑

𝐹
𝑖𝑑
⋅ SF;

(25) insert in payload of 𝑆
𝑠𝑑
other foragers in danceFloor;

(26) complete the route by concatenating 𝑆
𝑠𝑖
+ 𝐹
𝑖𝑑
;

(27) change 𝑆
𝑠𝑑
to a backward scout;

(28) reverse the source route in the header;
(29) sendPacketToNextHop (𝑆

𝑠𝑑
);

(30) }

(31) else {

(32) if (TTL expired || 𝑆
𝑠𝑑
exists in seenScoutList)

(33) if (SF list collected from 𝑆
𝑠𝑑
is empty)

(34) kill 𝑆
𝑠𝑑
;

(35) else {

(36) insert in payload of 𝑆
𝑠𝑑
foragers from danceFloor;

(37) change 𝑆
𝑠𝑑
to a backward scout;

(38) reverse the source route in the header;
(39) sendPacketToNextHop(𝑆

𝑠𝑑
);

(40) }

(41) else {

(42) insert in payload of 𝑆
𝑠𝑑
foragers from danceFloor;

(43) insert address 𝑖 in the source route header;
(44) insert 𝐼𝐷 and source of 𝑆

𝑠𝑑
into seenScoutList;

(45) decrease TTL;
(46) broadcast 𝑆

𝑠𝑑
to all neighbors of 𝑖;

(47) }

(48) }

(49) }

(50) }
(51)
(52) /∗ forager received from packing floor ∗/
(53) for each (𝐹

𝑠𝑑
received from Packing floor) {

(54) collect optimization parameter from the node;
(55) sendPacketToNextHop(𝐹

𝑠𝑑
);

(56) }
(57)
(58) /∗ scout received from packing floor ∗/
(59) for each (𝑆

𝑠𝑑
received from Packing floor) {

(60) insert address 𝑖 in the source route header;
(61) insert 𝐼𝐷 and source of 𝑆

𝑠𝑑
into seenScoutList;

Algorithm 3: Continued.

10 Journal of Computer Networks and Communications

(62) decrease TTL;
(63) broadcast 𝑆

𝑠𝑑
to all neighbors of 𝑖;

(64) }
(65)
(66) void sendPacketToNextHop (𝑃

𝑠𝑑
)

(67) {
(68) find ℎnext in the source route header;
(69) send 𝑃

𝑠𝑑
to MAC Interface of ℎnext;

(70) }

Algorithm 3: Actions taken at the Entrance Floor.

1
2

3

45

6
7

8

11

12

14

13

9

10

15

16

18

20

21

22

17

19

23

24

1
2

9

10

18
17

1
2

3

45

6
7

8

11

12

14

13

9

10

15

16

18

20

21

22

17

19

23

24

Figure 5: Examples of topology changes.

Local hiveService
requestor

Local hiveNodo 2

(2) No foragers

Local hiveNodo 1

Local hiveNodo 3

Local hiveNodo 4

Local hiveService
provider

(6) BScout(ID)[SF List1, 3]

(5) BScout(ID)[SF List2, 4]

(6) BScout(ID)[SF List2, 4]

(7) Forager[SOAP message]

(8) Forager[SOAP message]

(9) Forager[SOAP message]

(6) addforagers

(3) No foragers

(3) No foragers

(4) No foragers

Get forager
No forager
Scout

Bscout
Matching
Web service invocation

(1) Get forager(SFi)

(3) Get forager(SFi)

(3) Get forager(SFi)

(3) Get forager(SFi)

(4) Get forager(SFi)

(3) Scout(ID, 1, SFi)

(3) Scout(ID, 1, SFi)

(4) Scout(ID, 0, SFi)[SF List2]

(4) Scout(ID, 0, SFi)[SF List1] (5) BScout(ID)[SF List1,3]

(4) Matching for SFi

Figure 6: BeeAdHocService Discovery working principles.

Journal of Computer Networks and Communications 11

provable comparisons as well as early investigations about the
algorithmvalidity. In this context,BeeAdHocServiceDiscovery
routing overhead and route optimality have been evaluated
following themodel presented in [12].Thus, a denseMANET
of N nodes, homogeneously distributed according to Poisson
distribution with node density 𝜌 and connected by sym-
metric links, is considered. The network runs a CSMA/CA-
based MAC layer protocol for contention resolution, may
lose packet because of channel errors, does not change its
topology during a route discovery process, counts on stable
channel conditions during the scout transmission between
two nodes, and transmits at a single uniform rate.

