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A hybrid forecasting approach combining empirical mode decomposition (EMD), phase space reconstruction (PSR), and extreme
learning machine (ELM) for international uranium resource prices is proposed. In the first stage, the original uranium resource
price series are first decomposed into a finite number of independent intrinsic mode functions (IMFs), with different frequencies.
In the second stage, the IMFs are composed into three subseries based on the fine-to-coarse reconstruction rule. In the third
stage, based on phase space reconstruction, different ELMmodels are used to model and forecast the three subseries, respectively,
according to the intrinsic characteristic time scales. Finally, in the foruth stage, these forecasting results are combined to output
the ultimate forecasting result. Experimental results from real uranium resource price data demonstrate that the proposed hybrid
forecasting method outperforms RBF neural network (RBFNN) and single ELM in terms of RMSE, MAE, and DS.

1. Introduction

Uranium resource products have been widely used in eco-
nomics, military, social lives, and so on and have a revo-
lutionary effect on the real world in many areas. Uranium
resource is both the material basis for the development of
nuclear energy and a kind of strategic resource. Therefore,
more accurate forecasts for international uranium resource
prices play an increasingly important role in the development
planning and utilization of nuclear energy.

Forecasting the uranium resource prices is one of the
most important and challenging tasks due to its inherent
nonlinearity and nonstationary characteristics. In the past
decades, price prediction has attracted increasing attention
by lots of academic researchers. The forecasting approaches
used in the literature can be classified into two categories:
statistical models and artificial intelligence models [1, 2].
However, the statistical models cannot effectively capture
nonlinear patterns hidden in price time series owing to the
fact that these models are developed based on the underlying

assumption that the time series being forecasted are linear
and stationary [3]. In order to overcome this limitation of
statistical models, a good deal of nonlinear models have
been proposed, among which the artificial neural network
(ANN) has attracted a growing interest by researchers due
to their excellent nonlinear modeling capability [4–8]. Many
studies conclude that the ANN model outperforms various
conventional statistical models. However, ANN suffers from
local minimum traps and the difficulty of determining the
hidden layer size and learning rate [9]. A new learning
algorithm for the single-hidden-layer feedforward neural
network (SLFN) called the extreme learning machine (ELM)
has been proposed recently and overcomes the aforemen-
tioned disadvantages [10, 11]. In the learning process of ELM,
the input weights and hidden biases are randomly chosen,
and the output weights are analytically determined by using
theMoore-Penrose generalized inverse. ELM can learnmuch
faster with a higher generalization performance than the
traditional gradient-based learning algorithms and solves the
problem of stopping criteria, learning rate, learning epochs,
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and local minima [10–13]. In recent years, ELM has attracted
a lot of attention and has become an important method in
nonlinear modeling [11–13].

When building intelligent prediction models directly
using original values, it is difficult to obtain satisfactory
forecast results due to the high-frequency, nonstationary, and
chaotic properties of uranium resource price data. Hence, in
order to further improve the prediction performance, before
constructing a forecasting model, recent research efforts on
modeling time series with complex nonlinearity, dynamic
variation, and high irregularity are to initially utilize infor-
mation extraction techniques to extract features hidden in the
data, then use these extracted characteristics to construct the
forecasting model [14–18]. That is to say, by some means of
suitable feature extractions or signal processing methods, the
useful or interesting information which may not be observed
directly from the original data can be revealed in the extracted
features. Thereby, an effective forecasting model possessing
better prediction precision will be developed.

Empirical mode decomposition (EMD), based on Hil-
bert-HuangTransform (HHT), is very suitable for decompos-
ing nonlinear andnonstationary time series, which adaptively
represents the local characteristic of the given signal [19, 20].
By using EMD, any complicated signal can be decomposed
into a finite and often small number of Intrinsic Mode Func-
tions (IMFs), which have simpler frequency components and
stronger correlations, thus are easier and more accurate to
forecast [8]. Recently, the EMDhas been widely used inmany
fields, such as in the analysis of the atmosphere time series
[21], river water turbidity forecasting [22], crude oil price
prediction [23], short-term wind power prediction, and so
forth, [8, 13, 14, 16, 24].

