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Various significant issues in cloud computing, such as service provision, service matching, and service assessment, have attracted
researchers’ attention recently. Quality of service (QoS) plays an increasingly important role in the provision of cloud-based servi-
ces, by aiming for the seamless and dynamic integration of cloud-service components. In this paper, we focus on QoS-satisfied
predictions about the composition of cloud-service components and present a QoS-satisfied prediction model based on a hidden
Markov model. In providing a cloud-based service for a user, if the user’s QoS cannot be satisfied by a single cloud-service
component, component composition should be considered, where its QoS-satisfied capability needs to be proactively predicted
to be able to guarantee the user’s QoS. We discuss the proposed model in detail and prove some aspects of the model. Simulation
results show that our model can achieve high prediction accuracies.

1. Introduction

Cloud computing is a term used to refer to the use of wide-
spread, shared computing resources. It is an alternative to
having local servers handle computing applications. Cloud
computing groups together a large number of computing
servers and other resources, often offering their combined
capacity on an on-demand, pay-per-cycle basis. The end users
of a cloud computing network usually have no idea where the
servers are physically located—they just open their applica-
tions and start working [1-3].

In general, the service resources in cloud computing will
include hardware resources (e.g., processors, storage, and net-
working) and software resources (e.g., web servers, databases,
message queuing systems, and monitoring systems). Cloud
service types can be abstracted into three layers, namely
software as a service (SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS) [4]. Hardware and software
resources form the basis for delivering IaaS and PaaS. The
Saa$ layer at the top focuses on application services by mak-
ing use of services provided by the lower layers. PaaS/SaaS
services are often developed and provided by third-party
service providers who are different from the Iaa$ provider.

Therefore, matching the cloud-service components to the
users quality of service (QoS) is very important because user

experience is a principal reason for promoting the develop-
ment of cloud computing. For each user request, the provider
should select an appropriate composition of cloud-service
components to serve the user if there is no single cloud-
service component that satisfies the user’s QoS perfectly. This
will require predictions to be made about the QoS satisfaction
for compositions of cloud-service components.

Wang et al. [5] propose a composition method for
selecting cloud-based web services from candidate services,
changing a single service into a more powerful composite
service, which uses the Skyline operator and Particle Swarm
Optimization. Javadi et al. [6] investigate cloud-computing
resource provision to extend the computing capacity of
local clusters in the presence of failures. Their three steps
in resource provision include resource brokering, dispatch
sequences, and scheduling. Benouaret et al. [7] present an
approach to composing Data Web services automatically
while taking into account user preferences, which is based
on fuzzy sets and top-k optimization. Liu et al. [8] introduce
a scheme to address the particularities of manufacturing-
resource service composition and optimization, where the
user’s QoS is considered. Zhang et al. [4] present an investi-
gation of an intelligent decision-support system for selecting
cloud-based infrastructure services to choose the best mix



of service offerings from an abundance of possibilities.
Although those papers discuss the composition of cloud-ser-
vice components, QoS-satisfied predictions are not consid-
ered.

Huang et al. [9] introduce a method for addressing the
problem of composing a sequence of service components for
QoS-guaranteed service provision in a virtualization-based
cloud-computing environment. Huang et al. [10] designs a
suboptimal resource-allocation system in a cloud-computing
environment, and a corresponding prediction mechanism
is realized by using support-vector regression to estimate
the resource utilization. Di and Wang [11] propose a fully
distributed, VM-multiplexing resource-allocation scheme to
manage decentralized resources. Jiang et al. [12] propose a
new method for cloud-capacity planning, with the goals of
utilizing the physical resources fully and providing an inte-
grated system with intelligent cloud-capacity prediction.

The Markov model (MM), particularly the hidden
Markov model (HMM), has been shown to be a good tech-
nique for solving prediction problems. Zhang and Pathirana
[13] present an adaptive HMM for identifying underlying
path losses. Choi et al. [14] present a sparsely correlated HMM
for assessing multiple genomic datasets. Botev et al. [15]
present a versatile Monte Carlo method for estimating multi-
dimensional integrals, with application to rare-event proba-
bility estimation. Xie et al. [16] present a new structurally dis-
crete approach to predicting network traffic called the nested
hidden semi-Markov model, which includes a nested latent
semi-Markov chain and one observable discrete stochastic
process. However, further research into QoS-satisfied capa-
bility should be considered.

