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We completely classify homogeneous production functions with proportional marginal rate of substitution and with constant
elasticity of labor and capital, respectively. These classifications generalize some recent results of C. A. Ioan and G. Ioan (2011)
concerning the sum production function.

1. Introduction

It is well known that the production function is one of the
key concepts of mainstream neoclassical theories, with a lot
of applications not only in microeconomics and macroeco-
nomics but also in various fields, like biology [1, 2], educa-
tional management [3, 4], and engineering [5–8]. Roughly
speaking, the production functions are the mathematical
formalization of the relationship between the output of a
firm/industry/economy and the inputs that have been used
in obtaining it. In fact, a production function is a map 𝑓 of
class 𝐶∞, 𝑓 : R𝑛

+
→ R

+
, 𝑓 = 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), where 𝑓 is

the quantity of output, 𝑛 is the number of the inputs, and
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
are the factor inputs (such as labor, capital, land,

and raw materials). In order for these functions to model as
well the economic reality, they are required to be homoge-
neous; that is, there exists a real number𝑝 such that𝑄(𝜆⋅𝑥) =
𝜆𝑝𝑄(𝑥), for all 𝑥 ∈ R𝑛

+
and 𝜆 ∈ R

+
, that means if the inputs

are multiplied by same factor, then the output is multiplied
by some power of this factor. If 𝜆 = 1, then the function
is said to have a constant return to scale, if 𝜆 > 1, then we
have an increased return to scale, and if 𝜆 < 1, then we say
that the function has a decreased return to scale. Among the

family of production functions, themost famous is the Cobb-
Douglas (CD) production function, introduced in 1928 by
Cobb and Douglas [9], in order to describe the distribution
of the national income of the USA. In its most standard
form for production of a single good with two factors, the
Cobb-Douglas production function is given by

𝑓 = 𝐶𝐾𝛼𝐿𝛽, (1)

where 𝑓 is the total production,𝐾 is the capital input, 𝐿 is the
labor input, and 𝐶 is a positive constant which signifies the
total factor productivity. We note that, in the original defini-
tion of Cobb and Douglas, we have 𝛼 + 𝛽 = 1, so the produc-
tion function had a constant return to scale, but this condition
has been later relaxed, and CD production functions were
generalized (see [10, 11]). Some very interesting information
about other production functions of great interest in eco-
nomic analysis, like Leontief, Lu-Fletcher, Liu-Hildebrand,
Kadiyala, Arrow-Chenery-Minhas-Solow (ACMS), constant
elasticity of substitution (CES), and variable elasticity of
substitution (VES) production functions, can be found in
[12]. Recently, C. A. Ioan and G. Ioan [13] introduced a new
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class of production functions, called sum production func-
tion, as a two-factor production function defined by

𝑓 (𝐾, 𝐿) =
𝑛

∑
𝑖=1

𝛼
𝑖
(𝑐
𝑖1
𝐾𝑝𝑖1+𝑝𝑖2 + 𝑐

𝑖2
𝐾𝑝𝑖1𝐿𝑝𝑖2 + 𝑐

𝑖3
𝐿𝑝𝑖1+𝑝𝑖2)

𝑝𝑖3 ,

(2)

where 𝑛 ≥ 1, 𝛼
𝑖
≥ 0, 𝑝

𝑖3
∈ (−∞, 0) ∪ [1,∞), 𝑝

𝑖1
𝑝
𝑖2

> 0,
𝑝
𝑖3
(𝑝
𝑖1
+ 𝑝
𝑖2
) = 1, ∑𝑛

𝑖=1
(𝑐
𝑖2
+ 𝑐
𝑖1
𝑐
𝑖3
) > 0, and 𝑐

𝑖𝑗
≥ 0, for all 𝑖 ∈

{1, 2, . . . , 𝑛}, for all 𝑗 ∈ {1, 2, 3}.
It is easy to see that this production function is homoge-

neous of degree 1 and integrates in an unitary expression var-
ious production functions, including CD, CES, and VES. In
[13], C. A. Ioan and G. Ioan compute the principal indicators
of the sum production function and prove three theorems
of characterization for the functions with a proportional
marginal rate of substitution, with constant elasticity of labor
and for those with constant elasticity of substitution, as
follows.

Theorem 1 (see [13]). The sum production function has a
proportional marginal rate of substitution if and only if it
reduces to the Cobb-Douglas function.

Theorem 2 (see [13]). The sum production function has a
constant elasticity of labor if and only if it reduces to the Cobb-
Douglas function.

Theorem 3 (see [13]). If 𝑛 = 1, then the sum production
function has constant elasticity of substitution if and only if it
reduces to the Cobb-Douglas or CES function.

