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This paper presents an automatic system of neural networks (NNs) that has the ability to simulate and predict many of applied
problems. The system architectures are automatically reorganized and the experimental process starts again, if the required
performance is not reached. This processing is continued until the performance obtained. This system is first applied and tested
on the two spiral problem; it shows that excellent generalization performance obtained by classifying all points of the two-spirals
correctly. After that, it is applied and tested on the shear stress and the pressure drop problem across the short orifice die as a
function of shear rate at different mean pressures for linear low-density polyethylene copolymer (LLDPE) at 190◦C. The system
shows a better agreement with an experimental data of the two cases: shear stress and pressure drop. The proposed system has been
also designed to simulate other distributions not presented in the training set (predicted) and matched them effectively.
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1. Introduction

Neural networks are widely used for solving many problems
in most science problems of linear and nonlinear cases [1–9].
Neural network algorithms are always iterative, designed to
step by step minimise (targeted minimal error) the difference
between the actual output vector of the network and the
desired output vector, examples include the Backpropaga-
tion (BP) algorithm [10–12] and the Resilient Propagation
(RPROP) algorithm [13–15].

Neural classifiers can deal with many multivariable
nonlinear problems for which an accurate analytical solution
is difficult to obtain. It is found however that the use of
neural classifiers depends on several parameters that are
crucial to the accurate predictions of the properties sought.
The appropriate neural architecture, the number of hidden
layers, and the number of neurons in each hidden layer are
issues that can greatly affect the accuracy of the prediction.
Unfortunately, there is no direct method to specify these
factors as they need to be determined on experimental and
trial basis [16].

The two-spiral benchmark was considered as one of the
most difficult problems in two-class pattern classification
field due to the complicated decision boundary [17]. It is

extremely hard to solve using multilayer perceptron models
trained with various BP algorithms [18]. Thus, it is a well-
known benchmark problem for testing the quality of neural
network classifiers [19].

The effects of pressure on the viscosity and flow stability
of one of the commercial grade polyethylenes (PEs) which
is linear low-density polyethylene copolymer have been
studied. The range of shear rates considered covers both
stable and unstable flow regimes. “Enhanced exit-pressure”
experiments have been performed attaining pressures of
the order of 500 × 105 Pa at the die exit. The necessary
experimental conditions have been clearly defined so that
dissipative heating can be neglected.

Very high pressures can be exerted on polymers during
processing. At these pressure levels, polymer melt properties,
and flow stability, evolve according to laws that are different
from those used at moderate pressures. In the following
work by Couch and Binding [20], temperature and pressure
dependence of shear stress can be modeled. Carreras et
al. [21] studied these effects experimentally using different
rheometers. The data obtained by Carreras et al. [21]
is chosen to be carried out using the neural networks
depending on the BP and RPROP algorithms.
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BP is the most widely used algorithm for supervised
learning with multilayered feed-forward networks [22], and
it is very well known, while the RPROP algorithm is not well
known and described in some detail in Section 3.1.

The RPROP algorithm was faster than the BP [23, 24].
Therefore, the RPROP is chosen to be carried out in this
study. The present work offers an efficient neural network
that is used to predict the unknown data of shear stress and
the pressure drop across the short orifice die as a function of
shear rate at different mean pressures for linear low-density
polyethylene copolymer at 190◦C. The following sections
provide a brief introduction to NNs, describe the selected
NN structure, training data, and discuss the results.

2. The Studied Problems

2.1. Two Spirals. The two-spiral problem is a classification
task that consists of deciding in which of two interlocking
spiral-shaped regions a given coordinate lies. The interlock-
ing spiral shapes are chosen for this problem because they
are not linearly separable. Finding a neural network solution
to the two-spirals problem has proven to be very difficult
when using a traditional gradient-descent learning method
such as backpropagation, and therefore it has been used in
a number of studies to test new learning methods; see for
instance, [25, 26].

To learn and solve this task, a training set consists
of 194 preclassified coordinates. Half of the coordinates
is located in one spiral-shaped region and marked with
triangles, and the other spiral-shaped region marked with
circles. The coordinates of the 97 triangles are generated
using the following equations, where i = 0, 1, . . . , 96. The
coordinates of the circles are generated simply by negating
the coordinates of the triangles [27]

r = 6.5(104− i)
104

, θ = i
π

16
, x = r sin θ, y = r cos θ.

(1)

When performing a correct classification, the neural net-
work takes two inputs corresponding to an (x, y) coordinate,
and produces a positive signal if the point falls within the
spiral that drawn using triangles and a negative signal if the
point falls within the spiral that drawn by circles [27].