This paper focuses on QoS-satisfied predictions for com-
positions of cloud-service components, based on the HMM
and our previous work [17-19]. The remainder of this paper
is organized as follows. In Section 2, the basic model used
in later discussion is presented. In Section 3, we propose a
QoS-satisfied prediction model and explain it in detail. In
Section 4, the simulation and analysis are discussed. Finally,
we conclude the paper in Section 5.

2. Basic Model

The MM is a statistical model with a wide area of application.
Many other Markov models are derived fundamentally from
MM, including the HMM and the semi-Markov model. The
HMM is used extensively for performance modeling and
performance-prediction analysis, where the HMM can pre-
dict the future state of a target system based on its cur-
rent state. In reality, because the relationship between the
observed time and the observed state is not one to one, a
group of probability distributions for two stochastic processes
are involved, called the HMM.

In an HMM, the states are not observable, but when we
visit a state, an observation is recorded that is a probabilistic
function of the state. We assume a discrete observation in
each state from the set

,vM}:bj(m)éPr(Ot:vmIqt:Sj), 1)

{vi, vy, ...
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FIGURE 1: An example of an observable model for an HMM.

where b;(m) is the observation or emission probability. We also
assume a homogeneous model for which the probabilities
do not depend on t. The values thus observed constitute an
observation sequence O. The state sequence Q is not observed
directly (being “hidden”), but it should be possible to infer it
from the observation sequence O. An example of an observ-
able model for an HMM is shown in Figure 1, where M = N
and bj(m) =1lif j=mand bj(m) = 0 otherwise. To summa-
rize and formalize, an HMM has the following elements:

(1) N: the number of states in the model
S=1{5.5,,..., Sy} (2)

(2) M: the number of distinct observation symbols in the
alphabet

V={v, vy ..o,V (3)

(3) State transition probabilities:
A= [a,»j] , where a;; = Pr (qt+1 =S;lq = S,»). (4)
(4) Observation probabilities:

B= [bj (m)] , where b; (m) = Pr (Ot =v,|lq = Sj).
(5)

(5) Initial state probabilities:
II=[m], wheren =Pr(q =S;). (6)

N and M are implicitly defined by the other parameters, leav-
ing A = (A, B, II) as the parameter set for an HMM. Given A,
the model can be used to generate an arbitrary number of
observation sequences of arbitrary length, but we are usually
interested in the other direction, namely, that of estimating
the parameters of the model given a training set of sequences.

3. Proposed QoS-Satisfied Prediction Model
for Cloud-Service Composition

In this section, we propose a prediction model for cloud-
service composition based on an HMM. We first present an
overview of cloud-service composition and then give details
of the prediction model.
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FIGURE 2: General flowchart for cloud-service provision.

3.1. An Overview of Cloud-Service Composition and Matching.
The key roles played in a cloud environment are those of the
service user and the service provider. The cloud-service user
needs anytime, anywhere QoS-satisfied and low-cost services
that are flexible and easy to use. The important hurdles to
users adopting cloud services involve security, availability,
and reliability. We should therefore assess the QoS-satisfied
capability for each service provision generated by match-
ing cloud-service components with the users’ QoS. Some-
times, if a single cloud-service component does not satisfy
the users’ QoS, multiple cloud-service components should
be composed to provide a more complex service. General
flowcharts for cloud services and for a cloud-service compo-
nent-matching model are shown in Figures 2 and 3, respec-
tively.

