Video Deblurring for Hand-held Cameras Using Patch-based Synthesis *

Sunghyun Cho'+2
'POSTECH

Jue Wang?

Seungyong Lee!
2 Adobe Systems

Figure 1: Comparison of deblurring results of a motion-blurred video frame using different approaches. (a) A blurry frame of the “cars”
video. (b) Magnified view of an input region. (c) Single image deblurring. (d) Multi-frame deblurring. (e) Our method. (f) Similar image
region from a nearby sharp frame.

Abstract

Videos captured by hand-held cameras often contain significant
camera shake, causing many frames to be blurry. Restoring shaky
videos not only requires smoothing the camera motion and sta-
bilizing the content, but also demands removing blur from video
frames. However, video blur is hard to remove using existing sin-
gle or multiple image deblurring techniques, as the blur kernel is
both spatially and temporally varying. This paper presents a video
deblurring method that can effectively restore sharp frames from
blurry ones caused by camera shake. Our method is built upon the
observation that due to the nature of camera shake, not all video
frames are equally blurry. The same object may appear sharp on
some frames while blurry on others. Our method detects sharp re-
gions in the video, and uses them to restore blurry regions of the
same content in nearby frames. Our method also ensures that the
deblurred frames are both spatially and temporally coherent using
patch-based synthesis. Experimental results show that our method
can effectively remove complex video blur under the presence of
moving objects and other outliers, which cannot be achieved using
previous deconvolution-based approaches.

CR Categories: 1.4.3 [Image Processing and Computer Vision]:
Enhancement—Sharpening and deblurring

Keywords: motion blur, video deblurring, lucky region, patch-
based synthesis

Links: ©DL TPDF & WEB

*ACM, 2012. This is the authors version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in ACM Transactions on Graphics, vol.
31, issue 4, July 2012. http://doi.acm.org/10.1145/2185520.
2185560

1 Introduction

Camera motion is one of the most important factors that differ-
entiate professional videos from ones captured by armature users.
Professional videos are often shot using special equipments such
as dollies or steadicams to achieve smooth camera motion, while
amateur ones are often shot by hand-held cameras with significant
camera shake. The impact of a shaky camera on the captured video
is twofold: first, it introduces temporal jitter to the video content
which is unpleasant to watch; second, it blurs video frames signifi-
cantly at times when the camera shake is intense.

Video stabilization systems [Liu et al. 2011; Grundmann et al.
2011] have been proposed recently to smooth the camera motion
in a shaky video. Although these approaches can successfully sta-
bilize the video content, it leaves the blurriness caused by original
camera motion untouched. As a result, the blurry frames become
the most noticeable artifact in a stabilized video, as can be seen in
the supplementary video.

On the other hand, blurry video frames also hinders video stabiliza-
tion approaches from achieving high quality results. Most stabi-
lization systems rely on feature tracking to plan the camera motion.
However feature tracking over blurry frames is often not reliable
due to the lack of sharp image features. Restoring sharp frames
from blurry ones caused by camera motion, which we dub video
motion deblurring, is thus critical to generating high quality sta-
bilization results. For this reason we argue that video deblurring
should be done prior to applying stabilization techniques. This is in
sharp contrast to the deblurring workflow proposed in previous sys-
tems [Matsushita et al. 2006], where simple deblurring techniques
were applied after the input video was stabilized.

A straightforward idea for video motion deblurring is to first iden-
tify blurry frames, and then apply existing single or multiple im-
age deblurring techniques to them. Unfortunately, we found that
existing image deblurring approaches are incapable of generating
satisfactory results on video. An example is shown in Fig. 1, where
we apply a recent single image deblurring method [Cho and Lee
2009] and a multi-frame deblurring approach [Li et al. 2010] to
deblur the blurry frame shown in Fig. 1a. Both results contain sig-
nificant, unacceptable artifacts due to several reasons. First, the
blur kernels in video are both spatially and temporally varying, in-
troduced by both camera and object motions. Recent deblurring
methods could effectively handle general camera motions, but ob-
ject motions would still prevent reliable and accurate blur kernel

http://doi.acm.org/10.1145/2185520.2185560
http://portal.acm.org/ft_gateway.cfm?id=2185560&type=pdf
http://cg.postech.ac.kr/research/video_deblur
http://doi.acm.org/10.1145/2185520.2185560
http://doi.acm.org/10.1145/2185520.2185560

estimation for all frames. Second, even with good kernel estima-
tion, deconvolution is sensitive to various outliers, such as noise
and saturated pixels, and can easily introduce severe ringing arti-
facts, as suggested by Cho et al. [2011]. Third, while most previous
multi-frame deblurring approaches require input images to be well
aligned [Chen et al. 2008; Li et al. 2010], it is usually impossible
to accurately align video frames due to moving objects and depth
differences. Last but not least, video deblurring demands temporal
coherence. Directly applying an image deblurring method to indi-
vidual frames can easily generate temporally inconsistent results.

In this paper, we present an effective, practical solution for video
motion deblurring, which avoids applying direct kernel estimation
and deconvolution to video frames. Our method is built upon the
key observation that camera shake usually comes from high fre-
quency, irregular hand motion. It causes the same image content to
appear sharper on some frames when the motion velocity is small,
and more blurry on others when the velocity is large. With proper
alignment and motion compensation, sharp regions can be directly
used to restore their corresponding regions in blurry frames.