5.1. Service Discovery Overhead. The service discovery over-
head can be defined as the number of scouts generated in
the network up to a particular number of hops (ℎ) during a
route discovery phase since in BeeAdHocServiceDiscovery the
routing anddiscovery processes coincide.Thus, the definition
of discovery overhead mirrors the time to live (TTL) mecha-
nism used in BeeAdHoc during a route discovery. When TTL
expires, nodes stop rebroadcasting the scouts. The expected
number of scouts up to ℎ hops from the source node can be
calculated as follows:

𝐶
(𝐵𝑒𝑒𝐴𝑑𝐻𝑜𝑐)

𝑝
= 1 + 𝑝

𝑐
⋅ 𝑑avg + (𝑝

𝑐
)
2

⋅ 𝑑avg ⋅ 𝑑𝑓[1]

+ ⋅ ⋅ ⋅ + (𝑝
𝑐
)
ℎ

⋅ 𝑑avg ⋅ 𝑑𝑓[1] ⋅ 𝑑𝑓[2] ⋅ . . . ⋅ 𝑑𝑓[ℎ−1],

(1)

where 𝑑avg is the average degree of the node, 𝑑𝑓[1], 𝑑𝑓[2], . . .,
𝑑
𝑓[ℎ−1]

, the expected forward degree of nodes at 1, 2, . . . , ℎ −

1 hops from the source node, respectively, and pc the
probability of no collision that for an IEEE 802.11b MANET
with its distributed coordination function (DCF) at MAC
layer is given by

𝑝
𝑐
= 1 − (1 −

1

CWmin
)

𝑀−1

, (2)

with CWmin (= 31 for 802.11b) the minimum contention
window and 𝑀 the number of contending nodes. It is worth
noting that the expected forward degree might be assumed
a constant either when the network is sparse with nodes
having very small overlapping transmission regions or when
the network size is very small.

Assuming that 𝑑
𝑓[1]

= 𝑑
𝑓[2]

= 𝑑
𝑓[3]

= ⋅ ⋅ ⋅ , 𝑑
𝑓[ℎ−1]

= 𝑑
𝑓
,

(1) simplifies to

𝐶
𝑝
=

{
{
{

{
{
{

{

1 + ℎ𝑝
𝑐
𝑑
𝑓
𝑑avg if 𝑝

𝑐
𝑑
𝑓
= 1

1 + 𝑝
𝑐
𝑑avg (

1 − (𝑝
𝑐
𝑑
𝑓
)

ℎ

1 − 𝑝
𝑐
𝑑
𝑓

) otherwise,
(3)

where according to [12] 𝑑
𝑓
becomes

𝑑
𝑓
≃

𝑑avg − 𝜌𝑟
2

0
((2𝜋/3) − (√3/2))

2

.
(4)

5.2. Service Discovery Route Optimality. BeeAdHocService-
Discovery lays on the Beeadhoc routing algorithm; thus, it
keeps multiple paths to any pair source-destination (𝑠-𝑑) that
generated a scout because of a routing request. Each scout
reaching the destination is expected to find a new path. Now,
if 𝑘 edge disjoint paths are assumed to be between (𝑠-𝑑) and a 𝑡
hops path is assumed to be an optimal path, a function𝑓[𝑖−𝑡]

giving the total number of edge-disjoint paths of length 𝑖

between (𝑠-𝑑) can be introduced. BeeAdHocServiceDiscovery
finds links with probability 𝑝

𝑐
and therefore an optimal path

with probability 𝜀 = (1 − 𝑝
𝑐
)
𝑡−1, as Beeadhoc does. Thus, the

probability of discovering 𝑗optimal paths out of a total of𝑓[0]

optimal paths is the binomial distribution:

𝑏 (𝑗; 𝑓 [0] , 𝜀) = 𝑃 (𝑋 [𝑡] = 𝑗) = (

𝑓 [0]

𝑗
) 𝜀
𝑗

(1 − 𝜀)
𝑓[0]−𝑗

,

(5)

where 𝑋[𝑡] is the number of 𝑡 hop paths effectively found.
Consequently, the probability of finding at least a single
optimal path is given by

𝑃 (𝑋 [𝑡] ≥ 1) = 1 − (1 − 𝜀)
𝑓[0]

, (6)

where (1 − 𝜀)
𝑓[0] is the failure probability in discovering an

optimal path.