3.2. QoS-Satisfied Prediction Model. We propose a QoS-satis-
fied prediction model based on an HMM to predict whether
a composition of cloud-service components can satisfy the
user’s QoS. Using the basic HMM model, we assume that
the QoS capability of cloud-service components is a state set
{vivasoo vyt bim) = Pr(O; = v, | g, = §;), where
bj(m) is the observation probability of obtaining v,, (m =
1,2,...,M) when the composition state is S; and O is a
sequence of obtained v, values. To reduce the complexity of
calculation for Pr(O | A), we define a forward variable

0,9, =S | A)’

The three stages of its recursion are shown in Figure 4(a)
and described as follows.
(1) Initialization:

a, (i) = Pr (Ol"h

a, (i) 2 Pr(0,,0,,..., 1<i<N. (7)

=S;|A)
=Pr (0, | g
= m;b; (Ol)'

=S, A)Pr(q, =S; | A) (8)

(2) Recursion:

Pr (O1>---Ot+1"1t+1 =S§; | /\)

N
[Z“t (@) aij] bj (Op41) -
i=1
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Mathematical Problems in Engineering

t t+1

(a) Forward

t+1

(b) Backward

FIGURE 4: Forward-backward procedure: (a) computation of «,(j); (b) computation of f3,(;)

(3) End:

N N
Pr(O|A)=YPr(0,qr =S 14)=Yar(). 1)

i=1 i=1
Similarly, we define a backward variable

B; (i) 2 Pr(Opys---,Or | g4 = S A). (12)

The three stages of its recursion are shown in Figure 4(b) and
described as follows.
(1) Initialization:

Br (i) = 1. 13)
(2) Recursion:

B, (i) = Pr(ot+1>-"’OT lg: = Si’A)

N (14)
Z l] ](Ot+1 ﬁHl (J)

Proof
B (i) = Pr(Oyy>...,O0r | g, = S, 1)

O0r, Gy =S5 1 g, =S, 1)

5071 G = Sj’qt = Si’/\)

Pr (%+1 =Silq; = Si’A)

Mz

Pr (Ot+1 | G141 = Sj4q; = Si>)L)

1

.
I

- Pr (Ot+2>""OT | G110 = Sjq; = Si’A)

Pr (qt+1 =S; l g, = S,-,A)

Mz

Pr (Ot+1 | Gy = Sj’A)

1

.
I

- Pr (Ot+2,..-,OT | G = Sj’/\)

Pr (qt+1 =S; l g, = S,-,A)

1l
Mz

1] ]( t+l)ﬁt+l( )

1

.
I

(15)
O
(3) End:
N
Pr(O12) =) B ). (16)
i=1
From these forward and backward variables, we have
r(O|\) = Z Zat (D) a3b; (Ore1) Brar (7) 5
i=1 j=1 (17)

1<t<T-1

We therefore obtain A* = arg max, Pr(O | A), which is
a functional extremum problem. Because the length of the
training sequence is limited, there is no optimal method for
estimating A. Therefore, recursion is used to achieve a maxi-
mum local value for Pr(O | A), thereby obtaining the model
parameter set A = (A, B, IT).
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We define &, (i, j) as the probability of being in S; at time ¢
andin S; at time t+1, given the whole observation sequence O
and the model parameter set A. Then

& (i’ J) = Pr (Qt =8 qi = Sj | O, /\)

_ & (l) bj (Ot+1) /3t+1 (J) aij (18)
Yo S o (K) by (Oryy) Broy (D

Proof

& (i) 2 Pr(q, = S = S; 1 O, 1)
= Pr (O | G = Si> i1 = Sj’/\)

. Pr (qu =S qr1 = S; | A)
Pr(O]A)

= Pr (O | g = Siqe1 = Sj”‘)
- Pr (qt+1 =§; lg: = Si’A)

) Pr(% | /\)
Pr(O|A)

= Pr(Ol,.--,Ot | qt :Si’A)
- Pr (Ot+1 | G = sj’ A)
- Pr (Ot+2" '-)OT | qt+1 = S]’/\)

a;;Pr (@ =Si 1)

Pr(O|A)
=Pr(0y,...,0,,q, =51 4) Pr(om | G41 = Sj>A)

Pr (Or2o-- 01 | @1y = S ) ay

Pr(O]A)
% (i) b; (Or1) Bt (1) a;j
B Pr(O]A)