We recall that, for a production function 𝑓 with two fac-
tors (𝐾-capital and 𝐿-labor), the marginal rate of substitution
(between capital and labor) is given by

MRS =
𝜕𝑓/𝜕𝐿

𝜕𝑓/𝜕𝐾
, (3)

where the elasticities of 𝐿 and𝐾 are defined as

𝐸
𝐿
=
𝜕𝑓/𝜕𝐿

𝑓/𝐿
, 𝐸

𝐾
=
𝜕𝑓/𝜕𝐾

𝑓/𝐾
, (4)

while the elasticity of substitution is given by

𝜎 = ((1/ (𝐾 (𝜕𝑓/𝜕𝐾))) + (1/ (𝐿 (𝜕𝑓/𝜕𝐿))))

× (− ((𝜕2𝑓/𝜕𝐾2) /(𝜕𝑓/𝜕𝐾)
2

)

+ ((2 (𝜕2𝑓/𝜕𝐾𝜕𝐿)) / ((𝜕𝑓/𝜕𝐾) (𝜕𝑓/𝜕𝐿)))

− ((𝜕2𝑓/𝜕𝐿2) /(𝜕𝑓/𝜕𝐿)
2

) )
−1

.

(5)

It is easy to verify that, in the case of constant return
to scale, Euler’s theorem implies the following more simple
expression for the elasticity of substitution:

𝜎 =
(𝜕𝑓/𝜕𝐿) (𝜕𝑓/𝜕𝐾)

𝑓 (𝜕2𝑓/𝜕𝐾𝜕𝐿)
. (6)

We note that it was proved by Losonczi [14] that twice
differentiable two-input homogeneous production functions
with constant elasticity of substitution (CES) property are
Cobb-Douglas and ACMS production functions, which is
obviously a more general result than Theorem 3. This result
was recently generalized by Chen for an arbitrary number of
inputs [15]. In the next section, we prove the following result
which is a generalization of Theorems 1 and 2.

Theorem 4. Let 𝑓 be a twice differentiable, homogeneous of
degree 𝑟, nonconstant, real valued production function with
two inputs (𝐾-capital and 𝐿-labor). Then, one has the follow-
ing.

(i) 𝑓 has a constant elasticity of labor 𝑘 if and only if it is
a Cobb-Douglas production function given by

𝑓 (𝐾, 𝐿) = 𝐶𝐾𝑟−𝑘𝐿𝑘, (7)

where 𝐶 is a positive constant.
(ii) 𝑓 has a constant elasticity of capital 𝑘 if and only if it is

a Cobb-Douglas production function given by

𝑓 (𝐾, 𝐿) = 𝐶𝐾𝑘𝐿𝑟−𝑘, (8)

where 𝐶 is a positive constant.
(iii) 𝑓 satisfies the proportional rate of substitution property

between capital and labor (i.e., MRS = 𝑘(𝐾/𝐿), where
𝑘 is a positive constant) if and only if it is a Cobb-
Douglas production function given by

𝑓 (𝐾, 𝐿) = 𝐶𝐾𝑟/(𝑘+1)𝐿𝑟𝑘/(𝑘+1), (9)

where 𝐶 is a positive constant.

In the last section of the paper, we generalize the above
theorem for an arbitrary number of inputs 𝑛 ≥ 3.We note that
other classification results concerning production functions
were proved recently in [16–20].

2. Proof of Theorem 4

Proof. Consider the following.

(i) We first suppose that 𝑓 has a constant elasticity of
labor 𝑘. Then, we have

𝜕𝑓

𝜕𝐿
= 𝑘

𝑓

𝐿
. (10)

But with 𝑓 being homogeneous of degree 𝑟, it follows
that it can be written in the form

𝑓 (𝐾, 𝐿) = 𝐾𝑟ℎ (𝑢) (11)

or

𝑓 (𝐾, 𝐿) = 𝐿𝑟ℎ (𝑢) , (12)
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where 𝑢 = 𝐿/𝐾 (with 𝐾 ̸= 0), respectively, 𝑢 = 𝐾/𝐿
(with 𝐿 ̸= 0), and ℎ is a real valued function of 𝑢, of
class 𝐶2 on its domain of definition. We can suppose,
without loss of generality, that the first situation
occurs, so 𝑓(𝐾, 𝐿) = 𝐾𝑟ℎ(𝑢), with 𝑢 = 𝐿/𝐾. Then,
we have

𝜕𝑓

𝜕𝐿
= 𝐾𝑟−1ℎ󸀠 (𝑢) . (13)

From (10) and (13), we obtain

𝐾𝑟−1ℎ󸀠 (𝑢) = 𝑘
𝐾𝑟ℎ (𝑢)

𝐿
, (14)

and therefore we deduce that the constant elasticity of
labor property implies the following differential equa-
tion:

