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The process of coarsening of nanoclusters or nanocrystals (NCs) is investigated for the case when cluster growth (dissolution) is
governed simultaneously by both diffusion along dislocation pipes and the rate of formation of chemical connections (chemical
reaction) at cluster surface, namely,Wagner’s growingmechanism. For that, the total flow of atoms to (from) a cluster is represented
by two parts, namely, diffusion part and the Wagner (kinetic) one. The dependence of the rate of growth of NC on the ratio of the
parts of the total flow has been determined as well as the NC’s size distribution function referred to as the Wagner-Vengrenovich
distribution. Computed distribution is compared with experimentally obtained histograms.

1. Introduction

Ostwald’s ripening (OR) is the final stage of formation of a
new phase as a result of phase transformation, such as decay
of oversaturated solid solutions. Nanoclusters or nanocrystals
(NCs) of new phase having different sizes interact through
the Gibbs-Thomson effect that results in dissolution of small
NC and growth of large ones. Diffusion growth of NC under
matrix of volume diffusion (ls-mechanism) has been firstly
studied by Lifshitz and Slyozov [1, 2]. Wagner has showed
later [3] that beside diffusion mechanism, another mecha-
nism of NC growth is possible, which is governed by the rate
of formation of chemical connections (chemical reaction)
at NC surface (w-mechanism). The theory developed in
the cited papers is referred to as the LSW theory. Practical
verification of this theory shows that in many cases, it is
proper for the description of experimental data on temporal
behavior of themeanNC size and theNC size the distribution
function, while in other cases the LSW theory must be
refined.

In this connection, NC growth is considered in papers [4,
5] as a result of combined action of two growingmechanisms,
diffusion (ls) and Wagner’s (w) ones. In the framework of
the modified LSW theory and taking into account both
mechanisms of growing (ls and w), we can obtain a size

distribution in the form of the generalized Lifschitz-Slyozov-
Wagner distribution [4].This distribution can refer to amuch
wider range of the experimental histograms than each of
the Lifschitz-Slyozov (LS) and Wagner’s (𝑊) distributions
separately.

The products of nanotechnologies [6–8] become new
objects of applying the LSW theory. As sizes become 100 nm
and less [9], the characteristics of both separate NCs and of
the system as a whole change cardinally that provides prac-
tically useful properties. The OR is among probable factors
destabilizing microstructure and properties of nanocluster
systems. Semiconductor heterosystems with quantum dots
(QDs) obtained by electron-beam epitaxy technique [10–16]
in the Stranski-Krastanov regime [17] as well as arrays of
QDs synthesized from liquid matter by chemical and other
techniques [18–25] are examples of such nanocluster systems.

As it has beenmentioned above, the generalized LSWdis-
tribution has been obtained by combination of the diffusion
(ls) and Wagner’s (w) mechanisms of NC growth. However,
in presence of a matrix of free dislocations interacting with
elastic fields of NCs or in presence of NCs located at disloca-
tion network, just dislocation diffusion (v-mechanism of NC
growth) predominates rather than matrix one. Peculiarities
of the Ostwald’s ripening under diffusion along dislocation
pipes have been considered supra [26–30].
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The purpose of this paper consists in finding out the size
distribution function and temporal dependences of NCmean
size for the case when NC growth is governed simultaneously
by both mechanisms, namely, dislocation diffusion (v) and
the rate of formation of chemical connections (chemical
reaction) at cluster surface (w). Computations are carried out
within the framework of the modified LSW theory [4], using
the technique introduced in paper [31].

2. Theoretical Part

As NC growth is governed by two mechanisms (v and w)
simultaneously, the total flow of atoms to (from) NC consists
of two parts [4]

𝑗 = 𝑗𝑑 + 𝑗𝑖, (1)

where 𝑗𝑑 is the diffusion part of flow that equals the number
of atoms reaching cluster surface in unit time through
dislocation diffusion and 𝑗𝑖 is the Wagner’s part of flow that
equals the number of atoms involved in forming chemical
connections at cluster surface in unit time.

