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The generalization of Bertrand curves in Galilean 4-space is introduced and the characterization of the generalized Bertrand curves
is obtained. Furthermore, it is proved that no special curve is a classical Bertrand curve in Galilean 4-space such that the notion of
classical Bertrand curve is definite only in three-dimensional spaces.

1. Introduction

The geometry of curves has long captivated the interests of
mathematicians, from the ancient Greeks to the era of Isaac
Newton (1643–1727) and the invention of the calculus. It is
a branch of geometry that deals with smooth curves in the
plane and in the space by methods of differential and integral
calculus. The theory of curves is simpler and narrower in
scope because a regular curve in Euclidean space has no
intrinsic geometry. One of the most important tools used
to analyze curve is the Frenet frame, a moving frame that
provides a coordinate system at each point of curve that is
“best adopted” to the curve near the point.

Bertrand curves discovered by J. Bertrand in 1850 are one
of the important and interesting topics of classical special
curve theory. A Bertrand curve is defined as a special curve
whose principal normal is the principal normal of another
curve. It is characterized as curve whose curvature and
torsion are in linear relation. There are many works related
with Bertrand curves in the Euclidean space and Lorentzian
space [1–7].

Galilean 3-space𝐺
3
is simply defined as a Klein geometry

of the product space R × E2 whose symmetry group is
Galilean transformation group which has an important place
in classical and modern physics. A curve in Galilean 3-space
𝐺
3
is a graph of a plane motion. Note that such a curve

is called a world line in 3-dimensional Galilean space. It is
well known that the idea of world lines originates in physics
and was pioneered by Einstein. The term is now most often

in relativity theories, that is, general relativity and special
relativity.

From the differential geometric point of view, the study
of curves in 𝐺

3
has its own interest. In recent years, many

interesting results on curves in 𝐺
3
have been obtained by

many authors (see [6–10]).
In 4-dimensional Euclidean space, generalized Bertrand

curves are defined and characterized by [5]. Moreover, in
4-dimensional semi-Euclidean 𝐸4

2
and also 𝐸𝑛+1] (𝑛 ≥ 3) it

is proved that there is no timelike curve which is Bertrand
curve [4]. Also, generalizedBertrand curves in 5-dimensional
Euclidean andLorentzian space are defined and characterized
in [6, 11, 12].

In [8], the author constructed Frenet-Serret frame of a
curve in the Galilean 4-space and obtained the mentioned
curve’s Frenet-Serret equations.

However, to the best of our knowledge, special Bertrand
curves have not been presented in the Galilean 4-space 𝐺

3
.

Thus, the study is proposed to serve such a need. In this
regard, we prove that there is no Frenet curve which is a
classical Bertrand curve in 𝐺

4
. We define and characterize

(𝑛, 𝑒)-Bertrand curve in four-dimensional Galilean space 𝐺
4
.

2. Preliminaries

In this section, some fundamental properties of curves in 4D
Galilean space are given for the purpose of the requirements
[8].
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In affine coordinates the Galilean scalar product between
two points

𝑃
𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, 𝑝
𝑖3
, 𝑝
𝑖4
) , 𝑖 = 1, 2, (1)

is defined by

𝑔 (𝑃
1
, 𝑃
2
)

=

{{{

{{{

{

󵄨󵄨󵄨󵄨𝑝21 − 𝑝11
󵄨󵄨󵄨󵄨 , if 𝑝

21
̸= 𝑝
11
,

(
󵄨󵄨󵄨󵄨󵄨
(𝑝
22
− 𝑝
12
)
2
+ (𝑝
23
− 𝑝
13
)
2

+ (𝑝
24
− 𝑝
14
)
2󵄨󵄨󵄨󵄨󵄨
)
1/2

, if 𝑝
21
= 𝑝
11
.

(2)

The Galilean cross product in 𝐺
4
for the vectors �⃗� =

(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
), V⃗ = (V

1
, V
2
, V
3
, V
4
), and �⃗� = (𝑤

1
, 𝑤
2
, 𝑤
3
, 𝑤
4
)

is defined by

�⃗� ∧ V⃗ ∧ �⃗� = −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 𝑒
2
𝑒
3
𝑒
4

𝑢
1
𝑢
2
𝑢
3
𝑢
4

V
1

V
2

V
3

V
4

𝑤
1
𝑤
2
𝑤
3
𝑤
4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (3)

where 𝑒
𝑖
, 1 ≤ 𝑖 ≤ 4, are the standard basis vectors.

The scalar product of two vectors �⃗� = (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) and

�⃗� = (V
1
, V
2
, V
3
, V
4
) in 𝐺

4
is defined by

⟨�⃗�, �⃗�⟩
𝐺
4

= {
𝑢
1
V
1
, if 𝑢

1
̸= 0 or V

1
̸= 0,

𝑢
2
V
2
+ 𝑢
3
V
3
+ 𝑢
4
V
4

if 𝑢
1
= 0, V

1
= 0.