ℎ󸀠 (𝑢) = 𝑘
ℎ (𝑢)

𝑢
. (15)

Solving the above separable differential equation, we
obtain

ℎ (𝑢) = 𝐶𝑢𝑘, (16)

where 𝐶 is a positive constant. Finally, from (11) and
(16), we derive that 𝑓 is a Cobb-Douglas production
function given by

𝑓 (𝐾, 𝐿) = 𝐶 ⋅ 𝐾𝑟−𝑘𝐿𝑘. (17)

The converse is easy to verify.
(ii) The proof follows similarly as in (i).
(iii) Since the production function satisfies the pro-
portional rate of substitution property, it follows that

𝜕𝑓

𝜕𝐿
= 𝑘

𝐾

𝐿

𝜕𝑓

𝜕𝐾
. (18)

On the other hand, from Euler’s homogeneous func-
tion theorem, we have

𝐾
𝜕𝑓

𝜕𝐾
+ 𝐿

𝜕𝑓

𝜕𝐿
= 𝑟𝑓 (𝐾, 𝐿) . (19)

Combining now (18) and (19), we obtain

𝜕𝑓

𝜕𝐾
=

𝑟

𝑘 + 1

𝑓

𝐾
. (20)

From (20), we deduce that

𝑓 (𝐾, 𝐿) = 𝐶𝐾𝑟/(𝑘+1)𝑢 (𝐿) , (21)

where 𝐶 is a real constant. But with 𝑓 being a homo-
geneous function of degree 𝑟, it follows from (21) that

𝑢 (𝐿) = 𝐿𝑟𝑘/(𝑘+1). (22)

Therefore, from (21) and (22), we derive that

𝑓 (𝐾, 𝐿) = 𝐶𝐾𝑟/(𝑘+1)𝐿𝑟𝑘/(𝑘+1), (23)

where 𝐶 is a real constant. Finally, since 𝑓 is a non-
constant production function, it follows that 𝑓 > 0,
and therefore we deduce that 𝐶 is in fact a positive
constant. So, 𝑓 is a Cobb-Douglas production func-
tion.
The converse is easy to check, and the proof is now
complete.

3. Generalization to an Arbitrary
Number of Inputs

Let 𝑓 be a homogeneous production function with 𝑛 inputs
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑛 > 2. Then, the elasticity of production with

respect to a certain factor of production 𝑥
𝑖
is defined as

𝐸
𝑥𝑖
=
𝜕𝑓/𝜕𝑥

𝑖

𝑓/𝑥
𝑖

, (24)

while themarginal rate of technical substitution of input 𝑗 for
input 𝑖 is given by

MRS
𝑖𝑗
=
𝜕𝑓/𝜕𝑥

𝑗

𝜕𝑓/𝜕𝑥
𝑖

. (25)

A production function is said to satisfy the proportional
marginal rate of substitution property if and only if MRS

𝑖𝑗
=

𝑥
𝑖
/𝑥
𝑗
, for all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛. Now, we are able to prove the

following result, which generalizesTheorem 4 for an arbitrary
number of inputs.

Theorem 5. Let 𝑓 be a twice differentiable, homogeneous
of degree 𝑟, nonconstant, real valued function of 𝑛 variables
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) defined on 𝐷 = R𝑛

+
, where 𝑛 > 2. Then, one

has the following.

(i) The elasticity of production is a constant 𝑘
𝑖
with

respect to a certain factor of production 𝑥
𝑖
if and only if

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥
𝑘𝑖

𝑖
𝑥
𝑟−𝑘𝑖

𝑗
𝐹 (𝑢
1
, . . . , 𝑢

𝑛−2
) , (26)

where 𝑗 is any element settled from the set {1, . . . , 𝑛}\{𝑖}
and 𝐹 is a twice differentiable real valued function of
𝑛 − 2 variables

{𝑢
1
, . . . , 𝑢

𝑛−2
} = {

𝑥
𝑘

𝑥
𝑗

| 𝑘 ∈ {1, . . . , 𝑛} \ {𝑖, 𝑗}} . (27)

(ii) The elasticity of production is a constant 𝑘
𝑖
with respect

to all factors of production 𝑥
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑛}, if and

only if

𝑘
1
+ 𝑘
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑛
= 𝑟, (28)
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and 𝑓 reduces to the Cobb-Douglas production func-
tion given by

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐶𝑥

𝑘1

1
𝑥
𝑘2

2
⋅ ⋅ ⋅ 𝑥𝑘𝑛
𝑛
, (29)

where 𝐶 is a positive constant.
(iii) The production function satisfies the proportional mar-

ginal rate of substitution property if and only if it
reduces to the Cobb-Douglas production function given
by

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐶𝑥𝑟/𝑛

1
𝑥𝑟/𝑛
2

⋅ ⋅ ⋅ 𝑥𝑟/𝑛
𝑛

, (30)

where 𝐶 is a positive constant.