In our approach, we first estimate a parametric, homography-based
motion for each frame as an approximation to the real motion,
which can be far more complicated due to parallax. We then use
the approximated motion for defining the luckiness of a pixel to
measure its sharpness. To deblur a video frame, we search for
luckier pixels in nearby frames and use them to replace less lucky
ones in the current frame. The pixel correspondence across frames
is obtained using the estimated homographies, followed by a lo-
cal search of the best matching image patch to compensate for the
inaccuracy of the motion model. To compare a sharp patch with
a blurry one, we use forward convolution to blur the sharp patch
with the estimated blur function of the blurry patch. When copying
lucky pixels to a blurry frame, we adopt a patch-based texture syn-
thesis approach [Kwatra et al. 2005] to better preserve object struc-
tures. Finally, we impose similarity constraint on the correspond-
ing patches in consecutive frames to maintain temporal coherence
of the deblurred frames.

Our method is designed to remove only the blur introduced by cam-
era motion on static objects in the video. This is in lieu with the
design goal of video stabilization approaches which usually aim at
stabilizing the background only. For moving objects, since their
blur is typically dominated by object motion which is preserved in
the final video, the blur on them rarely stands out as a noticeable
artifact. On the contrary, we found that human perception is much
more sensitive to the blur on background regions which are sup-
posed to be still or slowly changing. Our method can effectively
remove the most annoying background blur and can work reliably
well when moving foreground objects present, as we will demon-
strate in Sec. 5.

2 Related Work

Single image deblurring Deblurring a single input image has
been extensively studied in recent years. Most success in this area
has come with uniform deblurring approaches [Fergus et al. 2006;
Shan et al. 2008; Cho and Lee 2009; Levin et al. 2011]. These
methods assume a single uniform kernel for the whole image, thus
cannot be directly applied to video frames where the blur is spatially
varying. Recently, the research focus has been shifted to exploring
non-uniform deblurring methods. Whyte et al. [2010] and Hirsch
et al. [2011] directly used a 3D blur kernel to represent spatially-
varying 2D blur kernels across the image, while Gupta et al. [2010]
proposed to represent camera motion using a motion density func-
tion. However, in practice we found that these approaches are not
robust enough to handle real-world videos we address in this pa-

per, due to many factors such as moving objects, image noise and
compression artifacts.

Multi-image deblurring Several approaches have been proposed
to jointly deblur multiple blurry images of roughly the same scene.
Cai et al. [2009] proposed a numerically stable multi-image de-
blurring method which explicitly models image registration errors.
However this method assumes a uniform blur kernel for each image.
Agrawal et al. [2009] varied the exposure time for video frames to
make multi-frame deblurring invertible, but it requires special cap-
turing hardware and cannot be applied to normal video sequences.
Cho et al. [2007] segmented images into regions of homogeneous
motions, and estimated the corresponding motion PSFs to restore
latent images, all in a joint energy minimization framework. How-
ever, this method handles only 1D Gaussian kernels and lacks the
ability to model general camera motion which is common in a video
sequence. Li et al. [2010] proposed a system to create a sharp
panorama from a motion-blurred video. Their system uses homo-
graphies as the motion model between adjacent frames, which leads
to spatially-varying blur kernels. The motion and duty cycle param-
eters are estimated along with latent images in an energy minimiza-
tion formulation. Our method adopts a similar homography-based
motion model for the approximate blur model. However we do
not treat the homography-based model as an accurate one, and ex-
plicitly handle the model inaccuracy by incorporating local search
of matching patches. Furthermore, our system do not use decon-
volution to restore latent frames, thus avoids introducing ringing
artifacts that are common in previous approaches.

Video deblurring by interpolation Matsushita et al. [2006] pro-
posed a practical video deblurring method in their video stabiliza-
tion system. They detected sharp frames using the statistics of im-
age gradients, and interpolated sharp frames to increase the sharp-
ness of blurry frames. This is the closest work to our method. How-
ever, their frame-to-frame pixel alignment method uses only the
camera motion represented by homographies, and does not consider
either the effect of blur kernels or the alignment errors introduced
by using homographies only. This alignment inaccuracy in their
method inevitably degrades the quality of deblurred frames, as we
will show in Sec. 5.

Lucky imaging Lucky imaging, also called lucky exposures, is a
well-known technique in astronomical photography dated back in
70s [Fried 1978], where a few best images out of many are chosen
and combined into a single image to avoid atmospheric turbulence.
The similar concept has been recently applied for obtaining a sharp
image of a distant object from multiple shots [Joshi and Cohen
2010]. They assumed the camera is static, thus the small amount
of misalignment between images can be removed by a patch based
search with simple comparison of pixel values. This is however
not the case for video deblurring. As the camera motion is intense
at times, aligning video frames becomes nontrivial due to different
blur amounts of pixels, which prohibit the direct use of pixel val-
ues in a patch based search. Furthermore, previous lucky imaging
techniques throw away most data and produce only one best image,
while for video deblurring we have to restore all frames.

Patch-based synthesis Patch-based sampling methods have
achieved state-of-the-art results in a wide range of applications such
as texture synthesis [Efros and Freeman 2001], denoising [Buades
and Coll 2005; Liu and Freeman 2010], super-resolution [Freed-
man and Fattal 2011], and interactive image editing [Barnes et al.
2009]. For searching the nearest neighbor given an image patch,
previous methods mostly use the sum of squared differences (SSD)
as the patch distance metric, and only allow searching in the trans-
lation space. Recently Barnes et al. [2010] extended their Patch-
Match algorithm to include searching across scales and rotations as

® Figure 1(a)
Fi ®

Figure 2: Sources of sharp regions in a motion-blurred video. (a) A
Sfeature point to be tracked for the “cars” video. (b) The trajectory
of the feature point in the entire video. (c) One frame of the “cars”
video with camera rotation. (d) A local region near the rotation
center. (e) A local region far from the rotation center.

well. However this extension is still insufficient to search across
large motion blurs, which is essential to our deblurring framework.
HaCohen et al. [2011] proposed a non-rigid dense correspondence
algorithm and applied it to image deblurring, by iteratively per-
forming blind-deconvolution and image registration. However this
method assumes a global uniform kernel and uses deconvolution to
produce the final result, thus shares the same limitations with pre-
vious single image deblurring approaches.