(4)

The norm of vector �⃗� = (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) is defined by

󵄩󵄩󵄩󵄩󵄩
�⃗�
󵄩󵄩󵄩󵄩󵄩𝐺
4

= √
󵄨󵄨󵄨󵄨󵄨󵄨
⟨�⃗�, �⃗�⟩

𝐺
4

󵄨󵄨󵄨󵄨󵄨󵄨
. (5)

See [8].
Let 𝛼 : 𝐼 ⊂ 𝑅 → 𝐺

4
, 𝛼(𝑠) = (𝑠, 𝑦(𝑠), 𝑧(𝑠), 𝑤(𝑠)) be a

curve parametrized by arclength 𝑠 in𝐺
4
.Thefirst vector of the

Frenet-Serret frame, that is, the tangent vector of 𝛼, is defined
by

𝑡 = 𝛼
󸀠
(𝑠) = (1, 𝑦

󸀠
(𝑠) , 𝑧
󸀠
(𝑠) , 𝑤

󸀠
(𝑠)) . (6)

Since 𝑡 is a unit vector, we can express

⟨𝑡, 𝑡⟩𝐺
4

= 1. (7)

Differentiating (7) with respect to 𝑠, we have

⟨𝑡
󸀠
, 𝑡⟩
𝐺
4

= 0. (8)

The vector function 𝑡󸀠 gives us the rotation measurement
of the curve 𝛼. The real valued function

𝜅 (𝑠) =
󵄩󵄩󵄩󵄩󵄩
𝑡
󸀠
(𝑠)
󵄩󵄩󵄩󵄩󵄩
= √(𝑦󸀠󸀠 (𝑠))

2
+ (𝑧󸀠󸀠 (𝑠))

2
+ (𝑤󸀠󸀠 (𝑠))

2 (9)

is called the first curvature of the curve 𝛼. We assume that
𝜅(𝑠) ̸= 0, for all 𝑠 ∈ 𝐼. Similar to space𝐺

3
, the principal vector

is defined by

𝑛 (𝑠) =
𝑡
󸀠
(𝑠)

𝜅 (𝑠)
; (10)

in other words

𝑛 (𝑠) =
1

𝜅 (𝑠)
(0, 𝑦
󸀠󸀠
(𝑠) , 𝑧
󸀠󸀠
(𝑠) , 𝑤

󸀠󸀠
(𝑠)) . (11)

See [8].
By the aid of the differentiation of the principal normal

vector given in (11), define the second curvature function that
is defined by

𝜏 (𝑠) =
󵄩󵄩󵄩󵄩󵄩
𝑛
󸀠
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐺
4

. (12)

This real valued function is called torsion of the curve 𝛼. The
third vector field, namely, binormal vector field of the curve
𝛼, is defined by

𝑏 (𝑠) =
1

𝜏 (𝑠)
(0, (

𝑦
󸀠󸀠
(𝑠)

𝜅(𝑠)
)

󸀠

, (
𝑧
󸀠󸀠
(𝑠)

𝜅(𝑠)
)

󸀠

, (
𝑤
󸀠󸀠
(𝑠)

𝜅(𝑠)
)

󸀠

) . (13)

Thus the vector 𝑏(𝑠) is perpendicular to both 𝑡 and 𝑛. The
fourth unit vector is defined by

𝑒 (𝑠) = 𝜇𝑡 (𝑠) Λ𝑛 (𝑠) Λ𝑏 (𝑠) . (14)

Here the coefficient 𝜇 is taken ±1 to make +1 determinant of
the matrix [𝑡, 𝑛, 𝑏, 𝑒].

The third curvature of the curve 𝛼 by the Galilean inner
product is defined by

𝜎 = ⟨𝑏
󸀠
, 𝑒⟩
𝐺
4

. (15)

Here, as well known, the set {𝑡, 𝑛, 𝑏, 𝑒, 𝜅, 𝜏, 𝜎} is called the
Frenet-Serret apparatus of the curve 𝛼. We know that the
vectors {𝑡, 𝑛, 𝑏, 𝑒} are mutually orthogonal vectors satisfying

⟨𝑡, 𝑡⟩𝐺
4

= ⟨𝑛, 𝑛⟩𝐺
4

= ⟨𝑏, 𝑏⟩𝐺
4

= ⟨𝑒, 𝑒⟩𝐺
4

= 1,

⟨𝑡, 𝑛⟩𝐺
4

= ⟨𝑡, 𝑏⟩𝐺
4

= ⟨𝑡, 𝑒⟩𝐺
4

= ⟨𝑛, 𝑏⟩𝐺
4

= ⟨𝑛, 𝑒⟩𝐺
4

= ⟨𝑏, 𝑒⟩𝐺
4

= 0.

(16)

For the curve 𝛼 in𝐺
4
, we have the following Frenet-Serret

equations:

𝑡
󸀠
= 𝜅 (𝑠) 𝑛 (𝑠)

𝑛
󸀠
= 𝜏 (𝑠) 𝑏 (𝑠) ,

𝑏
󸀠
= − 𝜏 (𝑠) 𝑛 (𝑠) + 𝜎 (𝑠) 𝑒 (𝑠) ,

𝑒
󸀠
= − 𝜎 (𝑠) 𝑏 (𝑠) .