In this study, we propose a hybrid uranium resource
prices forecasting model by integrating EMD, phase space
reconstruction (PSR), and extreme learning machine (ELM).
Firstly, the original uranium resource price series are first
decomposed into a finite number of independent intrinsic
mode functions (IMFs), with different frequencies. Secondly,
the IMFs are composed into three subseries based on the
fine-to-coarse reconstruction rule. And then, based on phase
space reconstruction, different ELM models are used to
model and forecast the three subseries, respectively, accord-
ing to the intrinsic characteristic time scales. Finally, these
forecasting results are combined with the ultimate forecast-
ing result output. Moreover, experimental results from real
uranium resource price data demonstrate that the proposed
hybrid forecasting method outperforms RBF neural network
(RBFNN) and single ELM in terms of RMSE, MAE, and DS.

The rest of this paper is organized as follows. Section 2
gives brief overviews of EMD, PSR, and ELM. The pro-
posed model is described in Section 3. Section 4 compares
the experimental results obtained by the proposed hybrid
approach and those by RBF neural network and single ELM,
and this paper is concluded in Section 5.

2. Methodology
2.1. Empirical Mode Decomposition (EMD). EMD is a new
signal processing technique. Unlike wavelet decomposition,

EMD is not required to determine a filter base function before
decomposition. The main idea of EMD is to decompose
original time series data into a sum of oscillatory functions,
namely, intrinsic mode functions (IMFs). In the EMD, the
IMFs must satisfy two conditions: (1) the number of extrema
(sum of maxima and minima) and the number of zero
crossings must either equal or differ at most by one, and (2)

at any point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima
is zero.

The essence of EMD is the sifting process which extracts
IMFs from the original data. The algorithm of EMD is
described as follows [19, 20, 25].

Step 1. Identify all the local extrema including the minimum
values and maximum values in time series data 𝑥(𝑡).

Step 2. Generate the upper and lower envelopes 𝑒max(𝑡) and
𝑒min(𝑡) by a cubic spline line.

Step 3. Calculate the mean value 𝑚
1
(𝑡) from the upper and

lower envelopes and then generate the mean envelope as

𝑚
1
(𝑡) =

[𝑒max (𝑡) + 𝑒min (𝑡)]

2
. (1)

Step 4. Calculate the difference between the time series data
𝑥(𝑡) and the mean value 𝑚

1
(𝑡). The first difference ℎ

1
(𝑡) is

designed as a protointrinsic mode function

ℎ
1
(𝑡) = 𝑥 (𝑡) − 𝑚

1
(𝑡) . (2)

Step 5. Checkwhether the protointrinsicmode functionℎ
1
(𝑡)

satisfies the properties of IMF or not. Ideally, ℎ
1
(𝑡) should be

an IMF. However, it may generate a new extremum and shift
or exaggerate the existing extrema in the sifting process.

If properties of ℎ
1
(𝑡) satisfy all the requirements of an

IMF, ℎ
1
(𝑡) is denoted as the 𝑖th IMF 𝑐

𝑖
(𝑡) and substitutes the

residue 𝑟
1
(𝑡) for the original time series data 𝑥(𝑡); that is,

𝑟
1
(𝑡) = 𝑥 (𝑡) − ℎ

1
(𝑡) . (3)

Otherwise, ℎ
1
(𝑡) is not an IMF. Then, it substitutes ℎ

1
(𝑡) for

the original time series 𝑥(𝑡).

Step 6. Repeat from Step 1 to Step 5.The sifting process stops
when the residue satisfies one of the termination criteria.
First, the residue or the 𝑖th component is smaller than the
predetermined threshold or becomes a monotonic function
such that nomore IMF can be extracted. Second, the number
of zero crossings and extrema is the same as that of the
successive sifting step.

By using the above algorithm, the original time series
data 𝑥(𝑡) can be decomposed into 𝑛 modes and a residue as
follows:

𝑥 (𝑡) =

𝑛

∑
𝑖=1

𝑐
𝑖
(𝑡) + 𝑟

𝑛
(𝑡) , (4)

where 𝑛 is the number of IMFs, 𝑐
𝑖
(𝑡) represents IMFs which

are nearly orthogonal to each other and periodic, and 𝑟
𝑛
(𝑡) is
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the final residue which is a constant or a trend. By the sifting
process, each IMF is independent and specific for expressing
the local characteristics of the original time series data. The
set of IMFs is derived from high frequency to low frequency,
while 𝑟

𝑛
(𝑡) represents the central tendency of data series 𝑥(𝑡).