To determine the size distribution function, 𝑓(𝑟, 𝑡), let us
use the continuity equation

𝜕𝑓 (𝑟, 𝑡)

𝜕𝑡
+

𝜕

𝜕𝑟
[𝑓 (𝑟, 𝑡) ⋅ ̇𝑟] = 0, (2)

where ̇𝑟 ≡ 𝑑𝑟/𝑑𝑡 is the rate of growth of cluster with radius 𝑟,
which is determined from the following condition:

𝑑

𝑑𝑡
(
4

3
𝜋𝑟
3
) = 𝑗𝜐𝑚, (3)

where 𝑗 is determined by (1).
In accordancewith [27], the diffusion part of a flow equals

𝑗𝑑 = 𝐷𝑑2𝑍𝑞
⟨𝐶⟩ − 𝐶𝑟

𝑟
, (4)

where 𝐷𝑑 is the diffusion coefficient along dislocations, 𝑍
is the the number of dislocation lines crossing a cluster
(𝑍 = const), 𝑞 is the cross-section of dislocation pipe, ⟨𝐶⟩
is the mean concentration of diffusing atoms into solution,
𝐶𝑟 = 𝐶∞ exp(2𝜎𝜐𝑚/𝑟𝑘𝑇) ≈ 𝐶∞(1 + 2𝜎𝜐𝑚/𝑟𝑘𝑇) is that
concentration of atoms of solved matter at the boundary of
a cluster of radius 𝑟,𝐶∞ is that equilibrium concentration for
the specified temperature𝑇, and 𝜐𝑚 is that volume of an atom
of solved matter.

Wagner’s (kinetic) part of a flow equals [3]:

𝑗𝑖 = 4𝜋𝑟
2
𝛽 (⟨𝐶⟩ − 𝐶𝑟) , (5)

where 𝛽 is the kinetic coefficient.
Knowing 𝑗𝑑 and 𝑗𝑖, one finds out the rate of cluster growth

from (3). Consider the following:

𝑑𝑟

𝑑𝑡
=

1

4𝜋𝑟2
[𝐷𝑑2𝑍𝑞

(⟨𝐶⟩ − 𝐶𝑟)

𝑟
+ 4𝜋𝑟

2
𝛽 (⟨𝐶⟩ − 𝐶𝑟)] , (6)

where ⟨𝐶⟩ − 𝐶𝑟 = (2𝜎𝜐𝑚/𝑘𝑇)(1/𝑟𝑘 − 1/𝑟), 𝑟𝑘 is the critical
radius that, within the LSW theory approximation, assumes
to be equal to the mean radius, ⟨𝑟⟩.

To determine the analytical form of the size distribution
function of clusters with peculiarities intrinsic in Wagner’s
(𝑊) distribution [3] andVengrenovich’s (𝑉) distribution [27],
one must express the rate of growth (6) as the ratio of flows
𝑗𝑑 and 𝑗𝑖

𝑗𝑑

𝑗𝑖

=
𝑥

1 − 𝑥
, (7)

where 𝑥 is the part of flow 𝑗𝑑 in the total flow 𝑗 : 𝑥 = 𝑗𝑑/𝑗 and
(1 − 𝑥) is the part of flow 𝑗𝑖 in the total flow 𝑗 : 1 − 𝑥 = 𝑗𝑖/𝑗.
Taking into account that (4) and (5) for flows are valid for
NCs of arbitrary radius 𝑟, including NCs of the maximal size
𝑟𝑔 [4, 5], one can rewrite (6) in the form

𝑑𝑟

𝑑𝑡
=
𝐴
∗

𝑟
(

𝑥

1 − 𝑥

1

𝑢3
+ 1)(

𝑟

𝑟𝑘

− 1) , (8)

where 𝐴∗ = 2𝜎𝜐
2

𝑚
𝐶∞𝛽/𝑘𝑇, 𝑢 = 𝑟/𝑟𝑔, or in the form

𝑑𝑟

𝑑𝑡
=
𝐵
∗

𝑟4
(1 +

1 − 𝑥

𝑥
𝑢
3
)(

𝑟

𝑟𝑘

− 1) , (9)

where 𝐵∗ = (2𝜎𝜐
2

𝑚
𝐶∞𝑍𝑞𝐷𝑑)/𝜋𝑘𝑇.

Equation (8) corresponds to the rate of growth of NCs
that is determined by the kinetic flow 𝑗𝑖, namely, by the
rate of formation of chemical connections, with the share
contribution (1−𝑥) of the diffuse flow (𝑥 < 1), and the rate of
growth (9) is determined by the diffuse flow 𝑗𝑑 with the share
contribution 𝑥 of the kinetic flow (𝑥 > 0).