(17)

See [8].

3. Bertrand Curves in 3-Dimensional
Galilean Space

Definition 1. Let𝛼 and𝛼 be the curves with 𝜅
𝛼
(𝑠) ̸= 0, 𝜅

𝛼
(𝑠) ̸=

0, 𝜏
𝛼
(𝑠) ̸= 0, and 𝜏

𝛼
(𝑠) ̸= 0 for each 𝑠 ∈ 𝐼 in 𝐺

3
and

{𝑇
𝛼
, 𝑁
𝛼
, 𝐵
𝛼
} and {𝑇

𝛼
, 𝑁
𝛼
, 𝐵
𝛼
} the Frenet frames in𝐺

3
along 𝛼
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and 𝛼, respectively. If {𝑁
𝛼
, 𝑁
𝛼
} is linearly dependent, in other

words, if the normal lines of 𝛼 and 𝛼 at 𝑠 ∈ 𝐼 are parallel,
then a pair of curves (𝛼, 𝛼) is said to be a Bertrand pair in 𝐺

3
.

The curve 𝛼 is called a Bertrand mate of 𝛼 and vice versa. A
Frenet framed curve is said to be a Bertrand curve if it admits
a Bertrand mate.

Let (𝛼, 𝛼) be Bertrand pair in 𝐺
3
. Then we can write

𝛼 (𝑠) = 𝛼 (𝑠) + 𝑢 (𝑠)𝑁
𝛼
(𝑠) . (18)

See [7].

Theorem 2. Let (𝛼, 𝛼) be Bertrand pair in 𝐺
3
. Then the

function 𝑢 defined in the above relation is a constant [7].

Theorem 3. Let 𝛼 be a curve in𝐺
3
. Then 𝛼 is a Bertrand curve

if and only if 𝛼 is a curve with constant torsion 𝜏
𝛼
[7].

Definition 4. A 𝐶
∞-special Frenet-Serret curve 𝛼 in 4-

dimensional Galilean space 𝐺
4
is called a Bertrand curve if

there exist a 𝐶∞-special Frenet-Serret curve �̃�, distinct from
𝛼, and a regular 𝐶∞-map 𝜑 : 𝐼 → 𝐼 (𝑠 = 𝜑(𝑠), 𝑑𝜑(𝑠)/𝑑𝑠 ̸= 0

for all 𝑠 ∈ 𝐼) such that curves 𝛼 and �̃� have the same principal
normal line at each pair of corresponding points 𝛼(𝑠) and
�̃�(𝑠) = �̃�(𝜑(𝑠)) under 𝜑. Here 𝑠 and 𝑠 are arclength parameters
of 𝛼 and �̃�, respectively. In this case, �̃� is called a Bertrand
mate of 𝛼 and themate of curves (𝛼, �̃�) is said to be a Bertrand
mate in 𝐺

4
.

Let (𝛼, �̃�) be Bertrand mate in 𝐺
4
. Then we can write

�̃� (𝑠) = 𝛼 (𝑠) + 𝑢 (𝑠) 𝑛 (𝑠) . (19)

Theorem 5. There is not any Bertrand curve in 4-dimensional
Galilean space 𝐺

4
.

Proof. Let {𝑡, 𝑛, 𝑏, 𝑒} and {�̃�, 𝑛, �̃�, 𝑒} be the Frenet-Serret frames
in 𝐺
4
along 𝛼 and �̃�, respectively. Since (𝛼, �̃�) is a Bertrand

mate, from (19), it holds that

�̃� (𝑠) = 𝛼 (𝑠) + 𝑢 (𝑠) 𝑛 (𝑠) . (20)

By differentiation of (20) with respect to 𝑠, we obtain

�̃� (𝜑 (𝑠)) ⋅ 𝜑
󸀠
(𝑠) = 𝑡 (𝑠) + 𝑢

󸀠
(𝑠) 𝑛 (𝑠) + 𝑢𝑛

󸀠
(𝑠) . (21)

From the Frenet-Serret equations, it holds that

�̃� (𝜑 (𝑠)) ⋅ 𝜑
󸀠
(𝑠) = 𝑡 (𝑠) + 𝑢

󸀠
(𝑠) 𝑛 (𝑠) + 𝑢𝜏𝑏. (22)

Since ⟨�̃�(𝜑(𝑠)), 𝑛(𝜑(𝑠))⟩ = 0 and 𝑛(𝜑(𝑠)) = ±𝑛(𝑠) we get

𝑢
󸀠
(𝑠) = 0; (23)

that is, 𝑢 is a constant function on 𝐼 with value 𝑢 (we can use
the same letter without confusion). Thus (19) is rewritten as