Our approach is significantly different from and more robust than
previous image deblurring approaches, as it does not rely on ac-
curate kernel estimation and deconvolution. Our method estimates
kernels but uses them only for simulating blurring of sharp pixels
in a patch-based search, not for deconvolution to obtain the final
deblurred frames. Consequently, the required accuracy of the esti-
mated kernels is less than in previous approaches. Our approach is
also significantly different from previous work of video deblurring
by interpolation, lucky imaging, and patch-based synthesis, with a
unique contribution. We convolve a sharp patch with a blur kernel
to accurately compare it with a blurry patch. This is a key step,
as directly comparing a sharp patch to a blurry patch using pixel
differences will fail in finding the most adequate sharp patch.

3 Motion-blurred Video Frames

In this section, we first analyze why our assumption on the exis-
tence of sharp image regions in a motion-blurred video is valid. We
then describe an approximate blur model which we will use in our
deblurring approach.

3.1 Sources of sharp regions

Our method targets on removing motion blurs introduced by hand-
held cameras. Hand shake is an irregular motion which changes ve-
locity in a short period of time. The captured video frames sample
the hand shake motion at a much higher frame rate. If the video lasts
for a reasonable amount of time (typically a few seconds), there
are bound to be lucky frames captured when the camera motion is
almost steady (e.g., turning points of camera motion), resulting in
sharp frames, as well as blurry ones which were captured with large
camera motion. Fig. 2 shows an example. We selected one repre-
sentative feature point on the background, shown as the yellow dot
in Fig. 2a, and plotted its trajectory in the image space in Fig. 2b.
Since the background is static, this trajectory represents the camera

Figure 4: Estimated blur functions using our approximate blur
model for the video frame in Fig. 2c.

motion very well. It clearly shows that the velocity of the camera
motion changes dramatically in the course of the video, producing
both sharp (Fig. 1f) and blurry (Fig. 1a) frames at different times.

In addition to sharp and blurry frames, different image regions in
a single frame can be sharp and blurry, due to spatial-varying blur
kernels. Fig. 2c shows a video frame captured with camera rota-
tion, where the rotation center is around the middle of the left im-
age boundary. An image region near the rotation center is sharp
(Fig. 2d) while a region far away from the rotation center is more
blurry (Fig. 2e). This example suggests that we should consider
local sharpness in video frames for deblurring.

We would like to point out that this assumption fails if the camera
motion is dominated by a carefully directed large motion through-
out the entire video, such as constant panning. In practice we found
that most amateur videos taken with hand-held cameras usually
contain shaky camera motions such as walking, thus our assump-
tion holds well on a wide range of videos.

3.2 Approximate blur model

Our method approximates the blurs of video frames using homo-
graphes. As shown in Fig. 3, suppose the duty cycle of the camera
is 27, and the exposure time interval for frame f; is [t; — 7, t; + 7).
Let the time interval be 7' = t; — t;—1, and the latent image of
fi be l;. Assume that the motion between adjacent frames can be
approximated by a homography, i.e., ;11 = I:I,-(li), where H; is
an warping function parameterized by a 3 X 3 homography matrix
H;, and that the velocity of the motion is constant between adjacent
frames. Then, we have
I T e it
fio= () + ALQ)) dt,)

27 Ji—o

where H!_, and H are warping functions parameterized by the ho-

mography matrices Hf_; and HY, respectively, which are defined
as:

e T—t to. ., T—t t
Hiy =0l Hihy, Hi = T+ ol ()

I is the 3 x 3 identity matrix and H; | is the inverse matrix of
H;_;. Discretizing Eq. (1) gives us:

T

S (F) + FE) + 1

d=1

1

fe=bill) =15

)

where 7" becomes the sampling rate in [¢;, t;+1] which we fix as 20
in our implementation, and 7 becomes the number of samples that
fall into the duty cycle. We call b; the blur function for frame i. Fig.
4 shows the estimated blur functions for the video frame in Fig. 2c.

This blur model is similar to the one developed in the multi-image
deblurring method for panorama generation [Li et al. 2010], which
also uses homography as the underlying motion model. However,
our work only treats this model as an approximation in order to
deal with more complicated videos than panoramas, while it was
treated as an accurate model in the previous method. To explicitly
handle the modeling errors, our method employs an additional local
search step for aligning image regions of different frames, as we
will describe in detail in Sec. 4.1.

3.3 Luckiness measurement

With the motion model in Sec. 3.2, we introduce a measurement of
luckiness for a pixel in a video frame, which describes the absolute
displacement of the pixel among adjacent frames. For a pixel x in
frame f;, its luckiness is defined as:

<_ |7 () — 2l + || i) - x|2>

2
207}

ai(z) = exp

where H is a function that maps a pixel position to another pixel
position according to the homography H. o; is a constant which
we set as 20 pixels in our implementation. Eq. (4) computes the
displacement of pixel when the camera moves from frame f;_1
to fi+1 through f;. When the frame-to-frame motion of x is small,
H 1.111 and H; are close to I, thus «; () is close to 1, indicating that
the image patch centered at x is likely to be sharp. Otherwise a; ()
is small, indicating that the patch is likely to contain large motion
blur. The luckiness «; of a whole frame f; is simply defined as the
average value of all «; (z) for pixels in f;.

3.4 Blur function estimation

There are two parameters that we have to estimate for the blur func-
tion b; in Eq. (3) before we use it for deblurring: the homogra-
phy H; and the duty cycle 7. To estimate the homography H;, we
first apply feature tracking using a standard KLT approach [Shi and
Tomasi 1994], and use the tracked feature points to compute the ini-
tial homographies. We then refine the homographies using Lucas-
Kanade registration [Baker and Matthews 2004] between frames.