From (8) or (9), for the rate of growth, one can determine
the ratio 𝑟𝑔/𝑟𝑘 that in terms of paper [1] corresponds to
the locking point magnitude, 𝑢0 (𝑢0 = 𝑟𝑔/𝑟𝑘 ). Knowing
𝑢0 enables to integrate (8) and (9) and to find out tem-
poral dependences for 𝑟𝑔 and 𝑟𝑘, as well as to separate
the variables in the continuity equation (2) and to find
out the analytical form of the size distribution function. In
accordance with [31], the ratio (𝑟𝑔/𝑟𝑘) (𝑢0) can be found out
from the dependence of the specific rate of growth ̇𝑟/𝑟 on 𝑟
shown schematically in Figure 1. Derivative equals zero at the
maximum of this function

𝑑

𝑑𝑟
(
̇𝑟

𝑟
)

𝑟

= 0. (10)

From (10), one obtains
𝑟𝑔

𝑟𝑘

=
2 + 3𝑥

1 + 3𝑥
. (11)

Assuming 𝑟 = 𝑟𝑔(𝑢 = 1) in (8) and replacing the ratio
𝑟𝑔/𝑟𝑘 by its magnitude from (11), one obtains by integration

𝑟
2

𝑔
=

2𝐴
∗

(1 − 𝑥) (1 + 3𝑥)
𝑡, 𝑟

2

𝑘
=

2𝐴
∗
(1 + 3𝑥)

(1 − 𝑥) (2 + 3𝑥)
2
𝑡. (12)

Equation (12) determines the temporal dependences for
the maximal radius of NCs, 𝑟𝑔, and the critical one, 𝑟𝑘, when
the Wagner’s mechanism of growth predominates. The limits
of changing parameter𝑥 can be determined from comparison
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Figure 1: Schematic representation of the specific rate of growth
( ̇𝑟/𝑟) on 𝑟.

of experimental and theoretical data, for example, for size
distribution function, which equals in our case 0 ≤ 𝑥 ≤ 0, 3,
approximately.

For 𝑥 = 0, growth of NCs is completely controlled
by the rate of formation of chemical connections (the w-
mechanism) [3]

𝑟
2

𝑔
= 2𝐴
∗
𝑡, 𝑟
2

𝑘
=
1

2
𝐴
∗
𝑡,

𝑟𝑔

𝑟𝑘

= 2. (13)

Similarly, one obtains from (9)

𝑟
5

𝑔
=

5𝐵
∗

𝑥 (1 + 3𝑥)
𝑡, 𝑟

5

𝑘
=
5𝐵
∗
(1 + 3𝑥)

4

𝑥(2 + 3𝑥)
5
𝑡. (14)

Equation (14) corresponds to the temporal dependences
of changing 𝑟𝑔 and 𝑟𝑘, when diffusion along dislocation pipes
predominates in the growth of NCs. For that, the parameter
𝑥 changes within interval 0, 7 ≤ 𝑥 ≤ 1, approximately.

For 𝑥 = 1, growth of NCs is completely controlled by
the diffusion of solved atoms along dislocation pipes (the v-
mechanism) [26, 27]:

𝑟
5

𝑔
=
5

4
𝐵
∗
𝑡, 𝑟
5

𝑘
= (

4

5
)

4

𝐵
∗
𝑡,

𝑟𝑔

𝑟𝑘

=
5

4
. (15)

In accordance with [26], the total change of NC’s volume,
Δ𝑉Σ, consists from Δ𝑉𝑑, that is, the change caused by the
dislocation flux, 𝑗𝑑, and Δ𝑉𝑖 caused by the kinetic flux, 𝑗𝑖,

Δ𝑉Σ = Δ𝑉𝑑 + Δ𝑉𝑖, (16)

or

4

3
𝜋𝑟
3

𝑘Σ
=
4

3
𝜋𝑟
3

𝑘𝑑
+
4

3
𝜋𝑟
3

𝑘𝑖
, (17)

where for the sake of simplicity, time reading is made from
zero: 𝑡 = 𝑡0 = 0; 𝑟3

𝑘Σ
(𝑡0) = 0; 𝑟3

𝑘𝑑
(𝑡0) = 0; 𝑟3

𝑘𝑖
(𝑡0) = 0. Taking

into account (12) and (14), one obtains from (17)

𝑟𝑘Σ
= [𝑓1 (𝑥) 𝑡

3/5
+ 𝑓2 (𝑥) 𝑡

3/2
]
1/3

, (18)

where 𝑓1(𝑥) = 5𝐵
∗
(1 + 3𝑥)