2.2. Linear Low-Density Polyethylene Copolymer. The studied
problem consists of two dependent parts, the first is the
pressure drop across the short orifice die as a function of
shear rate at different mean pressures for linear low-density
polyethylene copolymer at 190◦C and the second is the shear
stress dependence on shear strain of the same fluid at 190◦C
which represent flow curves. Each part contains seven groups
of data. Each group has some samples as specified in [21].
The group data number 5 is specified to be predicted for each
part, while the other six groups are chosen as patterns for
training. The six groups for each part are prepared as input
patterns of the proposed neural network algorithm.

This problem has two inputs (mean pressure and γ share
rate), and single output (pressure drop Δp (Pa)) in each part,

Neural
networkShear rate

(γ)

Pressure
drop (Δp)

(a)

Neural
networkShear rate

(γ)

Mean
pressure

Shear stress
(τ)

(b)

Figure 1: A block diagram modeling.

because there is only one target value associated with each
input vector; see Figure 1.

3. Neural Networks

Neural networks consist of a number of units (neurons)
which are connected by weighted links. These units are
typically organised in several layers, namely, an input layer,
one or more hidden layers, and an output layer. The input
layer receives an external activation vector and passes it via
weighted connections to the units in the first hidden layer.
Figure 2 shows input layer with R elements, one hidden
layer with S neurons, and output layer with one element.
Each neuron in the network is a simple processing unit

that computes its activation y(1)
i with respect to its incoming

excitation, the so-called net input neti,

neti =
∑

j∈pred

s jwi j − bi, (2)

where pred(i) denotes the set of predecessors of unit i,wij

denotes the connection weight from unit j to i unit, and

bi is the unit bias value. The activation of unit i, y(1)
i , is

computed by passing the net input through a non-liner
activation function. The tan-sigmoid function is applied in
the proposed work as follows:

y(1)
i = ftan sig(neti) = 1

1 + e−2neti
− 1. (3)

3.1. RPROP Algorithm. In the RPROP algorithm, each
weight (wij) is computed by its individual update-value

(Δ(t)
i j ), which determines the size of the weight update. This

adaptive update-value evolves during the learning process
based on its local sight on the error function E, according
to the following learning-rule [13]:

Δ(t)
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η+∗Δ(t−1)
i j if

∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
> 0,

η−∗Δ(t−1)
i j if

∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
< 0,

Δ(t−1)
i j , else,

(4)

where 0 < η− < 1 < η + .
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Figure 2: Network Architecture for one hidden layer.

The size of the weight change is exclusively determined by

the weight-specific update-value Δ(t)
i j . Every time the partial

derivative of the corresponding weight changes its sign, the
update-value is decreased by the factor η. This indicates that
the last update was too big and the algorithm jumped over a
local minimum. On the other hand, if the derivative retains
its sign the update-value is slightly increased by the factor η in
order to accelerate convergence in shallow regions. Once the
update-value for each weight is adapted, the weight-update
is changed as follows: if the derivative is positive (increasing
error) the weight is decreased by its update-value, if the
derivative is negative, the update-value is added. Then, the
weights are updated as in (6) using update-values from

Δ(t)
i j =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δ(t)
i j if

∂E(t)

∂wij
> 0,

+Δ(t)
i j if

∂E(t)

∂wij
< 0,

0, else,

(5)

wt+1
i j = w(t)

i j + Δw(t)
i j (6)

see [23].
As mentioned in the end of Section 1, the RPROP

algorithm was faster than the BP, the main reason for the
success using this algorithm is that the size of weight-step
is only dependent on the sequence of signs, not on the
magnitude of the derivative as showed by Riedmiller and
Braun [23]. The RPROP algorithm has fewer parameters
that need to be evaluated and promises to provide the same
performance as an optimally trained network using the BP
algorithm.

3.2. Proposed System. The proposed system is designed to
work in automatic way starting with random initial weighed
and biases values. Many NN experiments are done to have the
optimal NN results of the two-spiral problem, by repeating
the same experiment using the same NN architecture

(number of hidden layers and neurons). Therefore, 500 NN
experiments and 400 neurons are specified as maximum
numbers of this system. The system stops when the best
network is obtained. This system is trained and tested using
different parameters, for instance, changing the number of
hidden layers, neurons, and epochs. The experimental data of
the two physical problems (the shear stress and the pressure
drop problem across the short orifice die as a function of
shear rate at different mean pressures for linear low-density
polyethylene copolymer (LLDPE) at 190◦C) are smaller.
Therefore, the optimal required numbers of hidden layers
and neurons are specified by NN experiments depending on
trial and error as applied, for instance, in [28, 29]. If the
required performance is not reached in the test process, this
system is continued to do another new experiment. When
the last NN experiment is reached, the number of neurons
for each hidden layer is incremented in sequence way and
the process of another 500 NN experiments starts again.
The incremented process is continued until the required
performance is reached. If not, and the maximum number
of neurons is reached, an alternative way is started; the
number of hidden layers is incremented by one and new 500
NN experiments start again with initializing the number of
neurons for these hidden layers. The system is continuous
until excellent training and prediction is reached. The details
of the proposed system are shown in Figure 3.