In our deblurring approach, we need to estimate homographies not
only between adjacent frames, but also between any two frames in
a local temporal window W; = [i — M, i + M|, where M is set to
5 frames in our implementation. The homography from frame ¢ to
frame j is denoted by H;;, where j € W;. Obviously H; ;41 = H;
in Fig. 3. Homographies among non-adjacent frames are initialized
and refined in the same way as H;.

Note that unlike the previous approach [Li et al. 2010], we do not
further update the homographes when we deblur the video frames.
This is because we only treat the homography as an approximate
motion model. Small errors in homography estimation are handled
by local search of matching patches in the deblurring process.

To compute 7, we first select a set of frame pairs, where each pair
has a large difference in the luckiness measurement, so that the ac-
curacy of blur functions can be effectively tested. Let (fF, ff),
k=1,.., K, be K pairs of frames with j € W;, where the frame
luckiness difference, o; — o, is larger than a threshold (0.6 in our
system, where &« = max; ;). We then seek the optimal 7 which

minimizes:

E(r) =),
k=1

Intuitively, we first align f* with ff using the homography HL’“]
then blur the aligned sharp frame ﬁfj (£F) using the blur function
bf of f]]»“, and compute the sum of squared differences between the
synthetically blurred frame and the observed f]k . The value of Eq.
(5) depends on the blur functions bf for all k: if functions bf are
accurate, the value should be small, and vise versa. Since bf is de-
termined by Eq. (3) for a given value of 7, Eq. (5) becomes an en-
ergy function of 7. We minimize Eq. (5) using a brute-force search
as 7 can take only a limited set of integer values from 1 to |7/2].

2

(&)

b (A15(5) - 1}

4 Video Frame Deblurring

4.1 Single frame deblurring

Once we have obtained the blur function b; for frame f;, we could
compute the latent frame /; using a deconvolution method that can
handle non-uniform blurs represented by homographies [Li et al.
2010; Tai et al. 2011]. However, as discussed in Sec. 1, this straight-
forward approach generates less satisfactory results in practice. We
instead use lucky patches in nearby frames to restore /;, avoiding
artifacts from deconvolution.

Patch deblurring Let f; . be an n x n image patch in a frame
fi centered at a pixel z. In our implementation, n = 11. We de-
blur f; ., by computing an weighted average of sharp patches from
nearby frames f; in the temporal window W;. That is,

1
e = - D

(j,y)EQi,;c

w(iaxvj7y)ijy7 (6)

where [; ; is a deblurred patch of f; ., and fj, is a patch in
the warped frame Hj;(f;) centered at a pixel y. The weight
w(i, z, j,y) is defined as:

. f. 2
w(i,z, j,y) = exp(—M) @)

2
202

where b;,, is a patch centered at y in the blurred warped frame
bi (ﬁ i fj)), which is obtained by applying the blur function b;

of the current frame f; to Hji(f;), and o, is a constant set to 0.1
in our system. 2; . is a set of matching patches for f; , sampled

from warped nearby frames H 3i(f7)- Z is the normalization factor,
ie. Z =32 yea, , Wi, 2,5, 9).

The weight w(%, z, j, y) is analogous to the data fitting term of pre-
vious deblurring methods, which measures the difference of the la-
tent image from the input blurry image when it has been blurred
using the estimated kernel. In our approach, we test a warped
patch f;, from a nearby frame f; for its eligibility to be the la-
tent patch [; ,, by comparing it with the input blurry patch f; 5
after blurring it with the estimated blur function b;. The weight
w(i,x, j,y) becomes high as the blurred patch b;,,, matches with
fi,«. Consequently, warped patches f;, have more contributions
in the weighted averaging in Eq. (6) when they are similar to the
latent patch l; ;.

To determine the patch set €2; ,, we find the N best-matching
patches from warped nearby frames H;(f;), where j € W;. We

Figure 5: Illustration of the impact of each step in our algorithm on the final result. (a) A region in the input blurry frame. (b) Copying center
pixels of matched patches from nearby frames. (c) Adding weighted patch averaging in Eq. (9). (d) Adding the lucky patch prior in Eq. (10).

(e) Adding the frame processing order.

use w(i, z, j,y) as the degree of matching, which is equivalent to
selecting patches by solving

argmin 165,y — fi,= H2 ®)

1Y

For the search range of y to find a matching patch f; ., in Hj;(f;).
we use an m X m window centered at the pixel x. Ideally, if H;
accurately estimates the motion from f; to f;, we can simply set
the search range m to be one, i.e., only using the patch centered
at x in H ji(f7). However, in practice due to parallax and object
motions, the real motion among frames is generally more compli-
cated than a single homography. Using a larger value than one for
the search range m allows us to compensate for the error in our
motion model using homographies. In our implementation, we use
m = 21, which seems large enough to find a good patch, given that
a homography could still be a good estimate for the motion between
frames.

In our experiments, we found that using a large N often leads to
over-smoothed deblurring results, due to the small misalignments
among the N best-matching patches. We thus use N = 1 for best
sharpness, and then Eq. (6) is reduced to simply using the best-
matching patch to restore a latent patch. As mentioned in Sec.
3.4, we set M = b5 for the temporal window W;, meaning that
ten nearby frames and f; itself are included in the patch search.

Frame deblurring To restore the latent frame /; from a blurry in-
put frame f;, we could simply perform the patch deblurring using
Eq. (6) at each pixel x in f; and keep the center pixels of the de-
blurred patches. However, this approach may incur misalignments
of object structures in [;, as pixels in [/; are determined individu-
ally without enforcing spatial coherence (see Fig. 5b). Instead, we
adapt a patch-based texture synthesis approach [Kwatra et al. 2005]
to merge the effects of overlapping deblurred patches in /;.