In addition, EMD can also be taken as a filter of high pass,
band pass, or low pass.

2.2. Phase Space Reconstruction (PSR). Takens embedding
theorem [26] provides theoretical foundation for the analysis
of time series generated by nonlinear dynamical systems.
Later, Sauer et al. [27] show that a phase space can be
reconstructed from a univariate chaotic time series. Let a
univariate time series {𝑥

𝑘
}
𝑛

𝑘=1
, where 𝑁 is the length of the

time series, generated from a 𝑑-dimension chaotic attractor,
then a phase space𝑅𝑑 of the attractor can be reconstructed by
using the delay coordinate defined as

x (𝑘) = [𝑥
𝑘−𝜏

, . . . , 𝑥
𝑘−𝑚𝜏

] , (5)

where 𝑚 is known as the embedding dimension of recon-
structed phase space and 𝜏 is the delay constant.

The selection of the embedding dimension 𝑚 and the
delay constant 𝜏 is very important for prediction modeling
[3]. Therefore, for a given delay time 𝜏, a time series {𝑥

𝑘
}
𝑛

𝑘=1

is represented in the so-called “phase space” by a set of delay
vectors (DVs) x(𝑘) = [𝑥

𝑘−𝜏
, . . . , 𝑥

𝑘−𝑚𝜏
] of a given embedding

dimension𝑚.

(1) Determination of the Delay Time 𝜏 and the Minimum
Embedding Dimension 𝑚. The entropy ratio (ER) method
[28] is a novel method for determining the set of parameters
for a phase space representation of a time series. Based
upon the differential entropy, both the optimal embedding
dimension and time lag are simultaneously determined.

Based upon the probability density function of data, the
differential entropy is defined as

𝐻(x) = −∫
+∞

−∞

𝑝 (x) ln𝑝 (x) 𝑑x. (6)

Particularly convenient is the Kozachenko-Leonenko (K-
L) estimate of the differential entropy

𝐻(x) =

𝑁

∑
𝑗=1

ln (𝑁𝜌
𝑗
) + ln 2 + 𝐶

𝐸
, (7)

where 𝑁 is the number of samples in the dataset, 𝜌
𝑗
is

the Euclidean distance of the 𝑗th delay vector to its near-
est neighbour, and 𝐶

𝐸
is the Euler constant. For a given

embedding dimension𝑚 and time lag 𝜏, let𝐻(𝑥,𝑚, 𝜏) denote
the differential entropies estimated for time delay embedded
versions of a time series 𝑥.

The K-L estimates for the time delay embedded versions
of the original time series 𝐻(𝑥,𝑚, 𝜏) and 𝐻(𝑥

𝑠,𝑖
, 𝑚, 𝜏) are

computed using (7) for increasing 𝑚 and 𝜏 (index 𝑖 refers
to the 𝑖th surrogate). To determine the optimal embedding
parameters, the ratio

𝐼 (𝑚, 𝜏) =
𝐻 (𝑥,𝑚, 𝜏)

⟨𝐻 (𝑥
𝑠,𝑖
, 𝑚, 𝜏)⟩

𝑖

(8)

needs to be minimized, where ⟨⋅⟩ denotes the average over 𝑖.
To penalize for higher embedding dimensions, the minimum
description length (MDL) method is superimposed, yielding
the “entropy ratio” (ER)

𝑅ent (𝑚, 𝜏) = 𝐼 (𝑚, 𝜏) +
𝑚 ln𝑁

𝑁
, (9)

where 𝑁 is the number of delay vectors, which is kept
constant for all values of 𝑚 and 𝜏 under consideration. The
minimum of the plot of the entropy ratio yields the optimal
set of embedding parameters.

(2) Identification of Nonlinearity. The delay vector variance
(DVV) method [29] is a novel analysis of a time series
which examines a signal’s unpredictability by observing the
variability of the targets belonging to sets of similar delay
vectors (DVs). The DVV method can be summarized as
follows for a given embedding dimension.

(i) Themean 𝜇
𝑑
and standard deviation 𝜎

𝑑
are computed

over all pairwise distances between DVs.
(ii) The sets Ω

𝑘
are generated, which consist of all DVs

that lie closer to 𝑥(𝑘) than a certain distance. The
distances are taken from the interval [𝜇

𝑑
− 𝑛
𝑑
𝜎
𝑑
, 𝜇
𝑑
+

𝑛
𝑑
𝜎
𝑑
], for example, uniformly spaced, where 𝑛

𝑑
is a

parameter controlling the span over which to perform
the DVV analysis.