6. Conclusions

BeeAdHocServiceDiscovery is a new protocol of service dis-
covery and selection for MANET based on the foraging
behaviour of honeybees. It uses a cross layer mechanism
that allows gathering routing information, such as path
breaks and updates, in order to minimize the number of
control messages and to optimize the node selection with
respect to the used metrics. As a consequence, interesting
advantages for the web service accuracy and the network load
balancing can be achieved. BeeAdHocServiceDiscovery maps
the key concept of the MANET autoconfiguration algorithm
BeeAdHocAutoConf into the main components of a MANET
service discovery process. Moreover, by using the overall
functionality of a reactive multipath routing algorithm such
as BeeAdHoc, it saves all features of efficiency, scalability,
robustness, decentralization, adaptivity, and autoorganiza-
tion of it. Moreover, the formal evaluation of two traditional
metrics, such as discovery overhead and route optimality,
shows that the BeeAdHocServiceDiscovery performance does
not vary at all with respect to Beeadhoc.

Simulations are currently under investigation by means
of the Network Simulator Version-3 (ns-3) [23]. In our
simulation, the channel capacity of all mobile hosts is set
to 2Mbps and the MAC layer protocol works with the
distributed coordination function (DCF) of IEEE 802.11 for
wireless LAN for a scenario described in Table 3.

Among the total nodes, half of them are treated as clients
and the remaining ones as service providers.The comparison
algorithms are MCSD [15] and SISDA [8] with average
delay, drop, and packet delivery ratio taken into account as
performance evaluation metrics both in the case of real-
time and non-real-time services. Even though partial results

12 Journal of Computer Networks and Communications

Table 3: Simulation settings.

Parameters Values
Simulation area 35m × 35m–200m × 200m
Network size 50–1600
Mobility pattern Random walk 2 d mobility
Coverage range 30m
Simulation number 300

show that BeeAdHocServiceDiscovery performs better with
respect to MCSD and SISDA, some more experimentations
are required in order to assert its definitive power.

Moreover, another ongoing work is about the analysis of
the accuracy of our algorithm in terms of the number of
correct nodes discovered when looking for a specific web
service. Analysis will also include the correctness of the
algorithm when different criterions are taken into account.

The next step in the development ofBeeAdHocServiceDis-
covery will be the extension of the web service selection
criteria that should include more performance parameters.
Both the energy and privacy constraints [24–27] will also be
taken into account. Eventually performance and simulation
experiments will be performed paying attention to the use of
different forms of swarms too.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] E. M. Royer and C.-K. Toh, “A review of current routing
protocols for ad hoc mobile wireless networks,” IEEE Personal
Communications, vol. 6, no. 2, pp. 46–55, 1999.

[2] S. Nesargi and R. Prakash, “MANETconf: configuration of hosts
in a mobile ad hoc network,” in Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and Communications
Societies (IEEE INFOCOM ’02), vol. 2, pp. 1059–1068, NewYork,
NY, USA, 2002.

[3] P. Choudhury, A. Sarkar, and N. C. Debnath, “Deployment of
service oriented architecture in MANET: a research roadmap,”
in Proceedings of the 9th IEEE International Conference on
Industrial Informatics (INDIN ’11), pp. 666–670, July 2011.

[4] H. Wedde and M. Farooq, “BeeHive: routing algorithms
inspired by honey bee behavior,” KI, vol. 19, no. 4, pp. 18–24,
2005.

[5] H. F. Wedde and M. Farooq, “The wisdom of the hive applied
to mobile ad-hoc networks,” in Proceedings of the IEEE Swarm
Intelligence Symposium (SIS ’05), pp. 341–348, Pasadena, Calif,
USA, June 2005.

[6] H. F.Wedde, M. Farooq, T. Pannenbaecker et al., “Beeadhoc: an
energy efficient routing algorithm for mobile ad hoc networks
inspired by bee behavior,” in Proceedings of the 7th Annual
Conference on Gene tic and Evolutionary Computation (GECCO
’05), pp. 153–160, ACM, New York, NY, USA, 2005.

[7] M. Dorigo and C. Blum, “Ant colony optimization theory: a
survey,”Theoretical Computer Science, vol. 344, no. 2-3, pp. 243–
278, 2005.

[8] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence:
From Natural to Artificial Systems, Oxford University Press,
New York, NY, USA, 1999.

[9] S. Pariselvam and R. M. S. Parvathi, “Swarm intelligence based
service discovery architecture for mobile ad hoc networks,”
European Journal of Scientific Research, vol. 74, no. 2, pp. 205–
216, 2012.