Let I;(x) be the value of /; at a pixel . We determine /;(x) as:

1
(@) = o > Zuliw(2), ©)

z'E€Qy

= 23 Y wld i),

' €Qy (j,y)GQi,z/

where Q. is the set of pixels =’ in the n x n spatial window cen-
tered at = for which deblurred patches [; .+ have been derived us-
ing Eq. (6), and [; ,-(z) is the pixel value of [, ,» at x. Z is
the normalization factor, i.e., Z = ol e, Zyr, Where Z,1 =
Ywea, . w(i,z’,4,y). fiy(x) is the value of pixel x in a
warped pafch fi,y- If we compute a deblurred patch for every pixel
in f;, there will be n? pixels in €, for a pixel z in f; except around
the image boundary. Then, pixel 2 will be covered by n? deblurred
patches whose values at x are weighted averaged using Eq. (9) to
determine [;(x). To accelerate the frame deblurring process, we

perform patch deblurring only for a sparse regular grid of pixels, not
for every pixel, as done in [Kwatra et al. 2005]. This sparse sam-
pling also helps avoiding over-smoothed deblurring results, which
can be caused by averaging many patches. Fig. Sc shows the de-
blurred result with better preserved object structures.

Handling moving objects Our deblurring method can success-
fully process slightly moving objects, due to the local search of
matching patches. In contrast, our method keeps objects with large
motions almost untouched in the deblurring process. When a patch
fi,« belongs to a moving object in f;, the object motion incurs a dif-
ferent blur from the blur function b;, and would dominate the true
blur function for f; , if the motion is large. In this case, due to the
blur function difference, the local patch search cannot find a match-
ing patch in another frame f; with a small fitting error defined in Eq.
(8). On the other hand, the fitting error between f; , and b;(f;) is
relatively small, since f; . is already severely blurred by the object
motion, and b;(fi) is a slightly smoothed version of f; ., with the
same appearance. Thus f; » becomes the best matching patch for
itself, and the latent patch /; , computed by Eq. (6) would remain
similar to f; 5.

4.2 Improved deblurring using luckiness
To further improve the sharpness of deblurred frames, we introduce

anew weight w’ (i, z, j, y) with which sharper patches are preferred
over blurrier ones:

. Hl_aj;y|2 10
w(z,x,],y) - w(laxaj7y)'eXp _T {10)

where o, is an n X n patch centered at a pixel y in a luckiness
map «;, and <y is a constant. A luckiness map «; consists of the
luckiness values of pixels in the warped frame H;;(f;). 1 is an
n X n patch whose elements are all one. As we use the new weight
w'(i,x, j,y) for selecting the best-matching patches, Eq. (8) be-
comes:

argmin {[[by.y — fusll® + AL =z P}, A
7Y

where A = o2/~%. We use a small value for)\, which is 0.01 in
our implementation. This allows the patch match term to dominate
Eq. (11) and the lucky patch prior to have effect only when the
values of the patch match term are similar among different patches.
Fig. 5d shows that using luckiness helps improve the sharpness of
a restored frame.

We also use the luckiness values to determine the processing order
of frames when applying our frame deblurring method to the whole
video sequence. We first sort all frames based on their luckiness
values, and start processing from the luckiest frame first. For luck-
ier frames, most pixels will remain unchanged after deblurring. As
the luckiness values of frames become lower, more pixels will be

Figure 6: Results at iterations of the iterative improvement. (a) An
input frame. (b) 1st iteration. (c) 2nd iteration. (d) 3rd iteration.

updated by sharper pixels from already processed frames. We treat
the luckiness as another color channel and update it in the same
way as we update RGB values of pixels. As a result, sharp pix-
els are propagated from luckier frames to less lucky ones. Fig. Se
shows the final deblurring result using the proposed frame process-
ing order. It is clearly sharper than Fig. 5d which was generated
without using the processing results of other frames.

4.3 lterative improvement of deblurred frames

In patch-based texture synthesis [Kwatra et al. 2005] and image
retargeting [Simakov et al. 2008], the synthesis is performed itera-
tively to obtain more coherent textures and object structures. Our
method takes a similar iterative process to improve the spatial co-
herence of deblurred frames. We use the result frames from the
previous iteration of patch search and deblurring in the current it-
eration. As a result, the pixel sharpness and the object structures in
the deblurred frames become enhanced with the iterations.

For iterative improvement, we first modify Eq. (6) as:

IS

(3, Y)EQ 2

w' (i, z, §,y)I? (12)

where lf is the ¢-th latent frame restored in the p-th iteration, and
19 = f;. We also modify Eq. (10) as:

v, —fi 2 1—af 2
w/(i,m,j, y) = exp <|],y20—3}flw|> exp <|2’yz],y|| ,

where b’ is a patch in a blurred warped latent frame b; (ﬁ (1Y)),

and a? » 18 a patch in a luckiness map oz? updated in the p-th itera-
tion. Fig. 6 shows an example of the iterative improvement.

The number of iterations needed for iterative improvement is di-
rectly related to how far away the sharp frames are distributed from
each other. It can be automatically determined based on the tempo-
ral window size, 2M + 1, which basically defines how far a sharp
frame can expand in one iteration. As shown in Fig. 7, we compute
the luckiness values of all frames in the input video, and find all
sharp frames whose luckiness values are higher than a high thresh-
old (0.85 in our system). We then find the maximum distance be-
tween two adjacent sharp frames, denoted by M. The number of
iterations can be computed as [(M, — 1)/2M].