�̃� (𝑠) = �̃� (𝜑 (𝑠)) = 𝛼 (𝑠) + 𝑢 ⋅ 𝑛 (𝑠) (24)

and we get

𝜑
󸀠
(𝑠) �̃� (𝜑 (𝑠)) = 𝑡 (𝑠) + 𝑢𝜏 (𝑠) 𝑏 (𝑠) (25)

for all 𝑠 ∈ 𝐼. By (25), we can set

�̃� (𝜑 (𝑠)) = (cos 𝜃 (𝑠)) 𝑡 (𝑠) + (sin 𝜃 (𝑠)) 𝑏 (𝑠) , (26)

where 𝜃 is a 𝐶∞-function on 𝐼 and

cos 𝜃 (𝑠) = 1

𝜑󸀠 (𝑠)
, (27)

sin 𝜃 (𝑠) = 𝑢𝜏 (𝑠)
𝜑󸀠 (𝑠)

. (28)

Differentiating (26) and using the Frenet-Serret equations, we
obtain

𝜑
󸀠
(𝑠) 𝜅 (𝜑 (𝑠)) 𝑛 (𝜑 (𝑠))

=
𝑑 (cos 𝜃 (𝑠))

𝑑𝑠
𝑡 (𝑠)

+ cos 𝜃 (𝑠) 𝜅 (𝑠) 𝑛 (𝑠) + 𝑑 (sin 𝜃 (𝑠))
𝑑𝑠

𝑏 (𝑠)

+ sin 𝜃 (𝑠) (−𝜏 (𝑠) 𝑛 (𝑠) + 𝜎 (𝑠) 𝑒 (𝑠))

𝜑
󸀠
(𝑠) 𝜅 (𝜑 (𝑠)) 𝑛 (𝜑 (𝑠))

=
𝑑 (cos 𝜃 (𝑠))

𝑑𝑠
𝑡 (𝑠)

+ (𝜅 (𝑠) cos 𝜃 (𝑠) − 𝜏 (𝑠) sin 𝜃 (𝑠)) 𝑛 (𝑠)

+
𝑑 (sin 𝜃 (𝑠))

𝑑𝑠
𝑏 (𝑠) + 𝜎 (𝑠) sin 𝜃 (𝑠) 𝑒 (𝑠) .

(29)

Since 𝑛(𝜑(𝑠)) = ±𝑛(𝑠) for all 𝑠 ∈ 𝐼, we obtain

𝜎 (𝑠) sin 𝜃 (𝑠) ≡ 0. (30)

By 𝜎(𝑠) ̸= 0, for all 𝑠 ∈ 𝐼 and (30), we get that sin 𝜃(𝑠) ≡ 0.
Thus, by 𝜏(𝑠) > 0 and (27), we obtain that 𝑢 = 0. Therefore,
(24) implies that �̃� coincides with 𝛼. This is a contradiction
which completes the proof.

4. Special Bertrand Curves in 𝐺
4

In this section, we give the notion of special Bertrand curve
which is called (𝑛, 𝑒)-Bertrand curve in four-dimensional
Galilean space 𝐺

4
. We obtain a characterization of (𝑛, 𝑒)-

Bertrand curve.

Definition 6. Let 𝛼 and �̃� be 𝐶∞-special Frenet-Serret curves
in 𝐺
4
and 𝜑 : 𝐼 → 𝐼 a regular 𝐶∞-map such that each point

𝛼(𝑠) of 𝛼 corresponds to the point �̃�(𝑠) = �̃�(𝜑(𝑠)) of �̃� for
all 𝑠 ∈ 𝐼. Here 𝑠 and 𝑠 are arclength parameters of 𝛼 and
�̃�, respectively. If the Frenet-Serret Sp{𝑛, 𝑒}-normal plane at
each point 𝛼(𝑠) of 𝛼 coincides with the Frenet-Serret Sp{𝑛, 𝑒}-
normal plane at corresponding point �̃�(𝑠) = �̃�(𝜑(𝑠)) of �̃� for
all 𝑠 ∈ 𝐼, then 𝛼 is called an (𝑛, 𝑒)-Bertrand curve in 𝐺

4
and �̃�

is called (𝑛, 𝑒)-Bertrand mate of 𝛼.



4 Mathematical Problems in Engineering

Theorem 7. Let 𝛼 be 𝐶∞-special Frenet-Serret curves in 𝐺
4

with curvature functions 𝜅, 𝜏, and 𝜎. Then 𝛼 is an (𝑛, 𝑒)-
Bertrand curve if and only if there exist constant real numbers
𝜆, 𝜇, 𝛾, and 𝛿 satisfying

𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠) ̸= 0, (i)

𝛾 (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠)) = 1, (ii)

𝛾𝜅 (𝑠) − 𝜏 (𝑠) = 𝛿𝜎 (𝑠) , (iii)

for all 𝑠 ∈ 𝐼.