- o, (1) (Op1) Pre (7) a5

) ZkN=1 ZII\:II Pr(qy = Si> G = S, O 1 A)
- &, () b; (Opyy) By (7) @

N I @ (0 g (O) B

(19)

Thus, the probability of being in s; at time ¢ is therefore
given by

N
% (@) =Pr(0,q, =S 11) = Y& (i j), (20)
=

where zf;ll &,(i, j) denotes the mathematical expectation of
transition from state S;. Therefore, the probability of transi-
tion from §; to §; is given by
T-1 ( .
o 2 5())
aij = t,;_l d X . (21)
Qi1 v (D)

In state S, the probability of observing v,, is given by

T .
Ej (m) = 2 Y;(]) 1(9:%).
Yo ¥e ()

_ We therefore obtain a new model 1 = (A, B,T0), where
A= [(iij], B= [bj(m)], IT = [7;], and 71; = y,(i). We can prove
Pr(O | A) > Pr(O | A). The training process is repeated, and
the model parameters are adjusted gradually until Pr(O | 1)
converges. Finally, we obtain the prediction model A, which is
used to assess the QoS-satisfied capability for compositions of
cloud-service components. O

(22)

4. Stimulation Experiment and Analysis

To check the feasibility of the proposed QoS-satisfied predic-
tion model, we constructed a simulation experiment based on
a cloud-computing experimental platform at our university.
The simulation system included more than 100 cloud-service
components, such as adaptable components and servers, and
the open-source Eucalyptus system was adopted.

Using our simulation system, we designed three cloud
storage services whose QoS were different to check the
prediction model. First, we trained the prediction model by
adjusting the model parameters gradually, using a machine
learning algorithm based on a support vector machine
(SVM). In the SVM, the penalty factor c, the kernel function
parameter g, and the boundary range p were set to 1024, 1024,
and 0.0097, respectively. After obtaining the model parameter

set A, we achieved the prediction model 1. We then made
predictions for the three cloud storage services by using the
prediction model and acquiring their simulated results. The
simulation experiment was run 10 times to produce average
results. The QoS-satisfied capabilities for the prediction val-
ues and observation values of the three cloud storage services
(A, B, and C) are shown in Figures 5 and 6, respectively. The
comparison between actual and observed values for service
B is shown in Table 1, where the selected observation times
from 74 onwards show the acquisition of a stable observed
effect.

Note that the error is small (no more than 0.01%). This is
because there is a stable network environment, without any
other factors’ effects in our simulated system. In reality, a
larger error would be expected. However, it should be able to
satisfy the user’s QoS requirements in most cases.

5. Conclusions

Cloud computing refers to the use of shared computing
resources and is an alternative to having local servers handle
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FIGURE 5: Prediction values.
TaBLE 1: Comparison of prediction results.

Time Actual value Observation value Error (%)
74 19.4 19.3995 0.003
76 18.7 18.7011 0.006
78 20 19.9994 0.003
80 19 19.001 0.005
82 20 19.9993 0.004
84 19.2 19.2008 0.004
86 19.9 19.8991 0.005
88 18.5 18.5011 0.006
90 19.5 19.4991 0.005
92 19.4 19.3986 0.007
94 20 19.999 0.005
96 19.5 19.4993 0.004
98 20 19.9991 0.005
100 19.3 19.2987 0.007

user applications. A match between cloud-service compo-
nents and users’ QoS is therefore very important if user
experience is the basis for promoting the development of
cloud computing. If no single cloud service satisfies the
user’s QoS perfectly, a composition of multiple cloud-service
components should be considered, which should also include
predicting the QoS satisfaction of the composite service. This
paper presents a QoS-satisfied prediction model based on an
HMM to assess the QoS-satisfied capability for compositions
of components. We discuss the proposed model in detail and
prove aspects of the model. Simulation results show that our
model can achieve high prediction accuracies. In future work,
we will introduce heterogeneous cloud services into the sys-
tem and develop the prediction model to make it a better fit
with real applications.
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