4.4 Improving temporal coherence

Although there is no explicit temporal coherence term involved in
Eq. (13), the resulting video generated by the iterative deblurring
process in Sec. 4.3 is mostly temporally coherent. This is due to
the fact that we constrain the patch search to be in a small spa-
tial window after homography registration, and thus for the same
blurry patch in consecutive frames, the same sharp patch tends to
be selected in the local search of matching patches. Furthermore,

0.9 0.9
0.7 0.7 n’
0.5 @ 0.5 (®)

~N O WL S o0 o
N < N O~ 0o

0.9 0.9
0.7 [\ 0.7 A A
05 -+ © 0.5 . 9

—

— O O
—

28
100
105
118
131
144

~

1

= o H o o © ST Mmoo
o~ n O ~ oo

— b ~ o
— N M SN O~ 0O — m <

91
100

Figure 7: Frame luckiness values of four different motion-blurred
videos. The proportions of sharp frames (i.e., a; > 0.85) are (a)
88% (b) 21% (c) 42%, and (d) 54%.

the iterative process encourages a sharp patch to propagate across
multiple frames, achieving better temporal coherence.

To further improve the temporal coherence, after the iterative im-
provement of deblurred frames, we have additional iterations with
slight modification of Eq. (12). That is, we restrict the temporal
window W as W; = [i — 1,7+ 1] and use three patches [, ,. .
I} g and 7, . for computing Eq. (12), where x; 1 and @11 are
the matched pixel positions of x in the previous and next frames, re-
spectively, which maximize the weighting function in Eq. (7). This
is equivalent to finding a temporally smooth video frames I} from
given video frames /; by optimizing the following Markov random
field based energy function:

By({l:}) * (14)

Zw(i7m7 17'7;)”[;,1 - li,m
2 2

i@ je{i—1,i+1}

w(iy z, §,x5) |12 — U, |I?

with the gradient descent method where the patch correspondence
and weights are updated at each gradient descent step. In Eq. (14),
the first term on the right hand side is a data fidelity term, which
forces I; to be similar to the given frame /;, and the second and
third terms encourage the updated frames [; to be close to their
neighboring frames. Consequently, the resulting frames are close
to the given deblurred frames /; as well as temporally coherent. We
typically iterate this step twice to obtain the final result frames.

3D volumetric patches have been used for maintaining temporal
coherence in video retargeting [Simakov et al. 2008]. One possible
idea for temporal coherence in our method is to extend a 2D patch
into neighboring frames to construct a 3D patch, using homogra-
phies to align corresponding pixels. However, the requirement for
temporal coherence is different among video retargeting and our
method. In video retargeting, 3D volumetric patches in the original
video are desired to be copied into the result video while preserv-
ing the order of consecutive frames. In contrast, in our method,
patch search is performed to find sharp patches for restoring blurry
patches, and comparison of two 3D volumetric patches is meaning-
ful only when the sharpness and the blur function are consistent in
all the consecutive frames involved in the 3D patches. In practice,
real videos have dynamically varying sharpness and blur functions
among frames, and 3D volumetric patches would not be useful for
our local search of matching patches.

P

Figure 8: Examples of deblurred video frames. Top: Input blurry frames. Bottom: Our deblurring results. Full video sequences are included

in the supplementary material.

5 Results and Comparisons

As our method is based on the assumption of the existence of sharp
frames, we plot frame luckiness values of a few video captured
by hand-held cameras to see how often sharp video frames ac-
tually appear in real motion-blurred videos (Fig. 7). We empiri-
cally found that frames of luckiness values greater than 0.85 are
not visually blurry, i.e., sharp frames. While the shape of the plot
varies among the test videos, all plots suggest that a large num-
ber of sharp frames exist in a motion-blurred video. Furthermore,
as some blurry frames may have sharp regions due to non-uniform
blur as described in Sec. 3.1, available sharp regions have a denser
distribution than sharp frames.

We have applied our method to a variety of example videos shot
by hand-held cameras. In the supplementary material, we provide
stabilized versions of the input and deblurred videos, which allow
us to concentrate on the blur artifact without being distracted by
shaky camera motion. As can be seen in the examples, the stabi-
lized input videos contain annoying blur artifact caused by original
camera shake, where video frames suddenly become blurry for a
few frames before coming back to normal. Our method can largely
remove this artifact and generate temporal-coherently sharp videos.

Fig. 8 shows input blurry frames from four different videos and the
deblurring results. These examples demonstrate that our method
can successfully restore sharp frames from blurry input. Note that
these are challenging examples given the moving objects and sig-
nificant depth differences among the objects. Nevertheless, our
method recovers sharp details without noticeable artifacts.

Fig. 9 visualizes pixel luckiness values of one frame at each step
of our algorithm. Initially, the luckiness values of all pixels, com-
puted by Eq. (4), are low, indicating the frame is blurry. As itera-
tion goes, the updated luckiness values become high for more pix-
els. Fig. 10 shows frame luckiness values of the entire video. The
input video has dynamically changing frame luckiness values due
to irregular camera motion. The frame-wise restoration step im-
proves the frame luckiness for all blurry frames. The final step for
improving temporal coherence produces smoothly changing frame
luckiness values.

In Fig. 11 we compare our method with the previous deblurring
methods. Figs. 11a and 11d show results of a deconvolution-based
deblurring approach. Similar to Li et al. [2010], we first esti-
mate homographies between frames, and use them to align every
three consecutive frames. We then approximate spatially-varying
motion blur kernels using the estimated homographies between
frames, and finally apply the recently proposed projective motion
Richardson-Lucy algorithm [Tai et al. 2011] to recover the latent

Figure 9: Visualization of pixel luckiness values at each step of
our algorithm. From left to right: input blurry frame; after the Ist
iteration; after the 2nd iteration.

0.95
0.9
0.85
0.8
0.75
0.7

0.65

0.6
— 1 MM =y =0
—~ — 8 A& 6o T

—(@) —(b) —() —(@) —(e) —(O
Figure 10: Plot of frame luckiness values at each step of our algo-
rithm. (a) Input blurry video. (b)-(d) 1st, 2nd, and 3rd iterations,
respectively. (e) & (f) 1st and 2nd iterations for improving temporal
coherence.