Proof. We suppose that 𝛼 is an (𝑛, 𝑒)-Bertrand curve para-
metrized by arclength 𝑠. Then (𝑛, 𝑒)-Bertrand mate �̃� is given
by

�̃� (𝑠) = �̃� (𝜑 (𝑠)) = 𝛼 (𝑠) + 𝜆 (𝑠) 𝑛 (𝑠) + 𝜇 (𝑠) 𝑒 (𝑠) (31)

for all 𝑠 ∈ 𝐼, where 𝜆 and 𝜇 are𝐶∞-functions on 𝐼 and 𝑠 is the
arclength parameter of �̃�. Differentiating (31) with respect to
𝑠 and using the Frenet equations, we obtain

𝜑
󸀠
(𝑠) �̃� (𝜑 (𝑠)) = 𝑡 (𝑠) + 𝜆

󸀠
(𝑠) 𝑛 (𝑠)

+ (𝜆 (𝑠) 𝜏 (𝑠) − 𝜇 (𝑠) 𝜎 (𝑠)) 𝑏 (𝑠) + 𝜇
󸀠
(𝑠) 𝑒 (𝑠)

(32)

for all 𝑠 ∈ 𝐼.
Since the plane spanned by 𝑛(𝑠) and 𝑒(𝑠) coincides with

the plane spanned by 𝑛(𝜑(𝑠)) and 𝑒(𝜑(𝑠)), we can put

𝑛 (𝜑 (𝑠)) = cos 𝜃 (𝑠) 𝑛 (𝑠) + sin 𝜃 (𝑠) 𝑒 (𝑠) ,

𝑒 (𝜑 (𝑠)) = − sin 𝜃 (𝑠) 𝑛 (𝑠) + cos 𝜃 (𝑠) 𝑒 (𝑠) ,
(33)

and we notice that sin 𝜃(𝑠) ̸= 0 for all 𝑠 ∈ 𝐼. By the following
facts:

0 = ⟨𝜑
󸀠
(𝑠) �̃� (𝜑 (𝑠)) , 𝑛 (𝜑 (𝑠))⟩

= 𝜆
󸀠
(𝑠) cos 𝜃 (𝑠) + 𝜇󸀠 (𝑠) sin 𝜃 (𝑠) ,

0 = ⟨𝜑
󸀠
(𝑠) �̃� (𝜑 (𝑠)) , 𝑒 (𝜑 (𝑠))⟩

= −𝜆
󸀠
(𝑠) sin 𝜃 (𝑠) + 𝜇󸀠 (𝑠) cos 𝜃 (𝑠) ,

(34)

we get

𝜆
󸀠
(𝑠) ≡ 0, 𝜇

󸀠
(𝑠) ≡ 0; (35)

that is, 𝜆 and 𝜇 are constant functions on 𝐼 with values 𝜆 and
𝜇, respectively. Therefore, for all 𝑠 ∈ 𝐼, (31) is rewritten as

�̃� (𝑠) = �̃� (𝜑 (𝑠)) = 𝛼 (𝑠) + 𝜆𝑛 (𝑠) + 𝜇𝑒 (𝑠) (36)

and we obtain

𝜑
󸀠
(𝑠) �̃� (𝜑 (𝑠)) = 𝑡 (𝑠) + (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠)) 𝑏 (𝑠) . (37)

Here we notice that

(𝜑
󸀠
(𝑠))
2

= 1 + (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))
2
̸= 0 (38)

for all 𝑠 ∈ 𝐼. Thus we can set

�̃� (𝜑 (𝑠)) = cos𝛽 (𝑠) 𝑡 (𝑠) + sin𝛽 (𝑠) 𝑏 (𝑠) , (39)

cos𝛽 (𝑠) = 1

𝜑󸀠 (𝑠)
,

sin𝛽 (𝑠) =
𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠)

𝜑󸀠 (𝑠)
,

(40)

where 𝛽 is 𝐶∞-functions on 𝐼. Differentiating (39) with
respect to 𝑠 and using the Frenet equations, we obtain

𝜑
󸀠
(𝑠) 𝜅 (𝜑 (𝑠)) 𝑛 (𝜑 (𝑠))

=
𝑑 cos𝛽 (𝑠)

𝑑𝑠
𝑡 (𝑠)

+ (𝜅 (𝑠) cos𝛽 (𝑠) − 𝜏 (𝑠) sin𝛽 (𝑠)) 𝑛 (𝑠)

+
𝑑 sin𝛽 (𝑠)
𝑑𝑠

𝑏 (𝑠) + 𝜎 (𝑠) sin𝛽 (𝑠) 𝑒 (𝑠) .

(41)

Since 𝑛(𝜑(𝑠)) is expressed by linear combination of 𝑛(𝑠) and
𝑒(𝑠), it holds that

𝑑 cos𝛽 (𝑠)
𝑑𝑠

≡ 0,
𝑑 sin𝛽 (𝑠)
𝑑𝑠

≡ 0; (42)

that is, 𝛽 is a constant function on 𝐼 with value 𝛽
0
. Thus we

obtain

�̃� (𝜑 (𝑠)) = cos𝛽
0
𝑡 (𝑠) + sin𝛽

0
𝑏 (𝑠) , (43)

𝜑
󸀠
(𝑠) cos𝛽

0
= 1, (44)