(iii) For every set Ω
𝑘
, the variance of the corresponding

targets, 𝜎2
𝑘
, is computed. The average over all sets,

divided by the variance of the time series 𝜎2
𝑥
, yields

the measure of unpredictability 𝜎∗2:

𝜎
∗2

=
(1/𝑁)∑

𝑁

𝑘=1
𝜎2
𝑘

𝜎2
𝑥

. (10)

In the following study, the linear or nonlinear nature of
the time series is examined by performing DVV analyses on
both the original and a number of surrogate time series, using
the optimal embedding dimension of the original time series.

(3) Identification of Chaotic Characteristic. When the largest
Lyapunov exponent of the system is larger than zero, it
indicates that there is a chaotic attractor which can be used
to measure the chaotic degree [30]. The largest Lyapunov
exponent is computed by the Wolf method [31].

2.3. Extreme Learning Machine (ELM). Suppose there are 𝑁

distinct samples {(𝑥
𝑘
, 𝑡
𝑘
)}
𝑁

𝑘=1
, where 𝑥

𝑘
∈ 𝑅𝑛 and 𝑡

𝑘
∈ 𝑅𝑚.The

SLFN with𝑀 hidden neurons can be described as
𝑀

∑
𝑖=1

𝛽
𝑖
𝑔 (𝑤
𝑖
⋅ 𝑥
𝑘
+ 𝑏
𝑖
) = 𝑜
𝑘
, 𝑘 = 1, 2, . . . , 𝑁, (11)

where 𝑤
𝑖
= [𝜔
𝑖1
, 𝜔
𝑖2
, . . . , 𝜔

𝑖𝑛
]
𝑇 is the weight vector connect-

ing the 𝑖th hidden neuron and the input neurons, 𝛽
𝑖
= [𝛽
𝑖1
,

𝛽
𝑖2
, . . . , 𝛽

𝑖𝑚
]
𝑇 is the weight vector connecting the 𝑖th hidden

neuron and the output neurons, 𝑜
𝑖
= [𝑜
𝑖1
, 𝑜
𝑖2
, . . . , 𝑜

𝑖𝑚
]
𝑇 is the
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actual output vector, and 𝑏
𝑖
is the threshold of the 𝑖th hidden

neuron. 𝑔(⋅) represents the activation function of hidden
neuron, and the operation 𝑤

𝑖
⋅ 𝑥
𝑘
denotes the inner product

of 𝑤
𝑖
and 𝑥

𝑘
.

If the SLFN can approximate the 𝑁 samples with a zero
error then we have

𝑁

∑
𝑘=1

󵄩󵄩󵄩󵄩𝑜𝑘 − 𝑡
𝑘

󵄩󵄩󵄩󵄩 = 0. (12)

Thus, there also exist parameters 𝛽
𝑖
, 𝑤
𝑖
, and 𝑏

𝑖
such that

𝑀

∑
𝑖=1

𝛽
𝑖
𝑔 (𝑤
𝑖
⋅ 𝑥
𝑘
+ 𝑏
𝑖
) = 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑁. (13)

The above equations can be compactly described as

𝐻𝛽 = 𝑇, (14)

where

𝐻(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑀
, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑀
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
)

=
[
[

[

𝑔 (𝑤
1
⋅ 𝑥
1
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝑀
⋅ 𝑥
1
+ 𝑏
𝑀
)

...
...

...
𝑔 (𝑤
1
⋅ 𝑥
𝑁

+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝑀
⋅ 𝑥
𝑁

+ 𝑏
𝑀
)

]
]

]𝑁×𝑀

,

𝛽 =
[
[

[

𝛽𝑇
1

...
𝛽𝑇
𝑀

]
]

]𝑀×𝑚

, 𝑇 =
[
[

[

𝑡𝑇
1

...
𝑡𝑇
𝑁

]
]

]𝑁×𝑚

.