4
/𝑥(2 + 3𝑥)

5, 𝑓2(𝑥) = 2𝐴
∗
(1 +

3𝑥)/(1 − 𝑥)(2 + 3𝑥)
2, and the limits of changing total radius

of NCs 𝑥 are 0, 3 ≤ 𝑥 ≤ 0, 7, approximately.
In accordance with [31], the size distribution function of

NCs is found out as the product of two functions

𝑓 (𝑟, 𝑡) = 𝜑 (𝑟𝑔) 𝑔

(𝑢) , (19)

where 𝑟𝑔 = 𝜓(𝑡).
By substitution (19) into the mass conservation law for

disperse phase (NCs),

𝑀 =
4

3
𝜋𝜌∫

𝑟𝑔

0

𝑟
3
𝑓 (𝑟, 𝑡) 𝑑𝑟, (20)

one obtains

𝜑 (𝑟𝑔) =
𝑄

𝑟4
𝑔

, (21)

where 𝑄 = 3𝑀/4𝜋𝜌 ∫
1

0
𝑢
3
𝑔

(𝑢)𝑑𝑢.

Taking into account (21), one can write the size distribu-
tion function in the form

𝑓 (𝑟, 𝑡) =
1

𝑟4
𝑔

𝑔 (𝑢) , (22)

where

𝑔 (𝑢) = 𝑄𝑔

(𝑢) , (23)

and 𝑔(𝑢) is the required distribution function on relative
sizes of NCs, called by us the Wagner-Vengrenovich (WV)
distribution function, as the distributions corresponding to
each of the mechanisms, w and v, separately have been early
obtained by Wagner (W) [3] and Vengrenovich (V) [27].

For determining 𝑔(𝑢), let us use the continuity equation
(2) substituting in this equation, instead of 𝑓(𝑟, 𝑡) and ̇𝑟, their
magnitudes from (19) and (8) (or (9)). By transition in (2),
from differentiation on 𝑟 and 𝑡 to differentiation on 𝑢 [31],
variables are separated

𝑑𝑔

(𝑢)

𝑔 (𝑢)
= −

4𝜐𝑔𝑢
2
+ 𝜐 − 𝑢 (𝑑𝜐/𝑑𝑢)

𝑢3𝜐𝑔 − 𝜐𝑢
𝑑𝑢, (24)

where one takes into account that 𝜐 = ̇𝑟𝑟/𝐴
∗, 𝜐𝑔 = ̇𝑟𝑔𝑟/𝐴

∗,
𝑑𝑢/𝑑𝑟 = 1/𝑟𝑔, and 𝑑𝑢/𝑑𝑟𝑔 = −𝑢/𝑟𝑔.

Finding out 𝜐, 𝜐𝑔, and 𝑑𝜐/𝑑𝑢 from (8), one can rewrite
(24) in the form

𝑑𝑔

(𝑢)

𝑔 (𝑢)

= −

4𝑢
5
+ 𝑢
3
(3𝑥
2
− 2𝑥 − 1) + 𝑢𝑥 (9𝑥 + 6) − 12𝑥

2
− 4𝑥

𝑢(1 − 𝑢)
2
[𝑢3 + 𝑢2𝑥 (3𝑥 − 1) + 3𝑢𝑥

2 + 𝑥 (3𝑥 + 1)]

× 𝑑𝑢,

(25)
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Figure 2: Dependences corresponding to the WV distribution computed with interval Δ𝑥 = 0, 1 (a); the same dependences normalized by
the corresponding maxima (b).

by integration of which one obtains the WV size distribution
function:

𝑔

(𝑢) = 𝑢

𝜎
(1 − 𝑢)

−𝛼
(𝑢 + 𝑏)

𝛽
(𝑢
2
+ 𝑐𝑢 + 𝑑)

𝛾

exp ( 𝜔

1 − 𝑢
)

× exp[[

[

𝜀 − 𝛾𝑐

√𝑑 − 𝑐2/4

tan−1( 𝑢 + (𝑐/2)

√𝑑 − (𝑐2/4)

)
]
]

]

,

(26)

with the magnitudes of the power indices, 𝜎, 𝛼, 𝛽, 𝛾, and
coefficients 𝛾, 𝜀, 𝑐, and 𝑑 expressed through the parameter 𝑥
are given in the appendix.