This proposed system is based on RPROP algorithm
using tan-sigmoid transfer function in the hidden layers and
a linear transfer function in the output layer. More hidden
layers or neurons require more computations, but allow the
network to solve complicated problems. Therefore, many
tries are done to find the best network that uses low number
of hidden layers and low number of neurons.

After the training, in the test process of the two-spirals
problem, it is noticed that the chosen algorithm using two
hidden layers with 77 neurons for each one is very effective
for reaching the optimal classification; see Figure 4(a). While
in the test process of the both pressure drop and shear
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Figure 3: The proposed system diagram.

stress problems, it is found that one-hidden layer having
20 neurons is enough for reaching the optimal performance
as specified in Figure 4(b). We first set up in Figure 4 the
network in the proposed system with random weights and
biases values, where IW{1, 1} represents the input weights,
LW{2, 1} and LW{3, 2} mean the layer weights, b{1} is the
biases of the input layer, and b{2} and b{3} are the biases of
the output layers. The obtained weights and biases of the best
trained network for pressure drop and shear stress problems
are shown in Table 2.

4. Results

The proposed system is carried out on three problems. They
are two-spiral problem, the pressure drop and shear stress
across the short orifice die as a function of shear rate at
different mean pressures for linear low-density polyethylene
copolymer at 190◦C. The descriptions of the obtained results
are showed in the following three subsections.

4.1. Two-Spiral Problem. This problem is used to learn
a mapping function (two inputs and one output) which
distinguishes points on two intertwined spirals. This is one of

Table 1: The NN evaluations.

Experiments � • Accuracy

1-HL & 400 neurons 6 8 92.8%

2-HL & 50 neurons 6 2 95.9%

2-HL & 60 neurons 1 0 99.5%

2-HL & 77 neurons 0 0 100%

� means no. misclassified of the triangles spiral.
•means no. misclassified of the circles spiral.

the typical difficult problems due to its extreme nonlinearity.
The proposed system was first trained on 194 points of
the X-Y coordinates using one hidden layer. The obtained
performance was 92.8% at 2157 epochs and 400 neurons; see
Figure 6(a) and Table 1. The misclassified points are 6 in the
triangles spiral and 8 in the circles-spiral.

The training process is continued with increasing one
hidden layer more. The obtained performances are 95.9%,
99.5%, and 100% using 50, 60, and 77 neurons, respectively;
see Figures 6(b)–6(d) and Table 1. The numbers of training
epochs for these obtained performances are 10000, 10000,
and 5896, respectively (see Figure 5). It is found that all
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Figure 4: The architecture of the proposed network.
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Figure 5: The NN performance (HL means hidden layer).
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Figure 6: The NN simulation of the pressure drop dependence on shear rate.

194 training patterns are classified correctly using the last
network architecture.

4.2. Linear Low-Density Polyethylene Copolymer. The above
mentioned details of the proposed system were applied and
simulated to the data of the pressure drop and shear stress
across the short orifice die as a function of shear rate at
different mean pressures for linear low-density polyethylene
copolymer at 190◦C, with one hidden layer.

The system was trained using the chosen neural network
on six cases of different mean pressures for each of the
pressure drop and shear stress as a function of shear rate.
These values of mean pressure are 1, 100, 200, 300, 500, and
600 multiplied by 105 Pa. The performances of the obtained
networks are shown in Figure 7. The obtained networks were
tested for choosing the best one. This network was tested on
the above mentioned six cases and used for predicting the
case at mean pressure value, 400 × 105 Pa. Figure 8 shows
the neural networks results of the six cases training and one

predicted case for pressure drop which denoted by Δp with
shear rate. Figure 9 shows also the neural networks results of
the six cases training and one predicted case for shear stress
which denoted by τ with shear rate which represent flow
curve. It was observed that these figures illustrate an excellent
performance in two cases (the training and prediction).
These results of the dependence of pressure drop and shear
stress on shear rate at different mean pressures are presented
in the following two subsections.

4.2.1. Pressure Dependence on Shear Rate. Figure 8 shows the
six cases tested and one predicted data of the pressure drop
with shear rate compared to the experiential data for linear
low-density polyethylene copolymer at 190◦C.