𝜑
󸀠
(𝑠) ⋅ sin𝛽

0
= 𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠) (45)

for all 𝑠 ∈ 𝐼. Therefore we obtain

sin𝛽
0
= (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠)) cos𝛽

0 (46)

for all 𝑠 ∈ 𝐼.
If sin𝛽

0
= 0, then it holds that cos𝛽

0
= ±1. Thus (43)

implies that �̃�(𝜑(𝑠)) = ±𝑡(𝑠). Differentiating this equality, we
obtain

𝜑
󸀠
(𝑠) 𝜅 (𝜑 (𝑠)) 𝑛 (𝜑 (𝑠)) = ±𝜅 (𝑠) 𝑛 (𝑠) ; (47)

that is,

𝑛 (𝜑 (𝑠)) = ±𝑛 (𝑠) , (48)

for all 𝑠 ∈ 𝐼. By Theorem 5, this fact is a contradiction. Thus,
we must consider only the case of sin𝛽

0
̸= 0. Then (45)

implies

𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠) ̸= 0, ∀𝑠 ∈ 𝐼. (49)

Thus, we obtain relation (i).
The fact that sin𝛽

0
̸= 0 and (46) imply

(𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))
cos𝛽
0

sin𝛽
0

= 1 (50)
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and we obtain

𝛾 (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠)) = 1, (51)

for all 𝑠 ∈ 𝐼, where 𝛾 = cot𝛽
0
is a constant number. Thus we

obtain relation (ii).
Differentiating (43) with respect to 𝑠 and using the Frenet

equations, we obtain

𝜑
󸀠
(𝑠) 𝜅 (𝜑 (𝑠)) 𝑛 (𝜑 (𝑠)) = (𝜅 (𝑠) cos𝛽

0
− 𝜏 (𝑠) sin𝛽

0
) 𝑛 (𝑠)

+ 𝜎 (𝑠) sin𝛽
0
𝑒 (𝑠) ,

(52)

for all 𝑠 ∈ 𝐼.
From (44) and (45) and (ii), we get

(𝜑
󸀠
(𝑠) 𝜅 (𝜑 (𝑠)))

2

= (𝜑
󸀠
(𝑠))
−2

{[𝜅 (𝑠) − 𝜏 (𝑠) (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))]
2

+ [𝜎 (𝑠) (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))]
2
}

(53)

for all 𝑠 ∈ 𝐼.
From (38) and (51), it holds that

(𝜑
󸀠
(𝑠))
2

= 1 + (
1

𝛾
)

2

. (54)

Thus, we obtain

[𝜑
󸀠
(𝑠)𝜅(𝜑(𝑠))]

2

=
1

𝛾2 + 1
[(𝛾𝜅(𝑠) − 𝜏(𝑠))

2
+ (𝜎(𝑠))

2
] . (55)

By (44) and (45), we can set

𝑛 (𝜑 (𝑠)) = (cos 𝜂 (𝑠)) 𝑛 (𝑠) + (sin 𝜂 (𝑠)) 𝑒 (𝑠) , (56)

where

cos 𝜂 (𝑠) =
𝜅 (𝑠) − 𝜏 (𝑠) (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))

(𝜑󸀠 (𝑠))
2
𝜅 (𝜑 (𝑠))

,

sin 𝜂 (𝑠) =
𝜎 (𝑠) (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))

(𝜑󸀠 (𝑠))
2
𝜅 (𝜑 (𝑠))

,

(57)

for all 𝑠 ∈ 𝐼, where 𝜂 is 𝐶∞-functions on 𝐼.
Differentiating (56) with respect to 𝑠 and using the Frenet

equations, we obtain

𝜑
󸀠
(𝑠) 𝜏 (𝜑 (𝑠)) �̃� (𝜑 (𝑠))

=
𝑑 cos 𝜂 (𝑠)
𝑑𝑠

𝑛 (𝑠) +
𝑑 sin 𝜂 (𝑠)
𝑑𝑠

𝑒 (𝑠)

+ cos 𝜂 (𝑠) 𝜏 (𝑠) 𝑏 (𝑠) − sin 𝜂 (𝑠) 𝜎 (𝑠) 𝑏 (𝑠) ,

(58)

for all 𝑠 ∈ 𝐼. From the above fact, it holds that

𝑑 cos 𝜂 (𝑠)
𝑑𝑠

≡ 0,
𝑑 sin 𝜂 (𝑠)
𝑑𝑠

≡ 0; (59)

that is, 𝜂 is a constant function on 𝐼 with value 𝜂
0
. Thus we

obtain

𝜑
󸀠
(𝑠) 𝜏 (𝜑 (𝑠)) �̃� (𝜑 (𝑠))

= (cos 𝜂
0
𝜏 (𝑠) − sin 𝜂

0
𝜎 (𝑠)) 𝑏 (𝑠) .