3. Results and Discussion

TheWVdistribution is represented in Figure 2. Dependences
represented in Figure 2(a) are computed with interval Δ𝑥 =

0, 1. The same dependences normalized by their maxima
are represented in Figure 2(b). In the normalized form,
such dependences are well behaved for comparison with the
normalized experimentally obtained histograms.

The results of comparison of the experimentally obtained
histograms with our computations, (23), are shown in
Figure 3 for various magnitudes of the parameter 𝑥. All
experimentally obtained histograms and theoretically found
dependences are normalized by their maxima. For conve-
nience, the LS distribution is represented, accurate within a
constant, as a function of variable 𝑢 = 𝑟/𝑟𝑔:

𝑔

(𝑢) = 𝑢

2
(1 − 𝑢)

−11/3
(𝑢 + 2)

−7/3 exp(− 1

1 − 𝑢
) . (27)

Experimentally obtained histograms shown in Figure 3
correspond to the size distribution function of Al3Sc NCs
in binary alloys Al–Sc(0,12 am%Sc). Exposition of alloys

has been performed at temperature 350
∘C over a period:

(a) 2; (b) 5; (c) 72; (d) 104; (e) 168 h [32]. Dashed curves
correspond to the LS,𝑊(𝑥 = 0), and 𝑉(𝑥 = 1) distributions.
Solid curve corresponds to the WV distribution for relevant
magnitudes of the parameter 𝑥. One can see that neither
the 𝑊 distribution (𝑥 = 0) nor the 𝑉 distribution (𝑥 =

1) is well fitting the experimentally obtained histograms.
The LS distribution (dashed curve) and the WV distribution
for relevant magnitude of the parameter 𝑥 (solid curve)
fit experimentally obtained histograms much more reliably.
Moreover, one can see fromFigure 3 that theWVdistribution
(23) provides better fitting of experimental data than the LS
distribution.

The same is observed for alloys Al(Sc,Zr). Histograms in
Figure 4 correspond to size distribution of NCs Al3Sc1−𝑥Zr𝑥
in such alloys [33]. Alloys (Al-0, 14Sc-0, 012Zr)am% were
exposed at temperature 375∘C over a period: (a) 3; (b) 192;
(c) 288 h. Similarly to the case of binary alloys, the WV
distribution (23) satisfactorily fits experimentally obtained
histograms. It means that the proposed mechanism of cluster
coarsening governed by two mechanisms (w and ls ones) in
parallel is realized under the OR. For that, interpretation of
experimentally obtained histograms is made by applying the
WV distribution.

4. Conclusions

Summarizing, it has been shown that the modified Lifshitz-
Slyozov-Wagner (LSW) theory [4, 5] can be applied to
nanocluster systems. Theory of the Ostwald’s ripening for
alloys containing nanocrystalline phases must be assumed
taking into account not only diffusion flow, 𝑗𝑑, but also
kinetic (Wagner’s) one, 𝑗𝑖, it has been shown, for alloys
containing Al–Sc andAl(Sc,Zr), correspondingly, NCs Al3Sc
and Al3(Sc1−𝑥Zr𝑥), that the size distribution function is
satisfactorily fitted by the introduced Wagner-Vengrenovich
(WV) distribution here.
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Figure 3: Comparison of experimentally obtained histograms of Al3Sc NCs [32] with the WV distribution (solid curve) for exposition of
alloys for temperature 350∘C over a period: (a) 2; (b) 5; (c) 72; (d) 104; (e) 168 h.
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Figure 4: Comparison of experimentally obtained histograms of Al3Sc1−𝑥Zr𝑥 NCs [33] with theWV distribution (solid curve) for exposition
of aluminium-based alloys containing 0,14 Sc and 0,012 Zr at % for temperature 375∘C over a period: (a) 3; (b) 192; (c) 288 h.