~ = 1 o on o~

o — o
T o O D~ o ®

SN
o o

image. This implementation does not exactly match the method of
Li et al. [2010]. Nevertheless, the implementation shares the core
limitations with their method, i.e., a limited homography-based mo-
tion model and no handling of moving objects.

The input video of Fig. 11 presents strong parallax due to the sig-
nificant depth difference between the front pole and the background
street, thus the adjacent frames cannot be aligned well using a sin-
gle homography. Consequently, the deblurring result in Fig. 11a
shows noticeable artifacts around the front pole. In Fig. 11d, pix-
els in moving objects cannot be aligned using a single homography
either, leading to severe ringing artifacts around the moving car.
In contrast, our method generates better results in both cases, as it
naturally handles errors from the homography-based motion model
and moving objects.

Figs. 11b and 11le show results of the interpolation-based video

-—

Figure 11: Comparison with previous deblurring approaches. (a)
& (d) Multi-frame deblurring results. (b) & (e) Matsushita et al.
[2006]. (c) & (f) Our results.

Figure 12: From left to right: input blurry frame, shock filtering

result of the input frame, our method, our method followed by shock
filtering, and Matsushita et al. [2006] followed by shock filtering.

deblurring method of Matsushita et al. [2006]. As their method
uses simple frame-interpolation without considering the character-
istics of underlying motion blur, the result still appears to be blurry.
Their method also demands accurate frame alignment for high qual-
ity results, which is hardly achievable in practice. In contrast,
our method generates better results by involving the estimated blur
function and compensating for frame alignment error in Eq. (13).

Due to latent patch averaging in Eq. (12), our deblurring result may
look a bit too smooth. However, as large motion blurs in video
frames have been removed by our method, the perceived sharpness
of our result can easily be enhanced by simple image filtering. We
did not apply any filtering to our deblurring results shown in this pa-
per, except Fig. 12 that demonstrates the effect of shock filter [Os-
her and Rudin 1990] applied to our deblurring result. Note that the
input blurry frame and the result of Matsushita et al. [2006] are not
improved at all when the same filter is applied to them. For the
deblurring results included in the supplementary video, we applied
shock filter for enhanced visual quality.

Improving video stabilization Our method can improve stabi-
lization quality of a video, as feature points can be located more ac-
curately in the deblurred frames. Fig. 13 shows consecutive frames
of stabilized videos. The top row is the stabilization result using the
original frames, and the bottom row is the result using the deblurred
frames, all generated by the same algorithm [Liu et al. 2011] with
the same set of settings. As the original video frames are blurry, a
feature-point-based stabilization method may fail to match feature
points between frames. As a result, the top row shows a sudden
jump between the two consecutive stabilized frames. In contrast,
the bottom row shows a smooth transition between the same two
frames. We refer the reader to the supplementary material for com-
parison of the stabilization results.

5.1 Failure cases

Our approach has a few limitations. First, feature tracking may fail
when there are large moving objects or significant depth variation.
This may cause failure in estimating blur function, and in finding

Figure 13: Stabilization results of a blurry video (top row) and
the deblurred video (bottom row). The left two columns show two
consecutive frames of stabilized results. The right column shows
difference between the left two frames. While the result of the blurry
video shows a sudden jump due to incorrect feature point matching
caused by motion blur in the frames, the stabilization result of the
deblurred video shows smooth transition between the frames.

Figure 14: Examples of failure cases. (a) Input video frame. (b)
Magnified view of an input region. (c) Our result. (d) & (f) Input
frames. (e) & (g) Our resullts.

proper sharp patches in nearby frames (Figs. 14a-c). In addition,
for a severely blurred patch, the fine image structure in it might
have been destroyed completely, resulting in incorrect patch find-
ing. Figs. 14d-e show such an example. Although the input frame
is largely improved by our method, we can still see noticeable arti-
fact around a fine image structure.

Currently our method has difficulty to handle saturated pixels. Due
to clipping of pixel values, the motion blur model in Eq. (1) does
not hold for saturated pixels, and our method cannot properly match
a sharp patch with a blurry one in the presence of saturated pixels.
Fig. 14f shows such an example, where the traffic lights cause pix-
els to be saturated around them. Our method fails to improve the
regions around the traffic lights, as shown in Fig. 14g, although
other parts of the frame is largely improved.

Our method is an example-based approach which relies on using
sharp patches from nearby frames to restore blurry ones. If the cam-
era motion is constantly large and there is no sharp patches avail-
able, our method cannot restore blurry frames, just leaving the input
video untouched. A similar situation is that only parts of the scene
have sharp patches available, such as a video where the camera pans
at the beginning, then stops at the end. Combining our method with
a deconvolution-based approach using multi-frames may help han-
dle these limitation cases.

6 Discussion and Future Work

The camera motion in a hand-held sequence often causes some por-
tion of video frames to be more blurry than others. We present
a practical video deblurring method to restore sharp frames. Since
our solution only involves forward convolution and patch-based im-

age synthesis, it is robust enough to handle a wide range of real-
world videos. This is in sharp contrast to previous deconvolution-
based deblurring methods, which are incapable of dealing with var-
ious common outliers, such as moving objects, noise, and compres-
sion artifacts.

As pointed out in Sec. 5.1, our method still has a few limitations
that we would like to resolve in future. Particularly, we plan to
develop a more complicated patch matching algorithm which can
handle saturated pixels, by explicitly modeling saturated pixels as
a non-linear operation in Eq. (1). We also plan to incorporate de-
convolution techniques into our method, so that we can improve
moving objects by separating the camera motion from the object
motion, and remove the effect of the former.

Currently our method is implemented in C++ and runs on a single
thread. Deblurring a HD size video frame on a PC with Intel Core
i7 CPU takes about one minute. However, our approach is easily
parallelizable, as the search of sharp patches for blurry pixels can
be carried out independently. As future work we plan to implement
our method on GPU to dramatically improve the performance.