4.2.2. Shear Stress Dependence on Shear Rate (Flow Curve).
Figure 9 shows the six cases tested and one predicted
data of the shear stress with shear rate compared to the
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Table 2: The produced weight and bias values of the best trained network.

Pressure drop Shear sftress

Weights Biases Weights Biases

IW{1, 1} LW{2, 1}T b {1} b{2} IW{1, 1} LW{2, 1}T b{1} b {2}

–0.0092357 –0.074211 –0.91753 16.5516 1.0932 0.42093 0.11045 –0.29861 –14.8788 0.49395

–0.064121 –0.075615 –1.238 –14.7538 0.14907 –0.028838 0.14388 –12.3761

0.0086149 –0.025249 –2.0174 –2.5568 0.00031069 0.026445 –0.52767 –11.8835

–0.0017662 0.036417 1.4997 –2.6596 –0.0013544 0.0019265 –0.71031 –1.7975

0.023687 –0.0099672 0.58772 –3.0918 –2.385 –2.4141 0.38584 –7.6139

–0.017128 0.0023562 –0.97796 7.6266 0.01941 0.0086871 0.089209 –11.4316

–0.063098 –0.083557 –1.6479 –8.8354 0.0035304 –0.075417 –0.67559 –1.0939

0.20564 0.021342 0.91681 –6.5694 –0.0076158 –0.028539 –0.19949 1.5115

–0.003303 0.022274 1.7385 0.081723 0.044023 0.038829 0.017871 –10.0832

–0.041185 0.079807 1.8449 –11.2574 0.005363 –0.024715 –0.49156 6.6207

0.024424 –0.075788 –1.1288 –2.3592 –0.0013665 0.032209 0.18869 7.0804

0.17343 0.14075 1.9772 1.7446 –0.00048342 –0.00098168 –2.8782 0.41403

–0.011373 –0.02235 –2.4026 9.3959 0.00076532 –0.040128 –0.65477 –1.5022

0.0038815 0.082769 0.97819 8.3238 –0.0081859 0.27396 0.15231 –4.8667

0.0045642 0.081391 0.95285 7.9681 –0.012168 –0.012549 –0.14515 6.2695

–0.0023447 –0.011416 –3.3245 6.9351 0.0038695 0.010562 –0.29916 –3.3411

–0.17721 –0.15542 –1.3838 1.5062 –0.054214 –0.0096744 –0.19168 4.0609

0.013042 0.020739 0.42706 –13.5254 –0.014118 0.015177 0.30145 –5.2238

0.094386 0.060478 1.6078 11.2445 –0.0014922 0.024903 0.32635 –1.9256

0.10412 0.10144 0.4335 5.2448 0.0046948 –0.030181 –0.32884 –0.096699

LW{2, 1}T represents the transpose of LW{2, 1}. All names in the above table were described in architecture of the proposed network; see Figure 4.
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Figure 7: The NN performance.
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Figure 8: The NN simulation of the pressure drop dependence on shear rate.
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experimental data which represent flow curve for linearlow-
density polyethylene copolymer at 190◦C.

5. Conclusion

The proposed system is automatically designed to find the
best network that has the ability to have the best test and
prediction. This technique is started by doing 500 NN
experiments with incrementing the number of neurons for
each hidden layer. In the incrementing process, another
new 500 NN-experiments are carried out in alternative
way; the number of hidden layers is incremented by one
with initializing the number of neurons for these hidden
layers and new 500 NN-experiments are done. This process
is continued until the required performance is reached.
Therefore, many tries are automatically done to find this
network, using low number of hidden layers and neurons.

The obtained performance of the two-spiral problem is
low when using one hidden layer in the network architecture,
although the number of neurons increased up to 400. The
performance is improved using two hidden layers, it is 95.9%
with 50 neurons, 99.5% with 60 neurons, and 100% with 77
neurons. In the best performance, all points of the two-spiral
problem are correctly classified.

In the other two problems, it was found that one hidden
layer with 20 neurons is enough for reaching the optimal
solution. The trained NN using this system shows excellent
results matched with the experimental data in the two
cases of shear stress and pressure drop problems. The NN
technique has been also designed to simulate the other
distributions not presented in the training set and matched
them effectively.

The NNs simulation using RPROP algorithm is powerful
mechanism for classifying all points of the two spirals, and
for the prediction flow curves (dependence of shear stress
on shear rate) and pressure drop dependence of shear rate
at a certain value of mean pressure across short orifice die for
linear low-density polyethylene copolymer at 190◦C.
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