Appendix

To integrate (25) for determining 𝑔(𝑢), one must perform
prime factor decomposition of the third-order polynomial
into denominator in respect of 𝑢

𝑢
3
+ 𝑢
2
𝑥 (3𝑥 − 1) + 𝑢3𝑥

2
+ 𝑥 (3𝑥 + 1)

= (𝑢 + 𝑏) (𝑢
2
+ 𝑐𝑢 + 𝑑) ,

(A.1)

where the root of the cubic equation (A.1), found using the
Cardano formula, has the form:

𝑏 =
𝜇

3
− 𝑤 − ], (A.2)

𝜇 = 3𝑥
2
− 𝑥, 𝑤 = √−

𝑞

2
+ √𝑧,

] = √−
𝑞

2
− √𝑧, 𝑞 =

2𝜇
3

27
−
𝜇𝑠

3
+ 𝑡,

𝑠 = 3𝑥
2
, 𝑡 = 3𝑥

2
+ 𝑥, 𝑧 = (

𝑝

3
)

3

+ (
𝑞

2
)

3

,

𝑝 =
3𝑠 − 𝜇

2

3
,

(A.3)

and the coefficients are

𝑐 =
2

3
𝜇 + 𝑤 + ], (A.4)

𝑑 = (
𝑤 + ]

2
)

2

+ (
𝑤 + ]

3
) 𝜇 + (

𝜇

3
)

2

+
3

4
(𝑤 − ])2. (A.5)

Taking into account (A.1), one obtains by integrating (25),
the WV distribution (26), where
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𝜎 =
4𝑥 (3𝑥 + 1)

𝑏𝑑
,

𝛼 = (18𝑥
2
(𝑏 + 1) (𝑐 + 𝑑 + 1) + 11 (𝑏𝑐 + 𝑑)

+ 8 (𝑏 + 𝑐) + 14𝑏𝑑 + 5)

× ((𝑏
2
+ 2𝑏 + 1)

× (𝑐
2
+ 𝑑
2
+ 2𝑐𝑑 + 2𝑐 + 2𝑑 + 1))

−1

,

𝛽 =

(3𝑏
3
+ 9𝑏 + 12) 𝑥

2
+ (6𝑏 − 2𝑏

3
+ 4) 𝑥 + 4𝑏

5
− 𝑏
3

𝑏 (𝑏2 − 𝑏𝑐 + 𝑑) (𝑏2 + 2𝑏 + 1)
,

𝛾 =
𝛼 − 𝜎 − 𝛽 − 4

2
, 𝜔 = −

3

(𝑏 + 1) (𝑐 + 𝑑 + 1)
,

𝜀 = 𝜎 (2 − 𝑏 − 𝑐) + 𝛼 (𝑏 − 1)

− 𝜔 + 𝛽 (2 − 𝑐) + 2𝛾 (2 − 𝑏) .

(A.6)

For vanishing 𝑥 (𝑥 → 0), one has 𝜎 → 4, 𝛼 → 5, 𝜔 →

−3, 𝛽 → −1, 𝛾 → −1, and 𝜀 → 0, and the distribution
(26), accurate within a constant 𝑄, corresponds to Wagner’s
distribution [3]:

𝑔

(𝑢) = 𝑢(1 − 𝑢)

−5 exp(− 3

1 − 𝑢
) . (A.7)

For example, for 𝑥 = 10
−10, one obtains 𝜎 = 3, 999999,

𝛼 = 5, 000000, 𝜔 = −3, 000000, 𝛽 = −0, 999999, 𝛾 =

−0, 999999, 𝜀 = 0, 000464, 𝑏 = 0, 000473, 𝑐 = −0, 000462,
and 𝑑 = 0, 0000002. All computations have been carried out
using Maple software. It must be noticed that, in accordance
with (8) and (9), 𝑥 cannot be equal to 0 or 1 : 0 < 𝑥 < 1.

In another case, when 𝑥 approaches unity, 𝑥 → 1, to
say for 𝑥 = 0, 99999, one obtains 𝜎 ≈ 4; 𝛼 ≈ 2, 88889; 𝛽 ≈

−1, 69341; 𝛾 ≈ −1, 70329; 𝜔 ≈ −0, 29999; 𝜀 ≈ −0, 78535; 𝑏 ≈
1, 65063; 𝑐 ≈ 0, 34937; 𝑑 ≈ 2, 42332. The distribution (26),
accurate within a constant 𝑄, corresponds to Vengrenovich’s
(V) distribution [27]:

𝑔

(𝑢) = (𝑢

4 exp(− 0, 3

1 − 𝑢
)

× exp [−0, 123 ⋅ tan−1 (0, 64647𝑢 + 0, 11293)] )

× ((1 − 𝑢)
2,88889

(𝑢 + 1, 65063)
1,69341

× (𝑢
2
+ 0, 34937𝑢 + 2, 42332)

1,70329

)

−1

.

(A.8)
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