Proof. Consider the following.
(i) The if part of the statement is easy to verify. Next,
we prove the only if part. Since the elasticity of pro-
duction with respect to a certain factor of production
𝑥
𝑖
is a constant 𝑘

𝑖
, we have

𝜕𝑓

𝜕𝑥
𝑖

= 𝑘
𝑖

𝑓

𝑥
𝑖

. (31)

On the other hand, since 𝑓 is a homogeneous of
degree 𝑟, it follows that it can be expressed in the form

𝑓 (𝑥
1
, . . . , 𝑥

𝑛
) = 𝑥𝑟
𝑗
ℎ (𝑢
1
, . . . , 𝑢

𝑛−1
) , (32)

where 𝑗 can be settled in the set {1, . . . , 𝑛} and

𝑢
𝑘
=

{{{{
{{{{
{

𝑥
𝑘

𝑥
𝑗

, 1 ≤ 𝑘 ≤ 𝑗 − 1,

𝑥
𝑘+1

𝑥
𝑗

, 𝑗 ≤ 𝑘 ≤ 𝑛 − 1.

(33)

If we settle 𝑗 such that 𝑗 ̸= 𝑖, then we derive from (32)

𝜕𝑓

𝜕𝑥
𝑖

=

{{{{
{{{{
{

𝑥𝑟−1
𝑗

𝜕ℎ

𝜕𝑢
𝑖

, if 𝑖 < 𝑗,

𝑥𝑟−1
𝑗

𝜕ℎ

𝜕𝑢
𝑖−1

, if 𝑖 > 𝑗.

(34)

Replacing now (34) in (31), we obtain

𝑘
𝑖
ℎ =

{{{{
{{{{
{

𝑢
𝑖

𝜕ℎ

𝜕𝑢
𝑖

, if 𝑖 < 𝑗,

𝑢
𝑖−1

𝜕ℎ

𝜕𝑢
𝑖−1

, if 𝑖 > 𝑗,

(35)

and solving the partial differential equations in (35),
we derive

ℎ (𝑢
1
, . . . , 𝑢

𝑛−1
)

=
{{
{{
{

𝐶𝑢
𝑘𝑖

𝑖
𝐹 (𝑢
1
, . . . , 𝑢

𝑖
, . . . , 𝑢

𝑛−1
) , if 𝑖 < 𝑗,

𝐶𝑢
𝑘𝑖

𝑖−1
𝐹 (𝑢
1
, . . . , 𝑢

𝑖−1
, . . . , 𝑢

𝑛−1
) , if 𝑖 > 𝑗,

(36)

where 𝐶 is a positive constant, 𝐹 is a twice differ-
entiable real valued function of 𝑛 − 2 variables and
the symbol “̂” means that the corresponding term is
omitted.
The conclusion follows now easily from (32) and (36),
taking into account (33).
(ii) This assertion follows immediately from (i).
(iii) It is easy to show that if 𝑓 is a Cobb-Douglas
production function given by

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐶𝑥𝑟/𝑛

1
𝑥𝑟/𝑛
2

⋅ ⋅ ⋅ 𝑥𝑟/𝑛
𝑛

, (37)

then 𝑓 satisfies the proportional marginal rate of sub-
stitution property. We prove now the converse. Since
𝑓 satisfies the proportional marginal rate of substitu-
tion property, it follows that

𝑥
1

𝜕𝑓

𝜕𝑥
1

= 𝑥
2

𝜕𝑓

𝜕𝑥
2

= ⋅ ⋅ ⋅ = 𝑥
𝑛

𝜕𝑓

𝜕𝑥
𝑛

. (38)

On the other hand, since 𝑓 is a homogeneous of
degree 𝑟, the Euler homogeneous function theorem
implies that

𝑥
1

𝜕𝑓

𝜕𝑥
1

+ 𝑥
2

𝜕𝑓

𝜕𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛

𝜕𝑓

𝜕𝑥
𝑛

= 𝑟𝑓. (39)

From (38) and (39), we obtain

𝑥
𝑖

𝜕𝑓

𝜕𝑥
𝑖

=
𝑟

𝑛
𝑓, 𝑖 ∈ {1, 2, . . . , 𝑛} . (40)

Finally, from the above system of partial differential
equations, we obtain the solution

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐶𝑥𝑟/𝑛

1
𝑥𝑟/𝑛
2

⋅ ⋅ ⋅ 𝑥𝑟/𝑛
𝑛

, (41)

where 𝐶 is a positive constant and the conclusion
follows.
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