(15)

Unlike the traditional function approximation theories
which require the adjustment of input weights and hidden
layer biases, the input weights and hidden biases are ran-
domly generated.Thus, training an SLFN is simply equivalent
to finding a least-squares solution of the linear function𝐻𝛽 =

𝑇. Consider
󵄩󵄩󵄩󵄩󵄩
𝐻𝛽 − 𝑇

󵄩󵄩󵄩󵄩󵄩
= min
𝛽

󵄩󵄩󵄩󵄩𝐻𝛽 − 𝑇
󵄩󵄩󵄩󵄩 . (16)

The smallest norm least-squares solution of the above linear
system is

𝛽 = 𝐻
+
𝑇, (17)

where 𝐻+ is the Moore-Penrose generalized inverse of
matrix 𝐻. Owing to the Moore-Penrose generalized inverse,
the learning speed is dramatically increased for the single
hidden-layer feedforward neural network [12].

3. Uranium Resource Price Forecasting
Method Based on EMD-PSR-ELM

The proposed hybrid approach for international uranium
resource price forecasting, namely, EMD-PSR-ELM, com-
bines EMD, PSR, and ELM, and it is composed of four main
stages. These four stages are described as follows.

Stage 1 (EMD decomposition). The original time series 𝑥(𝑡),
𝑡 = 1, 2, . . . , 𝑁 is decomposed into 𝑛 IMF components, 𝑐

𝑗
(𝑡),

𝑗 = 1, 2, . . . , 𝑛, and one residual component 𝑟
𝑛
(𝑡) by using

EMD.

Stage 2 (combination of the decomposition components). In
this stage, owing to each IMF with different time scales, high
frequency and low frequency components can be obtained
by combining IMFs according to the frequency from high to
low, and the residue is treated separately. The process can be
performed as follows.

Step 1. The mean of each IMF is evaluated in order.

Step 2. Determining the first IMF 𝑐
𝑖
(𝑡)whosemean significant

deviation from zero.

Step 3. The first 𝑖 − 1 IMFs are added and reconstructed to the
high frequency component 𝑐

1
(𝑡), namely, 𝑐

1
(𝑡) = ∑

𝑖−1

𝑘=1
𝑐
𝑘
(𝑡),

and the accumulation of the remaining 𝑛 − 𝑖 + 1 IMFs is
reconstructed to the low frequency component 𝑐

2
(𝑡), namely,

𝑐
2
(𝑡) = ∑

𝑛

𝑘=𝑖
𝑐
𝑘
(𝑡).

Stage 3 (ELM modeling). This stage can be subdivided into
three steps as follows.

Step 1 (phase space reconstruction). Firstly, some parameters
such as the delay time and the embedding dimension should
be determined.And then, one dimensional time series dataset
obtained by combination according to Stage 2 can carry
out phase space reconstruction. Thus, the high-dimensional
datasets𝐷 = {𝑋(𝑡), 𝑌(𝑡)}, 𝑡 = 1, 2, . . . ,𝑀 can be constructed,
where 𝑋(𝑡) = [𝑥(𝑡), 𝑥(𝑡 + 𝜏), . . . , 𝑥(𝑡 + (𝑚 − 1)𝜏)], 𝑌(𝑡) =

𝑥(𝑡+1+ (𝑚−1)𝜏), and 𝑡 = 1, 2, . . . ,𝑀,𝑀 = 𝑁−1−(𝑚−1)𝜏.
Therefore, the input and output samples can be, respectively,
represented by the matrix𝑋 and 𝑌, in the forms:

𝑋 =

[
[
[
[

[

𝑥 (1) 𝑥 (1 + 𝜏) ⋅ ⋅ ⋅ 𝑥 (1 + (𝑚 − 1) 𝜏)

𝑥 (2) 𝑥 (2 + 𝜏) ⋅ ⋅ ⋅ 𝑥 (2 + (𝑚 − 1) 𝜏)
...

...
...

...
𝑥 (𝑀) 𝑥 (𝑀 + 𝜏) ⋅ ⋅ ⋅ 𝑥 (𝑀 + (𝑚 − 1) 𝜏)

]
]
]
]

]

,

𝑌 =

[
[
[
[

[

𝑥 (2 + (𝑚 − 1) 𝜏)

𝑥 (3 + (𝑚 − 1) 𝜏)
...

𝑥 (𝑀 + 1 + (𝑚 − 1) 𝜏)

]
]
]
]

]

.