(60)

Since 𝜑󸀠(𝑠)𝜏(𝜑(𝑠))�̃�(𝜑(𝑠)) ̸= 0 for all 𝑠 ∈ 𝐼, it holds that

cos 𝜂
0
𝜏 (𝑠) − sin 𝜂

0
𝜎 (𝑠) ̸= 0. (61)

Let 𝛿 = cos 𝜂
0
/ sin 𝜂

0
be a constant number.Then (51) and

(57) imply

𝛿 =
𝜅 (𝑠) − 𝜏 (𝑠) (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))

𝜎 (𝑠) (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))
,

𝛾𝜅 (𝑠) − 𝜏 (𝑠) = 𝛿𝜎 (𝑠) ;

(62)

that is, we obtain relation (iii).
Conversely, we suppose that 𝛼 is a 𝐶∞-special Frenet

curve in𝐺
4
with curvature functions 𝜅, 𝜏, and 𝜎 satisfying (i),

(ii), and (iii) for constant numbers 𝜆, 𝜇, 𝛾, and 𝛿. Then we
define a 𝐶∞-curve �̃� by

�̃� (𝑠) = 𝛼 (𝑠) + 𝜆𝑛 (𝑠) + 𝜇𝑒 (𝑠) (63)

for all 𝑠 ∈ 𝐼, where 𝑠 is the arclength parameter of 𝛼.
Differentiating (63) with respect to 𝑠 and using the Frenet
equations, we obtain

𝑑�̃� (𝑠)

𝑑𝑠
= 𝑡 (𝑠) + (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠)) 𝑏 (𝑠) (64)

for all 𝑠 ∈ 𝐼. Thus, by relation (ii), we obtain

𝑑�̃� (𝑠)

𝑑𝑠
= 𝑡 (𝑠) +

1

𝛾
𝑏 (𝑠) . (65)

Since relation (i) holds, the curve �̃� is a regular curve. Then
there exists a regular map 𝜑 : 𝐼 → 𝐼 defined by

𝑠 = 𝜑 (𝑠) = ∫

𝑠

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑�̃� (𝑡)

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑡, (∀𝑠 ∈ 𝐼) , (66)

where 𝑠 denotes the arclength parameter of �̃�, and we obtain

𝜑
󸀠
(𝑠) = 𝜀√1 + (𝜆𝜏 (𝑠) − 𝜇𝜎 (𝑠))

2
= 𝜀√1 +

1

𝛾2
, 𝜀 = ∓1,

(67)

for all 𝑠 ∈ 𝐼. Thus the curve �̃� is rewritten as

�̃� (𝑠) = �̃� (𝜑 (𝑠)) = 𝛼 (𝑠) + 𝜆𝑛 (𝑠) + 𝜇𝑒 (𝑠) (68)

for all 𝑠 ∈ 𝐼. Differentiating the above equality with respect to
𝑠, we obtain

𝜑
󸀠
(𝑠)
𝑑�̃�(𝑠)

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝜑(𝑠)

= 𝑡 (𝑠) +
1

𝛾
𝑏 (𝑠) . (69)
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We can define a unit vector field �̃� along �̃� by �̃�(𝑠) =
𝑑�̃�(𝑠)/𝑑𝑠 for all 𝑠 ∈ 𝐼. By (67) and (69) we obtain

�̃� (𝑠) = 𝜀 (1 +
1

𝛾2
)

−1/2

⋅ (𝑡 (𝑠) +
1

𝛾
𝑏 (𝑠)) (70)

for all 𝑠 ∈ 𝐼. Differentiating (70) with respect to 𝑠 and using
the Frenet equations, we obtain

𝜑
󸀠
(𝑠)
𝑑�̃�(𝑠)

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝜑(𝑠)

= 𝜀(1 +
1

𝛾2
)

−1/2

⋅ (𝜅 (𝑠) −
𝜏 (𝑠)

𝛾
) 𝑛 (𝑠) +

𝜎 (𝑠)

𝛾
𝑒 (𝑠) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑�̃�(𝑠)

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝜑(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

√(𝜅 (𝑠) − (𝜏 (𝑠) /𝛾))
2
+ (𝜎 (𝑠) /𝛾)

2

𝜑󸀠 (𝑠)√1 + (1/𝛾2)

.

(71)

By the fact that 𝜑󸀠(𝑠) > 0 for all 𝑠 ∈ 𝐼, we obtain

𝜅 (𝜑 (𝑠)) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑�̃�(𝑠)

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝜑(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

> 0 (72)

for all 𝑠 ∈ 𝐼. Then we can define a unit vector field 𝑛 along �̃�
by

𝑛 (𝑠) = 𝑛 (𝜑 (𝑠))

=
1

𝜀√(𝜅 (𝑠) − (𝜏 (𝑠) /𝛾))
2
+ (𝜎 (𝑠) /𝛾)

2

× ((𝜅 (𝑠) −
𝜏 (𝑠)

𝛾
) 𝑛 (𝑠) +

𝜎 (𝑠)

𝛾
𝑒 (𝑠))

(73)

for all 𝑠 ∈ 𝐼. Thus we can put

𝑛 (𝜑 (𝑠)) = cos 𝜉 (𝑠) ⋅ 𝑛 (𝑠) + sin 𝜉 (𝑠) ⋅ 𝑒 (𝑠) , (74)

where

cos 𝜉 (𝑠) =
𝛾𝜅 (𝑠) − 𝜏 (𝑠)