Acknowledgements We thank the anonymous reviewers for
their constructive comments, and David Simons for initial discus-
sion. This work was supported in part by Industrial Strategic Tech-
nology Development Program of KEIT (KI001820) and Brain Ko-
rea 21 Project.

References

AGRAWAL, A., XU, Y., AND RASKAR, R. 2009. Invertible motion
blur in video. ACM Trans. Graphics 28, 3, 95:1-95:8.

BAKER, S., AND MATTHEWS, I. 2004. Lucas-kanade 20 years
on: A unifying framework. International Journal of Computer
Vision (IJCV) 56, 3, 221-255.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM Trans. Graphics 28,
3,24:1-24:11.

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The generalized PatchMatch correspondence
algorithm. In Proc. ECCV 2010, 29-43.

BUADES, A., AND COLL, B. 2005. A non-local algorithm for
image denoising. In Proc. CVPR 2006, 60—-65.

Cal, J.-F., J1, H., L1u, C., AND SHEN, Z. 2009. Blind motion
deblurring using multiple images. J. Comput. Phys. 228, 5057-
5071.

CHEN, J., YUAN, L., TANG, C.-K., AND QUAN, L. 2008. Robust
dual motion deblurring. In Proc. CVPR 2008, 1-8.

CHO, S., AND LEE, S. 2009. Fast motion deblurring. ACM Trans.
Graphics 28, 5, 145:1-145:8.

CHO, S., MATSUSHITA, Y., AND LEE, S. 2007. Removing non-
uniform motion blur from images. In Proc. ICCV 2007, 1-8.

CHO, S., WANG, J., AND LEE, S. 2011. Handling outliers in
non-blind image deconvolution. In Proc. ICCV 2011, 495-502.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. Proc. ACM SIGGRAPH 2001,
341-346.

FERGUS, R., SINGH, B., HERTZMANN, A., ROWEIS, S. T., AND
FREEMAN, W. T. 2006. Removing camera shake from a single
photograph. ACM Trans. Graphics 25, 3, 787-794.

FREEDMAN, G., AND FATTAL, R. 2011. Image and video up-
scaling from local self-examples. ACM Trans. Graphics 30, 2,
12:1-12:11.

FRIED, D. L. 1978. Probability of getting a lucky short-exposure
image through turbulence. J. Opt. Soc. Am. 68, 12, 1651-1657.

GRUNDMANN, M., KWATRA, V., AND EssA, I. 2011. Auto-
directed video stabilization with robust L1 optimal camera paths.
In Proc. CVPR 2011, 225-232.

GUPTA, A., JOSHI, N., ZITNICK, C. L., COHEN, M., AND CUR-
LESS, B. 2010. Single image deblurring using motion density
functions. In Proc. ECCV 2010, 171-184.

HACOHEN, Y., SHECHTMAN, E., GOLDMAN, D. B., AND
LiScHINSKI, D. 2011. Non-rigid dense correspondence with
applications for image enhancement. ACM Trans. Graphics 30,
4,70:1-70:10.

HIRSCH, M., SCHULER, C. J., HARMELING, S., AND
SCHOLKOPF, B. 2011. Fast removal of non-uniform camera
shake. In Proc. ICCV 2011, 463-470.

JosHI, N., AND COHEN, M. 2010. Seeing mt. rainier: Lucky
imaging for multi-image denoising, sharpening, and haze re-
moval. In Proc. ICCP 2010, 1-8.

KWATRA, V., ESSA, 1., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans.
Graphics 24, 3, 795-802.

LEVIN, A., WEISS, Y., DURAND, F., AND FREEMAN, W. T.
2011. Efficient marginal likelihood optimization in blind decon-
volution. In Proc. CVPR 2011, 2657-2664.

LL Y., KANG, S. B., JosHL, N., SEITZ, S. M., AND HUTTEN-
LOCHER, D. P. 2010. Generating sharp panoramas from motion-
blurred videos. In Proc. CVPR 2010, 2424-2431.

Liu, C., AND FREEMAN, W. T. 2010. A high-quality video de-
noising algorithm based on reliable motion estimation. In Proc.
ECCV 2010, 706-719.

Liu, F., GLEICHER, M., WANG, J., JIN, H., AND AGARWALA,
A. 2011. Subspace video stabilization. ACM Trans. Graphics
30, 1, 4:1-4:10.

MATSUSHITA, Y., OFEK, E., GE, W., TANG, X., AND SHUM, H.-
Y. 2006. Full-frame video stabilization with motion inpainting.
IEEE Trans. Pattern Analysis Machine Intelligence 28, 7, 1150-
1163.

OSHER, S., AND RUDIN, L. I. 1990. Feature-oriented image
enhancement using shock filters. SIAM Journal on Numerical
Analysis 27, 4, 919-940.

SHAN, Q., JIA, J., AND AGARWALA, A. 2008. High-quality
motion deblurring from a single image. ACM Trans. Graphics
27,3,73:1-73:10.

SHI, J., AND TOMASI, C. 1994. Good features to track. In Proc.
CVPR 1994, 593-600.

SiMAKOV, D., CASPI, Y., SHECHTMAN, E., AND IRANI, M.
2008. Summarizing visual data using bidirectional similarity.
In Proc. CVPR 2008, 1-8.

TAI, Y.-W., TAN, P., AND BROWN, M. S. 2011. Richardson-
lucy deblurring for scenes under a projective motion path. /IEEE
Trans. Pattern Analysis Machine Intelligence 33, 8, 1603-1618.

WHYTE, O., SIVIC, J., ZISSERMAN, A., AND PONCE, J. 2010.
Non-uniform deblurring for shaken images. In Proc. CVPR
2010, 491-498.