(18)

Step 2 (data normalization).The data needs to be represented
in a normalized scale for ELM training and prediction.Thus,
in this study, the dataset of three phase space domain are
linearly scaled in the range of [0, 1] using the following
expression:

𝑥
𝑖𝑗
=

𝑥
𝑖𝑗
− 𝑥min
𝑗

𝑥max
𝑗

− 𝑥min
𝑗

, (19)

where 𝑥
𝑖𝑗
represents the 𝑗th dimension of 𝑖th sample after

normalization; 𝑥
𝑖𝑗
is 𝑗th dimension of 𝑖th sample before nor-

malization;𝑥min
𝑗

and𝑥max
𝑗

representminimumandmaximum
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Figure 1: Schematic representation of the proposed EMD-PSR-ELMmethod.

values of 𝑗th dimension, respectively. Then the data was
divided into two sets, training set and testing data.

Step 3 (ELM prediction). Regression forecast model is set
up for the high frequency component, the low frequency
component, and the residue by using ELM, respectively.

Stage 4 (result composition). The final prediction results
were obtained by compositing the prediction values after
denormalization.

The proposed EMD-PSR-ELM method is schematically
depicted in Figure 1.

4. Experimental Results
4.1. Data Description and Evaluation Criteria. In this paper,
for evaluating the performance of proposed EMD-PSR-ELM
prediction model, the real time series about international
uranium resource prices data were chosen as experimental
samples. The data used in this study are monthly data
which are freely available from the IndexMundi website
(http://www.indexmundi.com) and cover the period from
October 1982 to September 2012 with a total of 360 values.
Firstly, the time series are analyzed by chaos theory. Delay
time 𝜏 = 4 and embedding dimension 𝑚 = 3 can be simul-
taneously determined (Figure 2). Secondly, nonlinearity is
analyzed by using DVV method. Due to the standardization
of the distance axis, these plots can be conveniently combined
in a scatter diagram, where the horizontal axis corresponds
to the DVV-plot of the original time series and the vertical
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Figure 2: Plots of the ER for uranium resource price monthly data
series.

to that of the surrogate time series. If the surrogate time
series yield DVV-plots similar to the original, the “DVV
scatter diagram” coincides with the bisector line, and the
original time series is probably linear. The deviation from
the bisector line is, thus, a measure of nonlinearity; they
can be seen from Figures 3 and 4. Additionally, Wolf et al.
method [31] is employed to compute the largest Lyapunov
exponent 𝜆 = 0.0339. Therefore, we can conclude that
the international uranium resource prices times series has
chaotic characteristic owing to 𝜆 > 0.When these parameters
are gotten, the phase space can be reconstructed; that is to
say, these optimal embedding dimensions and delay times are
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used to construct the input matrix. It is easy to know that
there are in total 351 data points in the phase space. The data
was divided into two sets, training set and testing data, and
the first 326 data points are used as the training samples while
the remaining 25 data points are used as the testing samples.

The prediction performance is evaluated using measures
including mean absolute error (MAE), root mean squared
error (RMSE), and directional prediction statistics (DS) [32].
These measures are as follows:

MAE =
1

𝑛

𝑛

∑
𝑡=1

󵄨󵄨󵄨󵄨𝑥𝑡 − 𝑥
𝑡

󵄨󵄨󵄨󵄨 ,

RMSE = √
1

𝑛

𝑛

∑
𝑡=1

(𝑥
𝑡
− 𝑥
𝑡
)
2

,

DS =
1

𝑛

𝑛

∑
𝑡=1

𝑎
𝑡
× 100%,

(20)

Table 1: The error statistics of the ELMmodel for the three compo-
nents.

Component High frequency Low frequency Residue
RMSE 1.3845 0.4799 4.6901 × 10

−4

MAE 1.0524 0.4181 3.2714 × 10−4

DS 64 84 96

where 𝑥
𝑡
and 𝑥

𝑡
are the actual and prediction values, respec-

tively, 𝑛 is the sample size, and

𝑎
𝑡
= {

1, (𝑥
𝑡
− 𝑥
𝑡−1

) (𝑥
𝑡
− 𝑥
𝑡−1

) ≥ 0,

0, otherwise.
(21)

Obviously, the smaller RMSE, MAE, and larger DS mean
better performance.

4.2. Forecasting Results. According to previous steps shown
in Section 3, we carried out the prediction experiments.
First, using the EMD technique, the international uranium
resource price series can be decomposed into seven indepen-
dent IMFs and one residue. Figure 5 shows the decomposi-
tion results for uranium resource price series using EMD.