𝜀𝛾√(𝜅 (𝑠) − (𝜏 (𝑠) /𝛾))
2
+ (𝜎 (𝑠) /𝛾)

2
(75)

sin 𝜉 (𝑠) = 𝜎

𝜀𝛾√(𝜅 (𝑠) − (𝜏 (𝑠) /𝛾))
2
+ (𝜎 (𝑠) /𝛾)

2 (76)

for all 𝑠 ∈ 𝐼. Here 𝜉 is a𝐶∞-function on 𝐼. Differentiating (74)
with respect to 𝑠 and using the Frenet equations, we get

𝜑
󸀠
(𝑠) ⋅

𝑑𝑛 (𝑠)

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝜑(𝑠)

= cos 𝜉 (𝑠) ⋅ 𝜏 (𝑠) 𝑏 (𝑠) + 𝑑 cos 𝜉 (𝑠)
𝑑𝑠

𝑛 (𝑠)

+ sin 𝜉 (𝑠) ⋅ (−𝜎 (𝑠) 𝑏 (𝑠)) + 𝑑 sin 𝜉 (𝑠)
𝑑𝑠

𝑒 (𝑠) .

(77)

Differentiating (iii) with respect to 𝑠, we obtain

𝛾𝜅
󸀠
(𝑠) − 𝜏

󸀠
(𝑠) − 𝛿𝜎

󸀠
(𝑠) ≡ 0. (78)

Differentiating (74) and (75) with respect to 𝑠 and using (78),
we get

𝑑 cos 𝜉 (𝑠)
𝑑𝑠

≡ 0,
𝑑 sin 𝜉 (𝑠)
𝑑𝑠

≡ 0; (79)

that is, 𝜉 is a constant function on 𝐼 with value 𝜉
0,
. Thus, we

find

cos 𝜉
0
=

𝛾𝜅 (𝑠) − 𝜏 (𝑠)

𝜀√(𝛾𝜅 (𝑠) − 𝜏 (𝑠))
2
+ (𝜎 (𝑠))

2

,

sin 𝜉
0
=

𝜎 (𝑠)

𝜀√(𝛾𝜅 (𝑠) − 𝜏 (𝑠))
2
+ (𝜎 (𝑠))

2

.

(80)

From (74), it holds that

𝑛 (𝜑 (𝑠)) = cos 𝜉
0
𝑛 (𝑠) + sin 𝜉

0
𝑒 (𝑠) . (81)

Thus we obtain, by (70) and (72),

𝜅 (𝜑 (𝑠)) �̃� (𝜑 (𝑠)) =

√(𝜅 (𝑠) − (𝜏 (𝑠) /𝛾))
2
+ (𝜎 (𝑠) /𝛾)

2

𝜀𝜑󸀠 (𝑠) (1 + (1/𝛾))
2

× (𝑡 (𝑠) +
1

𝛾
𝑏 (𝑠)) .

(82)

Thus we can define a unit vector field �̃�(𝑠) along �̃� by

�̃� (𝜑 (𝑠)) = 𝜀 (1 +
1

𝛾2
)

−1/2

(−
1

𝛾
𝑡 (𝑠) + 𝑏 (𝑠)) (83)

for all 𝑠 ∈ 𝐼.
Next we can define a unit vector field 𝑒(𝑠) along �̃� by

𝑒 (𝑠) = 𝑒 (𝜑 (𝑠)) = − sin 𝜉
0
𝑛 (𝑠) + cos 𝜉

0
𝑒 (𝑠) (84)

for all 𝑠 ∈ 𝐼. Now we obtain, by (70), (74), (81), and (83),

det [�̃� (𝜑 (𝑠)) , 𝑛 (𝜑 (𝑠)) , �̃� (𝜑 (𝑠)) , 𝑒 (𝜑 (𝑠))]

= det [𝑡 (𝑠) , 𝑛 (𝑠) , 𝑏 (𝑠) , 𝑒 (𝑠)] = 0,

⟨�̃�, 𝑛⟩ = ⟨�̃�, �̃�⟩ = ⟨�̃�, 𝑒⟩ = ⟨𝑛, 𝑒⟩

= ⟨𝑛, �̃�⟩ = ⟨�̃�, 𝑒⟩ = 0,

⟨�̃�, �̃�⟩ = ⟨𝑛, 𝑛⟩ = ⟨�̃�, �̃�⟩ = ⟨𝑒, 𝑒⟩ = 1,

(85)

for all 𝑠 ∈ 𝐼. Thus the frame {�̃�, 𝑛, �̃�, 𝑒} along �̃� is orthonormal
and positive. Therefore the curve �̃� is a 𝐶∞-special Frenet-
Serret curve in 𝐺

4
, and it is obvious that the Frenet-Serret

Sp{𝑛, 𝑒}-normal plane at each point 𝛼(𝑠) of 𝛼 coincides with
the Frenet-Serret Sp{𝑛, 𝑒}-normal plane at corresponding
point �̃�(𝑠) of �̃�. Therefore 𝛼 is an (𝑛, 𝑒)-Bertrand curve in
𝐺
4
.
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