[10] D. Teodorović, P. Lučić, G. Marković, and M. Dell’Orco, “Bee
colony optimization: principles and applications,” in Proceed-
ings of the 8th Seminar on Neural Network Applications in
Electrical Engineering (NEUREL ’06), pp. 151–156, September
2006.

[11] M. Saleem, S. Khayam, and M. Farooq, “Formal modeling
of BeeAdHoc: a bio-inspired mobile ad hoc network routing
protocol,” in Ant Colony Optimization and Swarm Intelligence,
vol. 5217 of Lecture Notes in Computer Science, pp. 315–322,
Springer, Berlin, Germany, 2008.

[12] M. Saleem, S. A. Khayam, and M. Farooq, “A formal perfor-
mance modeling framework for bio-inspired Ad Hoc routing
protocols,” in Proceedings of the 10th Annual Genetic and
Evolutionary Computation Conference (GECCO ’08), pp. 103–
110, July 2008.

[13] F. D. Santis, “An efficient bee-inspired auto-configuration algo-
rithm for mobile ad hoc networks,” International Journal of
Computer Applications, vol. 57, no. 17, pp. 9–14, 2012.

[14] A. Varshavsky, B. Reid, and E. de Lara, “A cross-layer approach
to service discovery and selection in MANETs,” in Proceedings
of the 2nd IEEE International Conference on Mobile Ad-hoc
and Sensor Systems (MASS ’05), pp. 459–466, Washington, DC,
USA, November 2005.

[15] X. Shao, L. H. Ngoh, T. K. Lee, T. Chai, L. Zhou, and J. Teo,
“Multipath cross-layer service dis covery (MCSD) formobile ad
hoc networks,” in Proceedings of the IEEE Asia-Pacific Services
Computing Conference (APSCC '09), pp. 408–413, December
2009.

[16] H.-W. Tsai, T.-S. Chen, and C.-P. Chu, “Service discovery in
mobile ad hoc networks based on grid,” IEEE Transactions on
Vehicular Technology, vol. 58, no. 3, pp. 1528–1545, 2009.

[17] Y. Chen and Z. Mi, “A novel service discovery mechanism
in MANET using auto-configured SDA,” in Proceedings of
the International Conference on Wireless Communications, Net-
working and Mobile Computing (WiCOM ’07), pp. 1660–1663,
September 2007.

[18] C. Ververidis and G. Polyzos, “Extended ZRP: a routing layer
based service discovery protocol for mobile ad hoc networks,”
in the 2nd Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services (MobiQuitous ’05),
pp. 65–72, July 2005.

[19] R. Grieco, D. Malandrino, and V. Scarano, “SEcS: scalable edge-
computing services,” in Proceedings of the 20th Annual ACM
Symposium on Applied Computing (SAC ’05), pp. 1709–1713,
March 2005.

[20] R. Grieco, D. Malandrino, and V. Scarano, “A scalable cluster-
based infrastructure for edge-computing services,”World Wide
Web, vol. 9, no. 3, pp. 317–341, 2006.

[21] R. Grieco, D.Malandrino, F. Mazzoni, and D. Riboni, “Context-
aware provision of advanced Internet services,” in Proceedings
of the 4th Annual IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Work-
shops ’06), pp. 600–603, March 2006.

[22] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET sim-
ulation studies: the incredibles,” ACM SIGMOBILE Mobile

Journal of Computer Networks and Communications 13

Computing and Communications Review, vol. 9, no. 4, pp. 50–
61, 2005.

[23] “ns-3,” http://www.nsnam.org/.
[24] D. Malandrino, A. Petta, V. Scarano, L. Serra, R. Spinelli, and B.

Krishnamurthy, “Privacy awareness about information leakage:
who knows what about me?” in Proceedings of the 12th ACM
Workshop on Workshop on Privacy in the Electronic Society
(WPES ’13), pp. 279–284, 2013.

[25] D. Malandrino and V. Scarano, “Privacy leakage on the Web:
Diffusion and countermeasures,” Computer Networks, vol. 57,
no. 14, pp. 2833–2855, 2013.

[26] S. D’Ambrosio, S. De Pasquale, G. Iannone et al., “Phone bat-
teries draining: is GWeB (Green Web Browsing) the solution?”
in Proceedings of the International Green Computing Conference
(IGCC ’14), Dallas, Tex, USA, November 2014.

[27] D. Malandrino, V. Scarano, and R. Spinelli, “How increased
awareness can impact attitudes and behaviors toward online
privacy protection,” in Proceedings of the International Confer-
ence on Social Computing (SocialCom ’13), pp. 57–62, September
2013.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