Through the analysis of the mean value of each IMF
after the decomposition of international uranium resource
prices time series data by using EMD, it can be seen from
Figure 6 that the IMF whose mean significant deviation
from zero is IMF3.Therefore, the partial reconstruction with
IMF1 and IMF2 represents high frequency components of
international uranium resource prices time series data, with
the characteristics of small amplitudes, which contains the
effects of markets’ short-term fluctuations; and the partial
reconstruction with IMF3, IMF4, IMF5, IMF6, and IMF7
represents low frequency components, which should be
representative of the effect of these events [33]. The residue
is treated as the long-term trend during the evolution of
uranium resource prices separately. Figure 7 shows the three
components of uranium resource price monthly data series
from Oct. 1982 to Sept. 2012.

After reconstructing phase space, high frequency, low
frequency, and residue are individually used for building
ELM prediction models, and the predicted values for the
next 25months uranium resource prices are then obtained by
different models. In building EMD-PSR-ELM, the number of
hidden nodes is set to 9 for ELM.The error results of the ELM
model for the three components are shown in Table 1. As can
be seen in Table 1, ELM prediction models perform well for
all three components.

The forecasting results of the proposed EMD-PSR-ELM
model are compared with the PSR-ELM model and PSR-
RBFNN model, which uses non-EMD forecasting variables.
The PSR-RBFNN forecasting model with three input nodes
and one output node is built by using the same phase space
reconstructionmethod as above.The neural network toolbox
of MATLAB software is adapted in this study. Mean squared
error is 0.1, the spread of radial basis functions is 1.6, and
the default settings of neural network toolbox are used for
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Figure 5: The IMFs and residue for uranium resource price monthly data series.
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Figure 8: Out-of-sample forecasting by different models.

the remaining parameters. In PSR-ELM, the number of
hidden nodes is set the same as the above.

Figure 8 depicts the actual prices and the predicted
values from the EMD-PSR-ELM, PSR-RBFNN, and PSR-
ELMmodels. From this figure, it can be observed that there is
a smaller deviation between the actual and predicted values
using the proposed EMD-PSR-ELMmodel.

Table 2 compares the prediction results obtained with the
EMD-PSR-ELM, PSR-RBFNN, and PSR-ELMmodels for the
next 25 months uranium resource price.

Table 2: Performance of the three forecasting methods for interna-
tional uranium resource prices.

PSR-RBFNN PSR-ELM EMD-PSR-ELM
RMSE 3.4425 2.2389 0.8246
MAE 2.4205 1.4750 0.6919
DS 44 68 80

It can be observed from Table 2 that the proposed EMD-
PSR-ELMmodel provides a better forecasting result than the
PSR-RBFNN and PSR-ELMmodels in terms of RMSE,MAE,
and DS.

5. Conclusions

This study has presented a forecasting model for uranium
resource price by integrating EMD, PSR, and ELM. In terms
of the experimental results presented in this study, we can
draw the following conclusions.

(1) EMD can fully capture the local fluctuations of data
and can be used as a preprocessor to decompose the
complicated raw data into a finite set of IMFs and a
residue, which have simpler frequency components
and high correlations.

(2) On the one hand, although empirical mode compo-
sition is an important tool for multiscale modeling,
it suffers from mode mixing and mode splitting. To
rectify this issue, the Ensemble EMD [34] can be used
in the future. In addition, It is also worth trying to
employMultivariate EMD and in particular the Noise
AssistedMEMD in order to calculate EMD free of any
artifacts [35–37]. On the other hand, other multiscale
models, such as the synchrosqueezed transform in the
forecasting task, could also be considered [38].

(3) The network topology of the model has an important
influence on prediction performance for ELM and
RBF neural networks. It is more objective to identify
the chaotic characteristic of uranium resource price
series and determine the embedding dimension of the
reconstructed phase space by quantitative calculation,
and then the determined embedding dimension can
be served as the numbers of nodes in input layer for
the single hidden-layer feedforward neural network
and RBF networks.

(4) RMSE, MAE, and DS are used to measure the fore-
casting accuracy of the forecastingmodels.The exper-
imental results reveal that the proposed hybrid EMD-
PSR-ELM approach outperforms the other models
such as PSR-RBFNN and PSR-ELM. Therefore, the
proposed method is very suitable for prediction with
nonlinear, nonstationary, and highly complex data
and is an efficient method for uranium resource price
prediction.
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